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DNAmethylation is an epigenetic mark thought to be robust to environmental perturbations on a short time scale. Here, we

challenge that view by demonstrating that the infection of human dendritic cells (DCs) with a live pathogenic bacteria is

associated with rapid and active demethylation at thousands of loci, independent of cell division. We performed an integrat-

ed analysis of data on genome-wide DNAmethylation, histone mark patterns, chromatin accessibility, and gene expression,

before and after infection. We found that infection-induced demethylation rarely occurs at promoter regions and instead

localizes to distal enhancer elements, including those that regulate the activation of key immune transcription factors. Active

demethylation is associated with extensive epigenetic remodeling, including the gain of histone activation marks and in-

creased chromatin accessibility, and is strongly predictive of changes in the expression levels of nearby genes.

Collectively, our observations show that active, rapid changes in DNAmethylation in enhancers play a previously unappre-

ciated role in regulating the transcriptional response to infection, even in nonproliferating cells.

[Supplemental material is available for this article.]

The first immune mechanisms recruited to defend against invad-
ing pathogens are those associated with innate immune cells,
such as dendritic cells (DCs) or macrophages. Once they sense
an intruder, these cells induce sophisticated transcriptional pro-
grams involving the regulation of thousands of genes, which are
coordinated with the help of signal-dependent transcription fac-
tors, including NF-κB/Rel, AP-1, and interferon regulatory factors
(IRFs) (Medzhitov 2001; Smale 2010). The regulation of this pro-
gram is achieved through a series of epigenetic changes