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Bone homeostasis is a dynamic equilibrium between bone-forming osteoblasts and bone-
resorbing osteoclasts. This process is primarily controlled by the most abundant and
mechanosensitive bone cells, osteocytes, that reside individually, within chambers of
porous hydroxyapatite bone matrix. Recent studies have unveiled additional functional
roles for osteocytes in directly contributing to local matrix regulation as well as systemic
roles through endocrine functions by communicating with distant organs such as the
kidney. Osteocyte function is governed largely by both biochemical signaling and the
mechanical stimuli exerted on bone. Mechanical stimulation is required to maintain bone
health whilst aging and reduced level of loading are known to result in bone loss. To date,
both in vivo and in vitro approaches have been established to answer important questions
such as the effect of mechanical stimuli, the mechanosensors involved, and the
mechanosensitive signaling pathways in osteocytes. However, our understanding of
osteocyte mechanotransduction has been limited due to the technical challenges of
working with these cells since they are individually embedded within the hard
hydroxyapatite bone matrix. This review highlights the current knowledge of the
osteocyte functional role in maintaining bone health and the key regulatory pathways
of these mechanosensitive cells. Finally, we elaborate on the current therapeutic
opportunities offered by existing treatments and the potential for targeting osteocyte-
directed signaling.
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INTRODUCTION

The most long-lived bone cells, osteocytes are known as the master regulator of bone formation and
resorption (Bonewald 2011). The mechanosensory role of osteocytes underlies well-balanced bone
homeostasis, which is primarily influenced by matrix strain and fluid shear stress (Weinbaum et al.,
1994; Han et al., 2004; Robling and Turner 2009; Wittkowske et al., 2016). Through
mechanotransduction processes, osteocytes are able to transduce extracellular signals to elicit
cellular responses by initiating different signaling pathways accordingly to bring functional
responses. The dysregulation of osteocyte behavior can lead to reduced bone mass and bone
fragility observed in osteoporotic patients. For this reason, osteocyte-induced mechanotransduction
has been studied extensively, however, the exact mechanisms and signaling pathways are not fully
understood. Here we highlight the crucial role of osteocytes in bone homeostasis, including
regulation of the overall bone remodeling process, perilacunar/canalicular remodeling, and
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systemic regulatory roles on other tissues such as the kidney,
parathyroid, and heart (Dallas et al., 2013; Creecy et al., 2021).
Furthermore, we summarize the osteocyte mechanosensors and
the current state of mechanoresponsive signaling pathways
identified in osteocytes with therapeutic implications. To
achieve this, we present both in vivo and in vitro approaches
that have been employed to understand the complex regulatory
processes that underly osteocytes’ quintessential mechanosensory
role in bone.

BONE HOMEOSTASIS

Bone is a weight-bearing tissue, which supports locomotion,
protects soft tissue, and is also known as a reservoir for
calcium and phosphate (Bellido 2014; Florencio-Silva et al.,
2015). Bones are composed of both organic matrix,
comprising of largely type I collagen (90%), with the
remaining protein component including osteocalcin,
osteonectin, osteopontin, fibronectin, and thrombospondin-2
(Sroga and Vashishth 2012), as well as inorganic matrix
minerals, mainly comprised of hydroxyapatite (Ca5(PO4)3OH)
but also including small amounts of potassium, magnesium,
sodium, strontium, and calcium salts (Lin et al., 2020). The
formation of the bone matrix is initiated by the collagen
assembly followed by hydroxyapatite deposition and tuned by
minerals and amino acids of non-collagenous proteins (Young
2003; Tavafoghi and Cerruti 2016). The balance of mineral
content is important and directly relates to mechanical
strength (Faibish et al., 2006). For example, bones become
brittle when mineral content is too high and less load-bearing
if the mineral content is too low. This mineralized tissue
undergoes remodeling to maintain its integrity and is tightly
regulated by a precise balance of bone formation and resorption
under the control of local and systemic factors, such as cytokines,
hormones, and mechanical stimulation (Florencio-Silva et al.,
2015). This complex process is a cycle of localized bone
resorption to remove old or damaged bone followed by a
longer phase of bone formation, both in an equilibrium to
maintain healthy bone. The imbalance of this regulation often
leads to bone diseases such as osteoporosis and is caused by a
variety of factors such as aging, menopause, drugs, and changes in
physical activity (Feng and McDonald 2011). Imbalance can also
stem from genetic mutations, leading to bone overgrowth
disorders due to defective signaling pathways that change the
equilibrium resulting in van Buchem disease and sclerosteosis
(Balemans et al., 1999; Sebastian and Loots 2018).

Bone is a rigid and load-bearing tissue designed to sustain high
mechanical loads during exercise (Benedetti et al., 2018). There
are two types of bone tissue, the cortical and trabecular bone,
which have the same cells and matrix but differ in structural-
functional roles (Clarke 2008). Cortical bones are more calcified
and hard, and carry out the role of providing mechanical stability
and form a protective layer for the internal cavity (Boskey and
Coleman 2010). In comparison, the trabecular bones only contain
1/3 of calcified bone compared to the cortical ones and are mainly
involved in metabolic as well as biomechanical functions (Clarke

2008). The composition of the bone matrix is important for
fracture resistance, which largely depends on the geometric (size
and shape) and material properties (mineral content and
composition) (Osterhoff et al., 2016). Bones constantly
experience mechanical forces created by various stimuli
including fluid flow shear stress, hydrostatic pressure, and
direct cellular deformation induced by gravitational forces as a
weight-bearing tissue and loading-induced stimuli such as
compressive force. The calcified bone matrix may induce
micro-deformation with a maximum of 3% strain changes
(Hart et al., 2017). The matrix deformation during locomotion
is between 0.04 and 0.3% but hardly exceeds 0.1%. Surprisingly
in vitro studies need to apply more than 10 times this mechanical
stimulation to observe osteocyte responses, otherwise, the strain
amplification at the cellular level is too small to initiate
mechanotransduction pathways (Rubin and Lanyon 1984;
Fritton et al., 2000). These in vitro forces applied back at the
tissue level would cause a fracture (Burr et al., 1996; You et al.,
2000; Wang et al., 2015). This difference has to be taken into
consideration to more accurately capture the differences between
in vivo and in vitro systems and facilitate the accurate
interpretation of a translational approach. The externally
applied force is transduced by highly mechanosensitive
osteocytes that coordinate the effector cells, bone-forming
osteoblasts, and bone-resorbing osteoclasts demonstrating the
skeletal adaptation response of mechanical cues into biochemical
signals (Bonewald 2011; Schaffler and Kennedy 2012). The above
highlights the need to understand the mechanisms underlying
osteocyte’s important regulatory role in bone homeostasis.

OSTEOCYTES, THE MASTER REGULATOR

Osteocytes are the most abundant (~95%) bone cells, which
reside in the hard bone matrix (Hellmich and Ulm 2002;
Bonewald 2011). Osteocytes are a terminally differentiated
post-mitotic cell type from the osteogenic lineage, derived
from mesenchymal stem cell progenitors (Pittenger et al.,
1999; Day et al., 2005; Gaur et al., 2005; Sudo et al., 2007).
Mesenchymal stem cell differentiation leads to osteoblasts, and
a subpopulation is known to terminally differentiate into
osteocytes that are individually embedded within small
chambers called lacunae (Palumbo et al., 1990; Candeliere
et al., 2001). After the differentiation process, the most
striking morphological change of mature osteocytes is the
development of unique dendritic cell processes. These
dendritic cell processes create an extensive cellular network
in the hard bone matrix, which enables osteocytes to
communicate with neighboring osteocytes, and the
osteoblasts and osteoclasts on the bone surface by creating a
neuron-like network (Palumbo et al., 1990). This highly
complex communication network, is created through a
space called canaliculi, which are narrow channels in the
hydroxyapatite matrix. Osteocytes are separated from the
mineralized bone matrix, by a pericellular space filled with
proteoglycan-rich matrix (glycocalyx) and interstitial fluid
(Termine et al., 1981; Sauren et al., 1992; Aarden et al.,
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1996). Based on the measurements and mathematical models
for branching, these dendritic processes were estimated to
form approximately 23 trillion connections and span a total
length of over 175000 km within the human body (Buenzli
and Sims 2015). In vivo, each cell has been shown to have a
varying number of dendritic cell processes ranging from 18 to
106, which reduces with aging (Beno et al., 2006; Qin et al.,
2020). Initial development of dendritic cell processes from
the cell body leads to the formation of subsequent
subbranches, which create sufficient surface area for
efficient communication with other cells and also serving
as a mechanosensory structures. The unique environment for
osteocytes is called the lacunocanalicular network (LCN) and
is a complicated network within bone tissue with a total
surface area of approximately 215 m2 (Sims 2016; Martin
2019) and is also thought to provide a route for the provision
of nutrients, oxygen, and biochemical signals.

Since osteocytes reside in this unique LCN architecture of
mineralized matrix, it has been a challenge to study osteocytes. In
spite of this challenge, a variety of mechanical stimulations such
as fluid flow shear stress, and substrate deformation are known to
influence osteocytes functions (You et al., 2000; McGarry et a.,
2005; Wittkowske et al., 2016; Qin et al., 2020). It is important to

understand that loading-induced matrix deformation not only
changes fluid flow velocity, but also the matrix strain, which is
closely associated with the LCN architecture. A recent study
demonstrated that the LCN architecture is a key determinant
for bone adaption in response to mechanical stimulation (van Tol
et al., 2020). The fluid flow-induced velocity was strongly
dependent on the LCN architecture in a highly dense and
connected network (Denisov-Nikol’skiĭ Iu and Doktorov, 1987;
Johnson 1984). Another study observed that the fluid flow
velocity was not directly correlated to the loading-induced
strain deformation, but more associated with the LCN
structure based on in vivo mice micro-computed tomography
(microCT) evaluations (van Tol et al., 2020). The changes in the
strain distributions of the LCN upon applying various static and
cyclic loads highlighted the diversity of mechanosensors on these
cells and complexity of the underlying mechanotransduction
pathways (Wang et al., 2015). The dendritic morphology of
osteocytes itself is also proposed to be synergistic with the
highly-dense LCN network, resulting in an actin-rich
cytoskeleton, which enables cell–cell communications between
osteocytes allowing a cascade of intracellular events capable of
generating a functional response (Burra et al., 2010; Hemmatian
et al., 2017).

FIGURE 1 | Osteocytes function in both bone homeostasis and endocrine signaling. (A) Bone homeostasis is guided by osteocytes, which require a precise
balance of bone formation and bone resorption. Osteocytes regulate this dynamic equilibrium by releasing signaling molecules such as osteoprotegerin (OPG),
sclerostin, dickkopf-related protein 1 (DKK1), prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), and nitric oxide (NO) for bone-forming osteoblasts. Furthermore,
osteocytes secrete receptor activator of nuclear factor-κB ligand (RANKL) for bone-resorbing osteoclasts on the bone surface. Additionally, osteocytes mediate
communication with osteoblast and osteoclast via connexin 43 (Cx43) gap junctions. (B)Osteocytes regulate the local bone matrix through a process called perilacunar/
canalicular remodeling (PLR). Matrix resorption (dotted line) is initiated creating an acidic environment by osteocyte-derived enzymes, such as tartrate-resistant acid
phosphatase (TRAP) and cathepsin K (CatK) followed by matrix restoration (solid line), by producing collagen and bone matrix proteins such as dentin matrix protein 1
(DMP1) and matrix extracellular phosphoglycoprotein (MEPE). (C)Osteocytes secrete an endocrine factor - fibroblast growth factor (FGF23) to target other organs such
as kidneys, heart, and parathyroid. The FGF23 hormone triggers parathyroid to reduce the level of parathyroid hormone (PTH). Moreover, FGF23 increases the risk of
heart failure such as left ventricular hypertrophy. Importantly, FGF23 regulates serum phosphate (Pi) level by targeting kidneys by increasing phosphate excretion and
also inhibiting the conversion of active vitamin D to 1,25-dihydroxy vitamin D [1,25(OH)2D] in the intestine to decrease phosphate resorption leading to lower serum
phosphate level. Figure created using BioRender.
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OSTEOCYTE FUNCTIONS IN BOTH BONE
AND EXTRASKELETAL ROLES

As osteocytes are embedded individually within the bone and
separated from the effector bone cell types, they utilize secreted
signaling molecules to communicate their “instructions” in
addition to their broader systemic effects (Dallas et al., 2013;
Prideaux et al., 2016). Osteocytes are involved in the secretion of
signaling molecules, to regulate osteoblast and osteoclast
activities, as well as establishing direct physical connections
via gap junctions (Figure 1A). The quintessential molecule in
bone regulation is the osteocyte-specific sclerostin, which is
exclusively expressed by mature osteocytes. Sclerostin is an
anti-bone formation (antagonist) regulator that directly
inhibits the proliferation and differentiation of osteoblasts
(Duan and Bonewald 2016). The osteoblast-induced bone
formation is initiated by secreted Wnt ligand glycoproteins,
which bind to low-density lipoprotein receptors (LRP) 4/5/6
for phosphorylation, leading to suppression of glycogen
synthase kinase 3 (GSK3) (Karner and Long 2017). This
stabilizes β-catenin, which then translocates into the nucleus,
and acts as a transcriptional co-activator. Sclerostin, the protein
product of the SOST gene expressed by mature osteocytes, binds
to the LRP 4/5/6 to inhibit Wnt-binding for the Wnt/β-catenin
signaling pathway in osteoblasts. Sclerostin expression is also
known to be decreased by mechanical loading and increased in
response to unloading conditions such as microgravity and
reduced physical levels in bed-ridden patients (Pajevic et al.,
2013; Bradbury et al., 2020).

The osteocyte-secreted dickkopf-related protein 1 (DKK1)
binds to LRP4/5/6 on osteoblasts and acts as a Wnt
competitive inhibitor (Li et al., 2006). Osteocytes also secrete
osteoprotegerin (OPG), a soluble decoy receptor for receptor
activator of nuclear factor-κB ligand (RANKL), which is a
cytokine that binds to osteoclasts, promoting bone resorption
(Kearns, Khosla, and Kostenuik 2008). The ratio between OPG
and RANKL is commonly used as an indicator of bone mass and
decreased RANKL/OPG ratio was reported in response to
mechanical stimulation, leading to reduced osteoclast activity
(Goldring 2015). Interestingly, proinflammatory cytokines were
also observed to be down-regulated bymechanical loading, except
interleukin 6 (IL-6) (Pathak et al., 2015; Pathak et al., 2020).
Mechanical stimulation modulates the release of other factors
such as nitric oxide (NO), prostaglandin E2 (PGE2),
cyclooxygenase-2 (COX-2), and adenosine triphosphate (ATP)
in osteocytes (Li et al., 2021). Especially, loading-induced calcium
ions (Ca2+) oscillation releases signaling molecules such as NO,
PGE2, insulin-like growth factor-1 (IGF-1), and β-catenin, which
are important for osteocyte viability and anabolic effect on bone
(Morrell et al., 2018).

Osteocytes, embedded in the hard bone matrix are also
known to regulate their local microenvironment through a
process called perilacunar/canalicular remodeling (PLR)
(Figure 1B) (Qing and Bonewald 2009; Lin et al., 2020).
Earlier studies observed the enlarged lacunae during lactation
to release calcium from a mineralized matrix for high calcium
demand situations and also in pathological conditions such as

Paget’s disease, a bone loss disorder, suggesting the removal
of perilacunar matrix by osteocytic osteolysis (Zambonin
Zallone et al., 1982; Teti and Zallone 2009; Tsourdi et al.,
2018). However, this microenvironment remodeling is also
known as a homeostatic mechanism to maintain the
perilacunar/canalicular network under healthy conditions
such as lactation (Dole et al., 2017). Interestingly,
osteocytes are able to remove both minerals and collagen
from their surrounding perilacunar matrix by upregulating
the H+ proton pump, creating an acidic microenvironment
(Qing et al., 2012; Creecy et al., 2021). The acidic
environment can be induced by the parathyroid hormone
(PTH) upregulation during lactation (Jähn et al., 2017).
Osteocyte-derived matrix removal was observed in
lactating mice showing the enlarged lacunar area with
upregulation of tartrate-resistant acid phosphatase (TRAP)
and cathepsin K (CatK, encoded by the Ctsk gene), which
were previously thought to be osteoclast-specific (Nakano
et al., 2004; Qing et al., 2012; Lotinun et al., 2019). TRAP is an
enzyme that is responsible for the dephosphorylation of bone
matrix phosphoproteins and CatK is a lysosomal cysteine
protease that contains the catalytic mechanism necessary for
bone matrix degradation leading to bone resorption (Dai
et al., 2020). By increasing osteoclast-like markers, they
create an acidic environment via carbonic anhydrase 2
(Car2) and proton-pumping vacuolar ATPases.

Recent research hinted that transforming growth factor beta
(TGF-β) is possibly associated with the PLR process (Schurman
et al., 2021). In vitro studies have demonstrated TGF-β treatment
upregulated Ctsk and matrix metalloproteinase 14 gene
expressions in both osteocytic cell lines, MLO-Y4 and Ocy454
(Dole et al., 2017; Kegelman et al., 2020). Furthermore,
intracellular pH (pHi) has been shown to decrease after TGF-
β treatment, resulting in cell acidification, inducing PLR
resorption that was dependent on the TGF-β receptors on
osteocytes (Dole et al., 2017). TGF-β intake by osteocytes was
blocked by using type I TGF-β receptor (TβRI) inhibitor (SB-
431542), and lead to increased pH levels, equivalent to untreated
groups. In vivo studies using osteocyte-specific TGF-β receptor
knockout mice showed decreased expression of Ctsk leading
to decreased bone resorption contributing to increased bone
mass in these animals. (Dole et al., 2017; Schurman et al.,
2021). Furthermore, TGF-β treatment induced changes in gene
expression levels of sclerostin in osteocytes. PLR was also
induced in osteocytes after recombinant human sclerostin
(rhSCL) treatment, which lowers the pHi showing
upregulation of catalytic genes (e.g., Ctsk, Car2, TRAP)
(Kogawa et al., 2013). This suggests that osteocyte-produced
sclerostin promotes catalytic activity to release the minerals.
Moreover, rhSCL treatment in human trabecular bone
samples showed an increased lacunar area around osteocytes
(Kogawa et al., 2018). The activity of sclerostin was also
confirmed by Lrp4/5/6 receptors, known for sclerostin binding
inhibited osteocyte-mediated catalytic activity for the removal of
bone matrix in PLR. However, further investigation is required to
understand the mechanisms of PLR, which is different from
osteoclast-mediated bone resorption.
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It is well known that the increased lacunar area returns to
normal after the weaning process suggesting osteocytes play a role
in local matrix restoration. It was proposed, that the local PLR
remodeling process was independent of mechanical stimulation
and was presumed to be hormonally regulated (Qing et al., 2012;
Bach-Gansmo et al., 2016). However, a recent study of mice
under microgravity conditions, which removes mechanical
loading on bones, observed enlarged lacunae size and
deformed bone microstructure in these animals (Gerbaix et al.,
2017). For osteocytes to perform PLR, both collagen production
and mineralization are essential for the matrix restoration
process. Previous studies support the osteocyte-driven collagen
production using novel GFP-collagen transgenic mice (Baylink
and Wergedal 1971; Zambonin Zallone et al., 1982; Kamel-
ElSayed et al., 2015). They observed bright collagen
production around some osteocytes suggesting heterogeneity
in the osteocyte population has a capability of collagen
production for PLR restoration. The fact that the collagenous
matrix aligned with the axis of the lacunae, suggests collagen
orientation and alignment are also coordinated by osteocytes.
During this process, the levels of bone matrix proteins such as
dentin matrix protein 1 (DMP1) and matrix extracellular
phosphoglycoprotein (MEPE) in osteocytes were highly up-
regulated to support the mineralization process (Gluhak-
Heinrich et al., 2007; Harris et al., 2007; Teti and Zallone
2009; Qing et al., 2012).

PLR contributes to bone quality by altering the mineral to
matrix ratio (M/M ratio), which is often used to predict the
biomechanical properties of bone (Takata et al., 2011). The M/M
ratio often increases with elevated bone mineral density
contributing to better bone quality and is significantly
increased with exercise (Kohn et al., 2009; Gardinier et al.,
2016). In vivo studies of mice undertaking treadmill running,
showed an increased M/M ratio around the matrix close to
osteocytes compared to the bone matrix further away,
suggesting localized osteocyte-induced PLR (Gardinier et al.,
2016). This finding suggests that PLR regulation takes place
predominantly in the mineralized bone matrix such as cortical
bone. A better understanding of the mechanism of PLR
regulation will aid in developing potential therapeutic
applications that could improve cortical bone integrity, which
is known to have a lower recovery rate after fracture compared to
trabecular fractures (Chen and Sambrook 2011; Rivadeneira and
Mäkitie 2016).

Osteocytes are known to secrete signaling factors into the
circulatory system to modulate behavior of distant target
organs such as parathyroid, kidney, and heart (Martin
2019; Pathak et al., 2020; Florencio-Silva et al., 2015).
Particularly, osteocyte-secreted factor, fibroblast growth
factor 23 (FGF23) that plays a role in endocrine signaling
(Figure 1C). FGF23 contributes to kidney functions,
maintaining serum phosphate levels by modulating the
expression level of sodium/phosphate co-transporters in
the kidney (Bonewald and Wacker 2013; Dallas et al.,
2013; Dussold et al., 2019). Through this mechanism,
FGF23 suppresses the vitamin D hormone (1,25-
dihydroxyvitamin D) production in the kidneys by

inhibiting the conversion of 25-hydroxyvitamin D to the
active form, 1,25-dihydroxyvitamin D by 1-α-hydroxylase
(Martin, David, and Quarles 2012; Dallas et al., 2013). The
high FGF23 levels inhibit the vitamin D conversion process
leading to decreased phosphate absorption in the intestine.
This signaling process is tightly regulated by a feedback
system between the active form of vitamin D and the level
of FGF23 in circulation, where osteocytes play a key role. The
elevated levels of circulating FGF23 are known as a risk factor
for heart disease such as left ventricular hypertrophy, but
further investigation is required to understand the underlying
mechanism of FGF23 in this tissue (Mirza et al., 2009;
Desjardins et al., 2012). The high prevalence of heart
failure is often seen in chronic kidney disease (CKD)
patients, which is also associated with elevated levels of
FGF23 (Scialla et al., 2014). Furthermore, the parathyroid
gland is another target for FGF23, which decreases PTH
secretion. Where increased FGF23 levels modulate the
downregulation of PTH mRNA expression and secretion
in vitro (Krajisnik et al., 2007). The important and well-
characterized role of PTH is in maintaining systemic calcium
levels, where the parathyroid gland-secreted PTH is known to
respond to low serum calcium (Bellido et al., 2013). If there is
a high calcium demand in the intestine, the PTH levels
increase causing mineral release from bones, which is often
seen in pathological conditions such as chronic kidney
disease. Osteocytes closely coordinate this process by
increasing mineral degradation through PLR. Osteocyte-
secreted CatK also contributes to the regulation of PTH
levels by increasing parathyroid hormone-related peptide
(PTHrP) during lactation (Lotinun et al., 2019).

MECHANOSENSORS IN OSTEOCYTES

Osteocytes are known to be one of the most mechanosensitive
cells (Jacobs et al., 2010). These cells can be stimulated by
various mechanical forces in bone created by gravitational
forces and daily activities leading to changes of interstitial fluid
flow and matrix deformation at the cellular level in bone. The
osteocyte cellular response to mechanical stimulation is crucial
in terms of viability, and also for a regulatory role in balanced
bone homeostasis (Qin et al., 2020; Wittkowske et al., 2016).
The earlier studies primarily focused on fluid flow-induced
osteocyte mechanotransduction compared to direct
interaction with extracellular matrix (ECM) deformation
(Cheng et al., 2001a; Cherian et al., 2005; Kulkarni et al.,
2010; Li et al., 2012; Spatz et al., 2015; Qin et al., 2020). The
fluid flow rate used in previous in vitro studies was between 0.5
and 2 dynes/cm2 (0.5 and 2 Pa) with some studies using up to
16 dynes/cm2 (Table 1). These studies were demonstrated
using both osteocyte cell lines (Cheng et al., 2001b; Cherian
et al., 2005; Kulkarni et al., 2010; Litzenberger et al., 2010; Li
et al., 2012; Xu et al., 2012; Spatz et al., 2015; Sato et al., 2020)
and primary osteocytes (Ajubi et al., 1996; Klein-Nulend et al.,
1997; Sterck et al., 1998; Ajubi et al., 1999; Joldersma et al.,
2000). However, the exact physiological flow rate remains
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unclear. Estimates of the physiological matrix strain that is
generated at the cellular level is also lacking. The strain level
surrounding osteocytes is heterogeneous, amplifying the strain
between the local cellular level and tissue level (Weinbaum
et al., 1994; Nicolella et al., 2001; You et al., 2001; Bonivtch
et al., 2007; Verbruggen et al., 2012; Hart et al., 2017). Several
studies have demonstrated that variations in the size and
shape of the LCN geometries are closely associated with non-
uniform strain distributions (Canè et al., 1982; Metz et al.,
2003). A parametric finite element model used to predict the
microstructural response in lacuna showed increased strain
with a decreased perilacunar tissue modulus (Bonivtch et al.,
2007). The canaliculi diameter was increased by 0.8–1% in
response to the applied strain and this deformation directly
contributed to the enclosed dendritic process via the
tethering elements (e.g., CD44, laminin, and integrins) to
the canalicular wall (You et al., 2004). It is postulated that the
strain difference between lacunar and canlicular structures
may induce significantly different cellular responses in
osteocytes (McCreadie and Hollister 1997; Nicolella et al.,
2006; Verbruggen et al., 2015). In vivo studies revealed that
the strain around perilacunar was an order of magnitude
greater than the macroscopically applied strains, suggesting

that local tissue strain can be magnified by inhomogeneous
microstructural features (Nicolella et al., 2006).

There is a wide variety of potential mechanosensors present
on osteocytes, which will be discussed in more detail in the
following section, that transduce extracellular signals into
cellular responses, including pericellular matrix, connexins/
pannexin channels, mechanically-sensitive ion channels,
integrins, primary cilium, and caveolae (Figure 2)
(Bonewald 2011; Qin et al., 2020). There is an ongoing
debate around, whether the osteocyte’s cell body or the
dendritic cell processes are the primary mechanosensitive
features of osteocytes. The unique dendritic morphology
enables osteocytes to create a massively interconnected
network in the human body creating a surface area that
increases exposure to the surrounding microenvironment
(Buenzli and Sims 2015; Hemmatian et al., 2017). A
previous study has shown that the dendritic cell processes
are more responsive to fluid shear stress than the cell body,
using a transwell filter system to separate the dendritic cell
processes from the cell body (Burra et al., 2010). Subsequent
studies have also concluded that the more sensitive
mechanotransduction occurs through dendritic cell
processes, which induces calcium influx and regulate gene

TABLE 1 | Summary table for in vitro studies on osteocytes in response to mechanical stimulations. Abbreviations: Sclerostin (Sost), cyclooxygenase-1 (COX-1),
osteoprotegerin (OPG), receptor activator of nuclear factor-κB ligand (RANKL), podoplanin (E11), prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), connexin 43
(Cx43), matrix extracellular phosphoglycoprotein (Mepe), phosphate regulating endopeptidase homologue, X-linked (Phex), dentin matrix protein 1 (Dmp1).

Cell type Mechanical stimulation Gene/Protein expression Outcome

Osteocyte cell lines
MLO-Y4 Oscillatory fluid flow, 1 Pa/2 h COX-2, RANKL/ OPG Response of integrin β1 under oscillatory fluid flow. The absence of β1

showed a reduction in COX-2 and PGE2 (Litzenberger et al., 2010)
MLO-Y4 Oscillatory fluid flow, 1 Pa/2 h COX-2, Runx-2, integrin αVβ3, E11 Increased expression of integrin-associated molecules including vinculin,

osteopontin, and CD44. Also, more cell spread and fiber stress are
formed by fluid flow (Xu et al., 2012; Zhang et al., 2015)

MLO-Y4 Oscillatory fluid flow, 0.5–5 Pa/
1–4 Pa

COX-2, RANKL/ OPG Cells were exposed to different shear stress amplitude (0.5–5 Pa),
oscillating frequency (0.5–2 Hz), and duration (1–4 h). COX-2
Upregulated gene expression levels for COX-2 response to higher shear
stress amplitudes, faster oscillating frequencies, and longer flow
durations, which direct towards bone formation (Li et al., 2012)

MLO-Y4 Fluid shear stress, 16 Pa/
0.5–2 h

OPG, Cx43, PGE2 Fluid shear stress induces the opening of Cx43 and redistributes Cx43
protein, which promotes PGE2 release (Chen and Sambrook, 2001;
Cherian et al., 2005)

MLO-Y4 Pulsating fluid flow, 0.7 Pa/1 h Mepe, RANKL/OPG Pulsatile fluid flow induced Mepe, but not Phex. RANKL/OPG gene
expression decreased (Kulkarni et al., 2010)

Ocy454 3D fluid shear stress,
0.5–2.0 Pa/2 h or 3 days

Sost, Dmp1, RANKL, OPG, Phex,
Mepe, Osteocalcin

Long-term fluid shear stress (3 days) in 2D LS increases Sost, Dmp1,
RANKL, OPG, Phex, Mepe (Spatz et al., 2015; Wein et al., 2015)

Ocy454 Laminar fluid flow, 0.8 Pa/
45 min

Sost Laminar fluid flow downregulated Sost gene expression and
demonstrated HDAC5 is required for loading-induced Sost suppression
(Sato et al., 2020)

Primary osteocytes
Chicken osteocytes Pulsating fluid flow, 0.5 Pa/1 h,

0.7 Pa/10 min
PGE2 Osteocytes rapidly respond to fluid flow to increase PEG2 (Ajubi et al.,

1996)
Intracellular Ca2+ level was increased through mechanosensitive ion
channels (Ajubi et al., 1999)

Mouse calvariae Pulsating fluid flow, 0.7 Pa/1 h PGHS-2 (Prostaglandin G/H
synthase), PGE2

After pulsating fluid flow, osteocyte s upregulated PGHS-2 gene
expression, leading to more conversion of arachidonic acid into PGE2
(Klein-Nulend et al., 1997)

Human calvarial
cells/biopsies

Pulsating fluid flow, 0.7 Pa/1h PGE2, COX-2, Nitric oxide Pulsating fluid flow upregulated PGE2, COX-2, but not COX-1 gene
expression (Sterck et al., 1998; Klein-Nulend et al., 1998; Joldersma et al.,
2000)
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transcription of key secreted signaling molecules such as
sclerostin (Wu et al., 2011; Thi et al., 2013).

Pericellular Matrix
Osteocytes are surrounded by a layer of the pericellular matrix
(PCM) at the interface between the cell membrane and the hard
bone matrix (Figure 2A) (Sauren et al., 1992; You et al., 2004).
Although the exact composition and structure of PCM are not
well defined around the osteocytes, it is considered to be
comprised of collagen, fibronectin, proteoglycans,
glycoproteins, hyaluronic acid and perlecan/HSPG2 (Sauren
et al., 1992; You et al., 2004; Weinbaum et al., 2007;

Thompson et al., 2011a; Burra et al., 2011). It was observed
that the transverse fibers span the entire PCM, which facilitate the
direct interaction of osteocyte dendritic process to the canalicular
wall with possible tethering molecules such as integrins, laminin,
and CD44 (Noonan et al., 1996; You et al., 2004). It has been
proposed that fluid drag forces transduced on the PCM via
tethering molecules may induce osteocyte
mechanotransduction by amplifying the strain at the cell
membrane (You et al., 2001; Han et al., 2004). The strain
amplification was further investigated in the context of
integrin attachment points along the osteocyte dendritic
processes with the collagen hillock traversing the PCM (Wang

FIGURE 2 | Osteocytes within the lacunocanalicular network express mechanosensors, which can be activated by various mechanical stimuli such as fluid flow in
the pericellular matrix and matrix strain (e.g., compressive, tensile, and torsional loading). (A) Osteocytes are surrounded by the pericellular matrix, between the cell and
the walls of lacunae and canaliculi, which acts as a tether for osteocytes to transduce the mechanical stimulation. (B) Gap junctions, expressing on dendritic cell
processes, facilitate cell–cell communication between osteocytes. Especially, connexin 43 (Cx43) is highly expressed and these junctions can also function as
hemichannels that open to the microenvironment. Mechanical stimuli open these channels and transport calcium ions (Ca2+), adenosine triphosphate (ATP), and
prostaglandin E2 (PGE2) between cells. (C) Pannexin-1 (Panx1) hemichannels release ATP to regulate intracellular calcium levels. Panx1 is also associated with
purinergic P2X7 receptor to regulate apoptosis. (D)Mechanosensing ion channels such as Piezo, voltage-sensitive calcium channel (VSC), and purinergic receptor (P2X/
P2Y) are opened in response to the mechanical stimulation and trigger calciummobilization. (E) Integrins, transmembrane receptors that adhere cells to the extracellular
matrix through specific motifs, transduce forces into cellular responses by mechanosignaling pathways. (F) Primary cilium is a protrusion of the cell membrane that is
responsive to stimuli via the ciliary axoneme (microtubules). These immotile membrane protrusions act independently of intracellular Ca2+ release. (G) Caveolin-1, the
structural protein of caveolae is interacting with the integrin β1 subunit to promote mechanotransduction in osteocytes. Figure created using BioRender.
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et al., 2007). This study demonstrated that the direct interaction
of integrin promoted strain amplification by more than two
orders of magnitude compared to the tissue-level strain.
Hyaluronic acid has been suggested as a major component
of the PCM surrounding the osteocytes (Nakamura et al.,
1995; Noonan et al., 1996). This was confirmed by diminished
osteocyte PGE2 release with a hyaluronidase treatment after
being exposed to oscillating fluid flow under in vitro
conditions (Reilly et al., 2003). The disappearance of
integrin α5 was also observed with hyaluronidase
treatment suggesting a tethering element of integrin is
closely associated with the hyaluronic acid of PCM (Burra
et al., 2011). A reduced volume of hyaluronic acid in PCM
was observed with aging, which is possibly associated with the
change in mechanoresponse of the osteocytes (Wang et al.,
2014; Hagan et al., 2020). Perlecan, a large proteoglycan is
also known to regulate solute transport and mechanosensing
in PCM (Thompson et al., 2011b). Mice with perlecan
deficiency showed decreased anabolic stimuli compared to
the control group suggesting osteocytes experienced less fluid
drag force, an effect also seen in aged mice (Wang et al.,
2014).

Connexin/Pannexin Channels
Connexins are pore structure in the plasma membrane of
osteocytes forming either gap junctions (cell–cell) or
hemichannels (HC) (cell–matrix) (Figure 2B) (Plotkin and
Bellido 2013). Although connexin 43 (Cx43) is the most highly
expressed connexin in all the bone cell types, Cx37 has also
been detected in osteocytes (Jones et al., 1993). This enables
osteocytes to communicate with each other by the transfer of
small molecules (less than 1 kD) through these gap junctions
and respond to the environment via hemichannels that open to
the extracellular space. Once osteocytes receive mechanical
stimulation, Cx43 is phosphorylated, inducing the opening of
connexons, six connexin subunits forming intercellular
channels to regulate several effects such as influx of Ca2+,
ATP, and PGE2 from the extracellular environment (Riquelme
et al., 2021; Cherian et al., 2005; Genetos et al., 2007; Cheng
et al., 2001a; Riquelme and Jiang 2013). This mechanism
promotes the extracellular signal-regulated kinase (ERK)1/2-
mitogen-activated protein kinase (MAPK) pathway, which
regulates the bone remodeling process and is known to
inhibit osteocyte apoptosis (Plotkin et al., 2005).
Conversely, prolonged closure of connexins due to reduced
mechanical loading or aging activates protein kinase B (Akt)/
P27/Caspase-3 pathway leading to apoptosis. Pannexin-1
(Panx1) is another mechanosensitive channel expressed in
osteocytes that forms only non-junctional channels to
exchange small molecules between cell–extracellular space
in response to mechanical stimulation (Figure 2C)
(Aguilar-Perez et al., 2019). During apoptosis, Panx1
channel can be activated by coupling with the purinergic
receptor, P2X7 to release ATP to send signals for
macrophages (Sandilos et al., 2012). Panx1 knockout mouse
model demonstrated that load-induced periosteal bone
formation was diminished by dysregulated β-catenin and

sclerostin expression in osteocytes (Seref-Ferlengez et al.,
2019).

Mechanically-Sensitive Ion Channels
Mechanically-sensitive ion channels (MSICs) in osteocytes
are responsive to mechanical stimulation, by opening in
response to the tension created in the plasma membrane
(Figure 2D) (Li et al., 2019a). The role of the
mechanosensing ion channel, Piezo 1, which facilitates the
exchange of ions between cell and extracellular environment,
and leads to the opening of voltage-sensitive calcium channels
(VSCs). Osteocytes primarily express more T-type CaV3.2
VSC subunits and a relatively small amount of L-type α1
subunits, which accelerate ATP/Ca2+ release in response to
fluid shear stress (0.5–4 Pa) (Thompson et al., 2011a; Lu et al.,
2012). Piezo 1 has been shown to not only modulate
intracellular calcium levels, but also activate downstream
signaling pathways such as Akt-sclerostin in response to
cyclic stretch-induced mechanical stimulation. Here,
sclerostin expression was downregulated by Akt
phosphorylation, which was confirmed by the
Piezo1 knock-out, which resulted in diminished calcium
influx and Wnt, and release of ATP from the cell (Robling
and Turner 2009). Osteocytes furthermore regulate
mechanically induced ATP via P2X/P2Y receptors leading
to purinergic signaling (Li et al., 2005; Burnstock et al., 2013).

Integrins
Integrins are heterodimeric transmembrane cell receptors
composed of alpha (α) and beta (β) subunits that anchor cells
through specific matrix motifs transducing mechanical dynamics
from matrix strain and fluid-flow shear stress (Figure 2E)
(Geoghegan et al., 2019). Osteocytes are known to
differentially express integrins, with the α5β1 integrins
localizing strongly on the cell body, and αVβ3 integrins along
the dendritic cell processes, suggesting site-directed osteocyte
mechanotransduction (Haugh et al., 2015; Geoghegan et al.,
2019). In extracted mouse bone tissue, integrin αVβ3 binding
was observed to localize to the canalicular wall along the periodic
protrusions (McNamara et al., 2009). It is proposed that
proteoglycan tethering elements bridging the dendritic process
of osteocytes to the canalicular wall via integrin αVβ3 promotes
interaction with the ECM proteins containing Arginine-Glycine-
Aspartic acid (RGD) sequence motifs such as fibronectin,
osteopontin, von Willebrand factor, sialoprotein, and
thrombospondins, but not to collagen (Haugh et al., 2015).
The direct adhesion between osteocyte and ECM facilitates the
formation of focal adhesions, which link to the actin skeleton to
activate cellular responses, such as regulating secreted signaling
molecules that are guiding the effector cells. Integrins are known
to recruit focal adhesion proteins, including vinculin and paxillin,
which link the cytoskeleton to the ECM. Both in vivo and in vitro
studies demonstrated the expression of focal adhesion proteins,
such as vinculin, in osteocytes (Zhou et al., 2019; Cao et al., 2020).
Another study suggested that integrin αVβ3-mediated
mechanotransduction lacks the classic focal adhesion protein
recruitment, but rather mediates Ca2+ signaling, ATP release
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and membrane potential through the purinergic channel
pannexin 1, the calcium channel CaV3.2-1, and the ATP-gated
purinergic receptor P2X7 (Cabahug-Zuckerman et al., 2018).
Furthermore, both α5β1 and αVβ3 integrins are known to
activate Ca2+ channels, but through different mechanisms. An
earlier study has identified integrin αVβ3-specific intracellular
Ca2+ signals, using a novel technique called Stokesian fluid
stimulus probe (SFSP). This probe enables the application of
hydrodynamic forces (pN range) to the discrete location of the
cell body and dendritic cell processes (Thi et al., 2013). The SFSP-
stimulated osteocytes (MLO-Y4) showed that dendritic cell
processes were more mechanosensitive in the piconewton
range of mechanical stimulation, resulting in increased levels
of intracellular Ca2+. Using an integrin αVβ3- specific antagonist,
Integrisense 750, diminished Ca2+ response under SFSP-
stimulation was observed (Thi et al., 2013). Thus, integrin
αVβ3 is not only involved in activation of focal adhesion
protein-mediated mechanotransduction, but also regulates
intracellular Ca2+ signals through cation and stretch-activated
channels in osteocytes. Interestingly, the α5β1 integrins are
directly associated with the opening of Cx43 HC to release
anabolic molecules from osteocytes (PGE2), in response to
fluid shear stress (Batra et al., 2012). PGE2 also has an
autocrine effect, stimulating the upregulation of Cx43 protein
expression in osteocytes, which further induces an increase in
formation of gap junctions between cells (Cheng et al., 2001b).

The activation of the intracellular mechanotransduction pathway,
involving phosphoinositide 3-kinase (PI3K)-Akt signaling to
open Cx43 HC by conformational activation of integrin α5β1
is independent of adhesion to the ECM. Especially, the integrin α5
subunit is crucial in establishing the specific interaction with the
C termini of Cx43. It was observed that siRNA knockdown of
integrin α5 diminished the opening of the Cx43 HC under fluid
flow-induced stimulation (Batra et al., 2012; Riquelme et al.,
2021). It was argued that not only integrin α5 activates Cx43 HC,
but also integrin αVβ3 expressed along the dendritic cell
processes can transduce signals to the cell body for Cx43 HC
activation via PI3K-Akt signaling. This was demonstrated both
in vitro and in vivo under fluid shear stress with steady fluid flow/
oscillatory fluid flow and under tibial compression in mice. The
results showed that integrin αV was more responsive to low fluid
shear stress levels to activate Cx43 HC compared to integrin α5
induced activation. Notably, at a higher fluid shear stress level,
integrin α5 was activated independently of integrin αV, implying
that the activation of either integrin pair is fluid shear stress level
dependent. This study concluded that fluid shear stress could not
suppress sclerostin expression without Cx43 HC, which was
demonstrated by blocking with antibodies, suggesting Cx43 is
essential for the anabolic effects on bone.

Numerous in vitro studies have been undertaken to
understand targeted integrin-mediated mechanotransduction
in osteocytes, with only a few in vivo studies, with most of

TABLE 2 | The key research demonstrations for mechanosensitive signalling pathways in osteocytes and therapeutic implications.

Signalling
pathway

Research Clinical implications Reference

Sphinogolipid SP1 induces osteoclast precursor migration
thus increase bone resorption

Increased S1P for osteoporotic fracture/low bone
mineral density

(Tian et al., 2021; Thuy et al., 2014; Zhang et al.,
2015)

Wnt/β-cat β-catenin is required for osteocyte viability Bisphosphonates, prostaglandin, estrogen are
known to prevent osteocyte apoptosis

(Bellido 2014;Xia et al., 2010; Kamel et al., 2010;
Plotkin et al., 1999; Kitase et al., 2010;
Tomkinson et al., 1998; Duan and Bonewald
2016; Lin et al., 2020)

β-catenin is associate with FoxO transcription to
prevent osteocyte apoptosis
β-catenin binds to the connexin 43 promoters,
promoting cell-cell interaction and enhance the
viability

AMPK AMPK is the regulator for cellular energy
homeostasis

Osteoporosis is possibly a disorder of energy
metabolism

(Tong, Ganta, and Liu 2020; Jeyabalan et al.,
2012; Ru and Wang, 2020)

AMPK increases cellular AMP/ATP ratio helps to
maintain energy homeostasis

AMPK can be activated by antidiabetic drugs
(metformin and thiazolidinediones)

Protect osteocyte apoptosis by suppressing
oxidative stress

FoxO FoxO activation inhibits osteocyte apoptosis
induced by aging and unloading

Targeting aging-related osteoporosis/bone fragility
fractures

(Kawata and Mikuni-Takagaki 1998; Ru and
Wang 2020; Domazetovic et al., 2017)

FoxO signalling associate with Wnt/β-cat for
osteocyte viability

ROS induce apoptosis; antioxidants such as
polyphenols and anthocyanins through diet intake
induce anti-osteoclastogenic action

PTH Activation of PTH receptor suppressed
sclerostin expression

Homologous with PTH (N-terminal 1–36) and PTH-
related protein (C-terminal 107–109) induce bone
formation and also reduce oxidative stress

(Kamel et al., 2010; Collette et al., 2012;
Wysolmerski 2012; Bellido et al., 2013; Maycas
et al., 2015; Portal-Núñez et al., 2016)Increased level of PTHrP activate PTH receptor

for anti-apoptotic effect
Deletion of Mef2C in osteocytes induced bone
formation by decreasing sclerostin;
PTH activates Wnt receptor, LRP6 directly, or
through FoxO degradation to stabilise beta-
catenin in Wnt signalling to induce osteogenesis

Antioxidant supplement (Resveratrol)
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these using specific integrin β1-deleted transgenic mice
(Zimmerman et al., 2000; Litzenberger et al., 2009; Shekaran
et al., 2014). In a study investigating the integrin β1-mediated
response after cyclic ulna loading for 3 days, osteocyte-specific
integrin β1-knockout mice showed reduced bone formation
suggesting that the integrin β1 is required to promote
mechanically-induced bone formation (Litzenberger et al.,
2009). Unfortunately, the osteocyte-specific integrin β3
targeted approach has not been progressed due to technical
challenges. For this reason, it is still not clear what the precise
functional roles that these integrins play on bone homeostasis are.

Primary Cilium
Cilia are present in both motile and immotile cells, which have
microtubule axoneme. Nine sets of microtubules doublets
provide structural support and rigidity (Satir et al., 2010). The
primary cilium has “9 + 0” pattern with nine doublet
microtubules without the central pair, which are seen in the
immotile cilia. In contrast, “9 + 2” pattern with 9 doublets plus
one central pair of microtubules is often seen in motile cilium.
Osteocytes present non-motile primary cilium with “9 + 0”
arrangement, 2–9 µm in length, which are mechanoresponsive
(Figure 2F) (Qin et al., 2020). Primary cilium changes the
morphology during mechanical adaptation, which induces
expression of cilium-related proteins such as Sperm flagellar
protein 2 (Spef2), polycystin -1 or -2 (PC1 or 2), kinesin II
intraflagellar transport (Kif3a), and Adenylyl cyclase 6 (AC6)
(Xiao et al., 2006; Temiyasathit et al., 2012; Qin et al., 2020).
Primary cilium also changes its stiffness in response to
mechanical stimulation through an acetylation-mediated
mechanism that induces calcium movement. This mechanism
is dependent on polycystines (polycystin 1 and 2). These are
proteins located at the base of the cilium acting like a cationic
change to facilitate Ca2+ transfer (Yavropoulou and Yovos 2016).
Interestingly, polycystin 1 mutant mice showed reduced bone
mineral density due to a lack of response to mechanical
stimulation (Xiao et al., 2006). Mice also showed decreased
OPG and increased RANKL levels that results in reduced bone
mineral density in both trabecular and cortical bones
(Temiyasathit and Jacobs 2010). The gene expression level of
runt-related transcription factor 2 (Runx2), osterix, and
osteocalcin were also observed to decrease, where these are all
key parameters responsible for bone development, bone density,
and mechanical properties.

Caveolae
Although this has been demonstrated to date only in MLO-Y4
osteocytic cells (Figure 2G), caveolin-1, the structural protein of
caveolae was proposed as a membrane mechanosensor in
osteocytes, interacting with the integrin β1 subunit (Gortazar
et al., 2013). Caveolae are 60–80 nm plasma membrane pits that
are present in many mechanosensitive cells such as myocytes. In
osteocytes, caveolae are physically linked to integrin β1 leading to
activation of ERK through tyrosine protein kinase (Src) and focal
adhesion kinase (FAK) phosphorylation. Thus, it was postulated
that caveolin-1 is essential for integrin/Src/ERK activation of pro-
osteocyte survival mechanisms. This was confirmed by inhibition

of caveolin-1 that diminishes anti-apoptotic effects of mechanical
stimulation due to disrupted ERK activation (Plotkin et al., 2005).
The detailed underlying mechanisms around the role of caveolin-
1 in mechanosensing in osteocytes are unclear, however, this
integrin-dependent mechanism is intriguing.

MECHANOTRANSDUCTION PATHWAYS IN
OSTEOCYTES AND THERAPEUTIC
IMPLICATIONS
Although mechanically-induced osteocyte responses have been
studied extensively, the precise signaling pathways underlying
these responses are still unclear. Understanding the signaling
pathways is critical due to the implications of the functional
outcomes for both bone health and diseases, as well as more
broadly for the other systemic role of osteocytes through their
endocrine functions (Dallas et al., 2013). For the past decades,
several signaling pathways have been identified, as potential
therapeutic targets to improve bone health (Table 2).

Sphingolipid Signaling Pathway
In osteocyte cell models (MLO-Y4 and Ocy454 cell line),
intracellular sphingosine-1-phosphatase (S1P) levels were
found to be upregulated in response to fluid flow
mechanical stimulation, with a corresponding
downregulation of the enzymes for degradation/
dephosphorylation of S1P (Sgp11, Sgpp11), as well as
upregulation of Sphk1, responsible for phosphorylation of
S1P leading to its activation (Figure 3A) (Zhang et al., 2015;
Dobrosak and Gooi 2017). In response to mechanical load,
S1P in osteocytes acts as a signaling molecule for modifying
cellular Ca2+ levels and PGE2, either directly via intracellular
S1P or indirectly via S1P binding to G-protein-coupled
receptors (Zhang et al., 2015; Meshcheryakova et al.,
2017). In response to mechanical stimulations, osteocytes
modulate S1P production and secretion that facilitate
paracrine osteoblast-osteoclast crosstalk. In general,
osteocyte-secreted S1P plays important role in both
osteoblast and osteoclast activities (Figure 3B) (Zhang
et al., 2020). The newly synthesized S1P is released
intracellularly and acts like a second messenger, which
induces Ca2+ release in an IP3-independent manner. The
extracellular S1P can also bind to G-protein-coupled
receptors (S1P receptors, SIPRs), which increases the
mobilization of the intracellular level of Ca2+.
Furthermore, intracellular S1P can be released into
circulation and binds to S1PRs on osteoblasts promoting
cell differentiation and also inducing RANKL expression
(Dobrosak and Gooi 2017). The osteoblast cells produce
RANKL and this binds to the receptor RANK to activate
osteoclasts, suggesting the crosstalk between osteoblasts-
osteoclasts is important to mediate the balance between
bone formation and resorption. The loop of this crosstalk
is regulated by osteocytes since S1P secreted by osteoclasts is
released and binds to S1PRs on osteocytes in a feedback loop
mechanism. The sphingolipid signaling pathway is activated
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in response to oscillatory fluid flow-induced loading in bone
(Figure 4A) (Tian et al., 2021; Thuy et al., 2014). The lipid
mediator, S1P is the sphingolipid metabolite that acts as a
signaling molecule for modifying intracellular Ca2+, which
was shown in both osteoblasts and osteoclasts previously
(Meshcheryakova et al., 2017).

Interestingly, the increased S1P level in blood (>200 nM) is
closely associated with bone fracture risk and low bone mineral
density (Lee et al., 2012). The blood S1P plasma levels have been
observed to be elevated in postmenopausal women compared to
premenopausal women, with the postmenopausal women known
to be at higher risk of bone loss (Ardawi et al., 2018). In
pathological conditions, the S1P disrupts the equilibrium
between osteoblast and osteoclast activities. Increased
production of S1P by osteocytes in response to mechanical
stimulation may also promote the osteoblast differentiation
process, which results in a decreased level of osteoblast-
produced RANKL inhibiting osteoclast differentiation
(Dobrosak and Gooi 2017). There are S1P-targeted therapeutic
approaches for osteoporosis using S1P lyase inhibitors (e.g.,
CYM5520 and LX2931) and a structural analog of sphingosine
(e.g., FTY720, fingolimod) (Tian et al., 2021). These
pharmacological treatments increase S1P at tissue levels,
inducing new bone formation, which was confirmed in
ovariectomized mice and rat studies (Huang et al., 2016;
Weske et al., 2019). Currently, however, it remains unclear
whether the expression of S1P receptors in osteocytes has a
key regulatory role in response to S1P in the blood, and
therefore further studies are required.

TGF-β Signaling Pathway
TGF-β signaling is also responsive to mechanical stimulation
independent from TGF-β receptor-induced responses, which
are initiated by Smad2/3 phosphorylation and downregulates
sclerostin (Figure 4B) (Nguyen et al., 2013). The level of
Smad2/3 phosphorylation was elevated even in the presence
of the TGF-β receptor inhibitor, confirming fluid shear stress
directly triggered TGF-β signaling (Monteiro et al., 2021).
Also, the level of Smad2/3 phosphorylation was larger
under fluid shear stress compared to osteocytes with TGF-β
treatment, suggesting TGF-β signaling is largely induced by
fluid shear stress. Impaired TGF-β signaling is often associated
with aging, diminished mechanical adaptation and low bone
mass. A recent in vivo study revealed that TGF-β signaling is
important for osteocyte functions in LCN such as PLR, as
mentioned previously (Schurman et al., 2021). Deletion of this
specific TGF-β signaling compromised osteocytes functional
response to mechanical stimulation, similar to that observed
with aging.

Wnt/β-Catenin Signaling Pathway
The Wnt/β-catenin signaling has a crucial role in bone
formation, not only for the effector cells but also in self-
regulatory mechanisms for osteocytes (Figure 4C).
Osteocytes increase the expression of the Wnt ligand in
response to mechanical stimulation. Osteocyte-produced
Wnt can then bind to the LRP6 receptor on osteocytes
leading to intracellular β-catenin accumulation in the
cytoplasm altering gene transcription changes for Wnt

FIGURE 3 | The Sphingosine-1-Phosphate (S1P) signalling in osteocytic mechanotransduction and effects of osteocyte-mediated extracellular S1P on osteoblast-
osteoclast crosstalk. (A) The endogenous S1P production in response to mechanical stimulation from Sphinogosine by the S1P phosphohydrolase (SPP1) and
sphinogosine kinase (SPHKS) leading to increased cellular Ca2+. (B) S1P can be released by osteocytes, which extracellular S1P can bind to S1P receptors (S1PRs) on
osteoblasts that activate signaling pathways to upregulate receptor activator NF-κB (RANKL). Then, osteoblasts release RANKL that binds to RANK on osteoclasts
to increase osteoclast activity for bone resorption. Osteoclasts are also known to release S1P, which binds to S1PRs on osteocytes as a feedback loop to increase
intracellular S1P and prostaglandin E2 (PGE2), Receptor activator NF-κB (RANKL), ligand (RANKL). Figure created using BioRender.
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antagonists, SOST, and DKK1 (Bonewald and Johnson 2008; Tu
et al., 2015). In response to mechanical loading, the Wnt/β-catenin
signaling pathway plays an important role, not only for bone
anabolic effects but also in osteocyte viability (Bonewald and
Johnson 2008). Glucocorticoid treatment (dexamethasone) can
cause secondary osteoporosis by inducing apoptosis in
osteocytes and interestingly, this glucocorticoid-induced
apoptosis can be inhibited by a steady laminar fluid shear stress
of 1.6 Pa for 2 h (Kitase et al., 2010). The protective mechanism is
mediated through the release of an osteocyte-produced signaling
molecule called PGE2 associated with Wnt/β-catenin signaling by
pulsatile fluid flow shear stress (0.2–2.4 Pa for 1 h), which is
independent of LRP5 receptors in osteocytes (Kamel et al.,
2010). This protective effect was induced through PGE2 binding
to EP2/4 receptors, which leads to Akt activation for glycogen
synthesis kinase 3 (GSK-3β) inhibition. This results in an
accumulation of intracellular β-catenin in osteocytes. Through
this process, PGE2 can also induce anabolic bone formation by
crosstalk with Wnt/β-catenin pathway leading to

downregulation of SOST and DKK1 transcription levels and
increased expression of Wnt in osteocytes. β-catenin is also
known to bind to the Cx43 promoters, upregulating Cx43
transcription. This enhances osteocyte cell–cell
communication for osteocyte viability and increases PGE2
levels in response to steady laminar flow of 1.6 Pa for 2 h
(Cherian et al., 2003; Xia et al., 2010). This mechanism is
also important to the integrin β1-caveolin-1 induced
signaling, where vascular endothelial growth factor receptor 2
(VEGFR2) associated with caveolin-1 was reported to be
responsive to 1 Pa fluid flow shear stress after 10 min,
inducing Wnt/β-catenin signaling (de Castro et al., 2015).
Another study also observed that VEGFR2 was activated by
pulsatile fluid flow shear stress (1 Pa for 10 min) via caveolin,
which induces ERK phosphorylation leading to β-catenin
translocation to the cell membrane and triggering osteocyte
prosurvival signaling. The deletion of caveolin-1 by siRNA
impaired VEGFR2 activation, inducing osteocyte apoptosis
(Gortazar et al., 2013).

FIGURE 4 | Proposed mechanotransduction pathways in osteocytes for therapeutic targets showing intracellular signaling in response to the mechanical
stimulation. (A) Pulsatile fluid flow triggered sphingolipid signaling to regulate the lipid mediators such as sphingosine-1-phosphate (S1P) production that upregulates the
intracellular calcium ions (Ca2+) levels and prostaglandin E2 (PGE2) synthesis/release in osteocytes. (B) Fluid shear stress upregulates suppressor of mothers against
decapentaplegic 2/3 (Smad2/3) phosphorylation triggering transforming growth factor-beta (TGF-β) signaling, resulting in sclerostin (SOST) downregulation. This is
independent of TGF-β receptor-induced response. (C)Wnt/β-catenin signaling can be elicited by direct response to extracellular matrix deformation via integrins or fluid
shear stress, which is important to maintain osteocyte viability and anabolic effect by accumulating Taz and β-catenin (β-cat). Interestingly, both TGF-β and Wnt/β
signaling may interact with each other to induce bone formation, however, the exact mechanism is not clear. (D) Under mechanical stimuli, adenosine monophosphate
(AMP)-activated protein kinase (AMPK) signaling governs energy homeostasis in osteocytes by increasing the AMP/adenosine triphosphate (ATP) ratio for inhibiting
apoptosis and decrease receptor activator of nuclear factor-κB ligand (RANKL) expression. (E) Forkhead box O (FoxO) signaling is activated to protect osteocytes from
oxidative stress and mitochondria damage caused by aging and reduced mechanical stimulation. Without FoxO activation, osteocytes lead to senescence and
apoptosis. (F) Parathyroid hormone receptor (PTHr) is activated both by mechanical stimulation as well as parathyroid hormone. This receptor upregulates histone
deacetylase 5 (HDAC5), which inhibits myocyte enhancer factor 2 (MEF2C), responsible for negative Wnt signaling molecules, SOST and dickkopf-related protein 1
(DKK1). Figure created using BioRender.
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It is known that the Wnt/β-catenin signaling pathway is in
crosstalk with various other signaling pathways in response to
mechanical stimulations. The TGF-β signaling pathway is known
to interact with Wnt/β-catenin signaling in response to
mechanical stimulation (Guo and Wang 2009; Rys et al.,
2016). Although the mechanism behind the association is still
not fully understood, these pathways are associating at multiple
hierarchical levels to regulate common target genes, such as
sclerostin. This mechanism is associated with the Forkhead
box O (FoxO) signaling pathway to inhibit osteocyte
apoptosis, which will be further explained later (Manolagas
and Almeida 2007). From a therapeutic perspective, Wnt/β-
catenin signaling can be induced by bisphosphonates,
prostaglandin, estrogen, and anti-sclerostin antibodies, which
are all known to prevent osteocyte apoptosis and have
anabolic bone effects (Tomkinson et al., 1998; Plotkin et al.,
1999; Kitase et al., 2010).

AMPK Signaling Pathway
RNA-sequencing analysis showed significantly up-regulated
5′adenosine monophosphate-activated protein kinase (AMPK)
signaling pathways in osteocytes under fluid shear stress
(Figure 4D) (Govey et al., 2015). Prior to this study, the same
group also demonstrated the rapid release of ATP in response to
fluid shear stress together with up-regulation of the ATP-producing
enzyme, nucleoside diphosphate kinase B (NDK), suggesting
initiation of AMPK signaling to generate more ATP (Govey
et al., 2014). Osteocytes have also been shown to activate AMPK
signaling pathway under energy imbalance conditions, like high
oxidative stress or nutrient suppression as a protective mechanism
(Tong et al., 2020). AMPK is a heterotrimeric complex including α,
β, and γ subunits. This signaling pathway can be triggered by
phosphorylation of AMPK via catalytic α subunit in low energy
status, which can be detected via the increased ratio of adenosine
monophosphate (AMP)/ATP, by turning on ATP-producing
catabolic pathways and turning off ATP-consuming anabolic
pathways to restore energy (Jeyabalan et al., 2012). This process
is often found in autophagy, which is a survival mechanism to
prevent osteocyte apoptosis that can be found under reduced
mechanical stimulation. Interestingly, it was shown that AMPK
activity is associated with bone metabolism by using a 5-
Aminoimidazole-4-carboxyamide ribonucleotide (AICAR), an
analog of AMP for AMPK activation (Yokomoto-Umakoshi
et al., 2016). Osteocytes (MLO-Y4 cell line) with AICAR
treatment induced the phosphorylation of AMPK α subunit
leading to significantly reduced RANKL gene expression,
suggesting inhibition of osteoclast activity (Yokomoto-Umakoshi
et al., 2016; Tong et al., 2020). Interestingly, AMPK activation in
osteocytes was found to regulate FGF23 transcription in response to
mineral metabolism (Komaba 2018). For example, deficient Ca2+

stores in the endoplasmic reticulum of osteocytes stimulate store-
operated calcium entry (SOCE) via Orai1 on the cell membrane,
which induces the influx of Ca2+ from the extracellular
microenvironment leading to FGF23 transcription. Conversely, in
CKD, AMPK is activated due to decreased levels of ATP, which
blocks the Ca2+ influx leading to inhibition of FGF23 transcription in
osteocytes leading to imbalanced serum calcium and phosphate

levels. This mechanism, which still needs further investigation, may
represent an important therapeutic target for CKD patients.

Fox Signaling Pathway
The protective (anti-apoptotic) action of the FoxO signaling
pathway in osteocytes, as has been observed for other cell types,
is also activated by mechanical stimulation (Figure 4E) (Ambrogini
et al., 2010). Long-lived osteocytes experience oxidative stress and
mitochondrial damage leading to apoptosis under physiological
conditions such as reduced level of mechanical stimulation and
aging. For example, increasing oxidative stress due to aging leads to
bone loss, which is closely associated with reactive oxygen species
(ROS), inhibiting the translocation of FoxO into the nucleus.
However, in response to mechanical stimulation, FoxO is
phosphorylated via PI3K/Akt signaling pathway, which increases
β-catenin associated with the FoxO transcription factor. Osteocyte
viability is important for balanced bone homeostasis as osteocyte
apoptosis often leads to disease states and upregulation of bone
resorption. Osteocyte apoptosis upregulates the expression of
sclerostin and RANKL, promoting increased osteoclast activities
(Zhang et al., 2019a). Interestingly, osteocytes located in deeper
cortical bone showed abundant mitochondria with high levels of
glycolytic enzymes, suggesting more protection against oxidative
stress (Frikha-Benayed et al., 2016). Effective FoxO activation is
closely associated with the Wnt/β-catenin signaling pathway, which
is also responsible for osteocyte viability (Zhang et al., 2019b). An
earlier study in FoxO-deficient mice showed increased osteocyte
apoptosis leading to decreased osteoblast activities, resulting in
reduced bone mass in these animals (Ambrogini et al., 2010).
FoxO signaling pathway represents a potential target during
aging and the observed decrease in osteocyte number that occurs,
potentially through the use of antioxidant supplements such as
polyphenols, anthocyanins to inhibit osteocyte apoptosis
(Domazetovic et al., 2017; Ru and Wang 2020).

Osteocyte-secreted sclerostin expression was once thought to be
regulated only by PTH, however, the recent findings demonstrate it
is also induced by the fluid flow shear stress on osteocytes
(Figure 4F) (Spatz et al., 2015; Sun et al., 2019; Sato et al., 2020).
Upon stimulation, histone deacetylase 5 (HDAC5) inhibits myocyte
enhancer factor 2 (MEF2C), responsible for SOST transcription in
osteocytes. As expected, overexpression of HDAC5 in osteocyte cells
downregulated SOST expression (Baertschi et al., 2014; Wein et al.,
2015). Conversely, HDAC5 knockout mice showed an upregulation
of sclerostin mRNA levels, and of the number of sclerostin-positive
cells leading to a diminished Wnt/β-catenin signaling pathway in
osteoblasts (Wein et al., 2015).

OSTEOCYTE-RELATED DISEASES AND
TREATMENTS

Abnormalities of bone strength and microstructure are common in
bone diseases, where the bones become more fragile and are more
likely to fracture (Feng and McDonald 2011). These disorders are
often closely associated with the dysregulation of bone cells,
especially osteocytes (Pathak et al., 2020). Specifically, the loss of
osteocyte functional ability is linked to compromised bone
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homeostasis. Osteocyte apoptosis has been proposed as a major risk
factor caused by aging, reduced physical activity, hormone deficiency
and inflammation resulting in dramatic decrease of osteocyte density
(Almeida 2012). As a result, aged or dying cells are no longer able to
carry out functional roles, which have an impact on the bone matrix
quality (Shah et al., 2018). The accumulation of apoptotic osteocytes
with aging is linked to several bone diseases such as osteonecrosis and
the onset of age-related osteoporosis leading to increased fracture risk.
During apoptosis, osteocytes secrete signals to osteoclasts to be
recruited to the site for bone resorption (Schaffler et al., 2014).
When apoptosis takes place, osteocytes release damage-associated
molecular patterns (DAMPs) for osteoclast recruitment
(McCutcheon et al., 2020). When dead osteocytes are removed, the
empty lacunae are hyper-mineralized with calcium phosphate, leading
to a condition called micropetrosis, resulting in more brittle bones
(Qiu et al., 2002; Bell et al., 2008). The accumulation of mineralization
in lacunae also interrupts the osteocytic cell–cell communication,
leading to depletion of signals and nutrition due to disturbance of
canalicularfluid flow (Hemmatian et al., 2017). This cascading process
then inevitably further affects other osteocytes resulting in even more
extensive osteocyte apoptosis. With less active osteocytes, the bone is
less likely to be protected against microdamage.Microdamage triggers
dying osteocytes to send signals for osteoclast activation, and at the
same time, osteocytes also send anti-apoptotic factor, BAX to
neighboring cells to protect their viability (Verborgt et al., 2000;
Bonewald 2017). By doing this, the number of apoptotic osteocytes
can be minimized around the damaged area. However, if there is a
decreased number of viable cells, this mechanism is disrupted, leading
to a large area of microcracks (Ma et al., 2008). Therefore, osteocyte
cell viability plays a crucial role in themaintenance of bone health, and
also protects against microdamage, which is a normal physiological
process. The apoptosis process is closely associated with increased
oxidative stress, which was confirmed with oxidative stress markers
such as p53 and p66Shc in aged mice (Almeida et al., 2007). The
oxidation process has been shown to be delayed by anti-oxidant
N-acetyl Cysteine. Another noticeable change in aged osteocytes is the
decreased level of autophagic activity, which is an important indicator
for stress susceptibility (Ru and Wang 2020). For example, aged-
osteocytes are less likely to produce autophagic proteins (e.g., Beclin-1)
to suppress apoptotic proteins (e.g., cleaved-caspase-3). This
mechanism is important especially for the anti-apoptotic activity of
neighboring cells. However, prolonged stress will cause apoptosis

eventually, which highlights the importance of the underlying
mechanism between autophagy and apoptosis. Apart from aging,
other factors such as estrogen deficiency and glucocorticoid treatment
can also induce osteocyte apoptosis leading to osteoporosis (Jilka et al.,
2013). Additionally, inflammatory cytokines such as interleukin 1 (IL-
1) and tumor necrosis factor-alpha (TNF-α) increase osteocyte death
(Marahleh et al., 2019; Wang et al., 2019). Some factors including
parathyroid hormone, estrogen, bisphosphonates are known to
protect osteocytes from apoptosis (Plotkin et al., 1999; Bellido and
Plotkin 2011). Furthermore, as alreadymentioned above, unloading or
decreased level of exercise often leads to decreased bonemass, which is
well described in astronauts or bedridden patients (Bradbury et al.,
2020; Stavnichuk et al., 2020). These findings are further illustrating,
that osteocytes require mechanical stimulation, which can be
introduced by mechanotherapy such as low-intensity pulsed
ultrasound (LIPUS) treatments where this type of direct
mechanical stimulation has been shown to improve bone healing
(Thompson et al., 2016; Jiang et al., 2019). The vibration therapy
studies demonstrated that high-frequency, low-magnitude vibration
therapy (gravitational force = acceleration of 9.81m/s2, frequency
>30Hz) improved bone health (Thompson et al., 2014). These relative
parameters were estimated based on the bone dynamics that
experience low-frequency (1–3Hz), high-frequency (10–50Hz),
and large-magnitude (2,000–3,000 microstrain) (Fritton et al.,
2000). Whole-body vibration (WBV) has been recently introduced
as a bone stimulation therapy (12.6 Hz for 30 s with 1-min rest for
4 times) with hypoxic stimuli (16.1% FiO2) also showed improvement
in bone mineral density (BMD) after 18 weeks (Camacho-Cardenosa
et al., 2019).

Osteocyte cell death with age is one of the major factors for the
onset of osteoporosis. Age-related osteoporosis is closely associated
with a low level of autophagic activity, which was also shown in
apoptotic osteocytes. There are several treatments for osteoporosis,
reducing bone resorption, that are based on the administration of
oral bisphosphonates (Fosamax, Boniva), intravenous
bisphosphonates (Zoledronate, Pamidronate), Cathepsin K
inhibitors (Odanacatib), and Anti-RANKL antibody therapy
(denosumab) (Merlotti et al., 2007; Lewiecki 2010; Eriksen et al.,
2014; Suen andQin 2016; Tanaka et al., 2017; Lu et al., 2018; Galvano
et al., 2019). Osteoblast-targeted hormone replacement therapy is
also widely used, including estrogen receptor (Raloxifene) and
parathyroid hormone peptide (teriparatide, abaloparatide),

TABLE 3 | Treatment options for osteocyte-related diseases.

Treatment Therapeutics References

Antibody treatment Sclerostin monoclonal antibody (McClung 2017; Morrell et al., 2021)
Romosozumab (AMG 785, CDP-785), Blosozumab, and
BSP804
DKK1 antibody (BHQ880, DKN-01)

Bisphosphonates Oral bisphosphonates (Fosamax, Boniva), intravenous
bisphosphonates (Zoledronate, Pamidronate)

(Merlotti et al., 2007; Lewiecki 2010; Eriksen et al., 2014)

Anti-bone resorption Cathepsin K inhibitors (Odanacatib), and Anti-RANKL
(denosumab)

(Tanaka et al., 2017; Lu et al., 2018; Galvano et al., 2019)

Hormone replacement
therapy

Estrogen receptor (Raloxifene) and parathyroid hormone
peptide (teriparatide, abaloparatide)

(Deal et al., 2005; Leder, 2017)

Non-invasive, painless
mechanotherapy

Low-intensity pulsed ultrasound (LIPUS), vibration therapy,
whole-body vibration therapy

(Fritton et al., 2000; Thompson et al., 2014; Thompson et al., 2016;
Camacho-Cardenosa et al., 2019; Jiang et al., 2019)
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however, these therapies also affect osteocytes (Deal et al., 2005;
Bonewald 2017; Leder 2017). In vivo studies have confirmed that
sclerostin monoclonal antibody (Scl-Ab) treatment induced bone
formation, mass, and strength (Yao et al., 2016). Scl-Ab products are
commercially available including Romosozumab (AMG 785, CDP-
785), Blosozumab, and BSP804 (McClung 2017;Morrell et al., 2021).
These antibody-based treatments are widely used for reducing
fracture risk arising from various health conditions, including
osteoporosis as well as post-menopause (Ominsky et al., 2011;
MacNabb et al., 2016). Furthermore, a bispecific antibody for
sclerostin and DKK1 has been shown to have synergistic effects
for bone formation compared with monotherapies (Florio et al.,
2016). These approaches try to inhibit the secretory signaling
molecules produced by osteocytes that antagonize the Wnt-
signaling pathway in the osteoblast lineage, affecting the anabolic
bone formation.

Although these treatments are widely used, the long-term
safety and efficacy have to be taken into consideration. The
most commonly used treatment for osteoporosis is based on
bisphosphonates (Drake et al., 2008). These are effective and safe
treatments with persistent benefit even after taking a break from
the treatment, however, there are no clear guidelines for “drug
holiday” (Diab and Watts 2013). The United States Food and
Drug Administration (FDA) proposed a reevaluation of
continuing bisphosphonate therapy after 3–5 years, showing a
small decrease in BMD without higher fracture risk (Whitaker
et al., 2012). In contrast to the prolonged half-lives of
bisphosphonates, anti-RANKL (denosumab) shows reduced
efficacy after treatment discontinuation (Bone et al., 2011).
The anti-sclerostin treatment with romosozumab showed a
decrease in BMD after discontinuation followed by 2-years
treatment (McClung et al., 2018). Similarly, blosozumab
treatment showed a decline in BMD in both the femoral neck
and the lumbar spine after the discontinuation suggesting there is
an increased risk of fracture (Recknor et al., 2015). The treatment
options are summarized in Table 3.

Osteogenesis imperfect (OI) is a congenital disease that
exhibits brittle bone (Basel and Steiner 2009). This disorder is
caused by alterations in type I collagen that was previously known
to be associated with osteoblast activities (Wenstrup et al., 1990).
As the type I collagen is the predominant ECM protein, its
dysregulation influences bone mineralization, leading to the
impairment of local-acting growth factors such as TGF-β
(Morello 2018). A recent study revealed that the osteocyte
transcriptome was dysregulated in OI mice including Wnt/β-
catenin and TGF-β signaling pathways (Zimmerman et al., 2019).
TGF-β is a crucial factor to regulate bone formation and bone
resorption for maintaining bone mass. However, excessive
activation of the TGF-β signaling pathway found in OI
increases high bone turnover and low bone mass (Lim et al.,
2017). This continuous activation of TGF-β signalingmay disrupt
osteoblast functions while increasing osteocyte density. Increased
TGF-β signaling can be diminished by TGF-β neutralizing
antibody (ID11) treatment leading to improved bone mass by
decreasing osteoblast and osteoclast numbers while normalizing
the osteocyte density. The exact mechanism of impaired TGF-β
signaling in OI is not fully understood, but possibly through

impaired binding of small leucine-rich proteoglycans (e.g.,
decorin) to TGF-β in collagen fibrils. OI mouse model showed
abnormalities of type I collagen expression showing abnormal
osteocyte phenotype with impaired dendritic formation.
Impaired osteocyte phenotype may contribute to their
functional roles by interrupting the cell–matrix interaction. As
a consequence, osteocytes may increase osteoblast activities
towards bone formation after detecting a defective matrix,
possibly for the restoration process. The osteocyte
transcriptome sequencing of OI compared to wild-type control
mouse models demonstrated the differential expression of
dysregulated collagen fibril organization, but also impaired
osteocyte dendritic formation, ECM compositions, and
integrin-mediated signaling (Zimmerman et al., 2019). This
observation supports the role of impaired cell–matrix
interaction promoting dysregulated dendritic formation and
leading to changes in functional roles. Interestingly, the Wnt
signaling pathway in osteocytes was also affected in OI mice as
gene levels for Wnt ligands were significantly increased, however,
the exact mechanism of Wnt upregulation in OI remains unclear
(Fahiminiya et al., 2013). In vivo studies with the conditional Wnt
inactivation in osteocytes showed increased bone fragility and low
bone mass as a result of altered Wnt1 production (Joeng et al.,
2017). Like osteoporotic therapeutics, anti-resorptive (e.g.,
cathepsin K inhibitors and Anti-RANKLtherapies) and bone
anabolic treatments (e.g., Sci-Ab and PTH) are commonly
used for OI patients (Drake et al., 2008; Morello 2018).

Apart from bone-related diseases, there is more evidence
emerging that osteocytes are also associated with other
diseases, facilitated via secretion of the FGF23 hormone (Guo
and Yuan 2015). It was reported that highly elevated circulating
FGF23 is closely associated with kidney dysfunction, and this was
also linked to heart failures such as left ventricular hypertrophy
and vascular calcification (Faul et al., 2011; Desjardins et al.,
2012). Furthermore, FGF23 was linked to chronic
hypophosphatemia, caused by impaired mineralization of the
bone matrix leading to bone fragility (Murali et al., 2016).
Circulating FGF23 controls serum phosphate levels, by
suppressing reabsorption in the kidney, and excess FGF23
causes hypophosphatemia diseases. Hypophosphatemia with
high levels of FGF23, can be treated with a monoclonal FGF23
antibody (anti-FGF23), for example, burosumab, which was
recently approved by the FDA to stabilize serum phosphate
levels. The alternative medication for hypophosphatemia is a
combination of active vitamin D and phosphate salts, however,
this treatment often leads to kidney failure (Kinoshita and
Fukumoto 2018; Barratt et al., 2021).

DISCUSSION

Once considered inactive cells, the osteocytes are now attributed to
have crucial roles in the overall bone remodeling process, local
microenvironment regulation and systemic interactions with other
organs. The tightly regulated bone homeostasis becomes
dysregulated as we age and with reduced mechanical stimulation,
shifting the balance towards more bone resorption, leading to bone
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loss diseases such as osteopenia and osteoporosis, which increases
fracture risk. As we move towards a more aging society, both
intrinsic and extrinsic factors accelerate pathological signaling
pathways causing disorders. Intrinsic factors (e.g., genetics,
hormones, vasculature) and extrinsic factors (e.g., nutrition,
physical activity, medications) are associated with the
mechanisms that maintain healthy bone (Demontiero et al., 2012).

When the mechanosensitivity of osteocytes was first
demonstrated, understanding the underlying modes of detection,
the osteocyte-induced mechanotransduction pathways, and the
functional outcomes for bone metabolism became significant
research focuses in the field (Iolascon et al., 2013). The long life
span of osteocytes (up to 25 years) and their important role in
regulating the continuous coordinated cycle of bone formation and
resorption and in the repair of bone damage makes them an ideal
target for therapeutics. However, bone homeostasis is a complicated
system involving multiple cell types that are signaling and
coordinating each other. Until now, most studies on bone cells
have focused on the more accessible effector cells, osteoblasts, and
osteoclasts as compared to osteocytes (Liedert et al., 2005). The
inaccessible location of osteocytes buried within the hydroxyapatite
matrix, makes their visualization challenging, so studies have largely
focused on in vitro cellular models to understand the mechanistic
pathways that respond to mechanical stimuli.

Although in vivo studies provide more physiologically relevant
outcomes, the various biological effects within more complex tissue
responses are challenging to dissect and to attribute specific cellular
roles given the complexmicrostructural organization of bone is hard
to mimic. Targeting simplified approaches, focused on osteocyte-
elicited mechanotransduction on 2D plastic or 2.5D using collagen
coating, the in vivo three-dimensionality has been largely neglected
in this field. Only recently, commercially available natural (e.g.,
collagen and fibrin), synthetic (e.g., polyethylene glycol hydrogels),
and both animal and plant-derived (e.g., matrigel, gelatin, and
alginate) matrices were used to construct 3D in vitro models
(Langhans 2018; Zhang et al., 2019c; Aziz et al., 2020). The
inorganic component, hydroxyapatite, is available as a ceramic
composite with tricalcium/biphasic calcium phosphate
(Boukhechba et al., 2009). Hydroxyapatite is widely used for
coatings on metallic implants, bone fillings, and injectable bone
substitutes (Ramesh et al., 2018). Alternative synthetic material,
polystyrene is also available, and is tunable for various
parameters such as pore sizes and thickness (Spatz et al., 2015).
Direct cell-free bone tissue also becomes an option that represents
the natural milieu, but again the mechanical properties are difficult
to tune (Lyons et al., 2010; Li et al., 2019b).

Despite their inherent advantages, none of the cell models
recapitulates the 3D dendritic morphology observed in vivo,
indicating more ideal matrices need to be developed. This is
especially important for osteocyte mechanotransduction
studies, as the dendritic morphology is now considered an
important mechanotransducer. Without providing an ideal
microenvironment, this is not only limiting the morphology
but also cellular responses, where better understanding of
osteocyte mechanotransduction will provide significant
opportunities for developing novel therapeutics for bone-
related diseases.

The currently available treatments for bone disorders either
target osteoclastic activity or osteoblastic activity (Rochefort 2014).
Despite osteocytes abundance and their instrumental role in
regulating bone metabolism, osteocyte-targeted treatments are
not readily available. There are, however, some indirectly
targeting antibody-based treatments to osteocyte-secreted
molecules such as the recently FDA-approved sclerostin
monoclonal antibody treatment for osteoporosis, promoting
bone formation (Shakeri and Adanty 2020). Maintaining
osteocyte viability is now considered one of the most important
factors to maintain healthy bone (Bonewald 2017; Ru and Wang
2020). Aging, in particular, accelerates osteocyte apoptosis,
resulting in fewer secretory factors, less bone matrix
remodeling, and lower responsiveness to mechanical stimulation
leading to impaired osteocyte functional roles in bone. Therefore,
the development of novel osteocyte-specific therapeutics would be
ideal to target osteocyte functions and signaling pathways
including mechanisms to prevent apoptosis. Many of these
pathways are still lacking a detailed understanding of, while
others are more generic signaling pathways, such as the Wnt/β-
catenin and TGF-β1 signaling, which are expressed in other cell
types making therapies more challenging and less targeted
(Janssens et al., 2005; Rys et al., 2016). In addition, the extra-
skeletal roles of osteocytes in regulating distant organs, such as
kidneys, heart, and parathyroid through secreted signaling
molecules provides opportunities to target the associated
dysfunctions in these organs through osteocyte manipulation.

The focus of this review was to highlight the fundamental role of
osteocytes, the most mechanosensitive cells of the bone, by revealing
how these cells detect mechanical stimuli through various
mechanosensors and the proposed mechanotransduction
pathways driving the functional responses that fundamentally
affect bone metabolism. However, much detail around these
mechanoresponsive pathways in osteocytes is still lacking.
Therefore a greater understanding of these mechanisms will help
us to identify more effective treatments for both chronic bone loss
diseases such as osteoporosis as well as other genetic diseases
affecting bone metabolism. This will also enable researchers to
unravel, how these master regulators contribute to their
important extraskeletal roles.
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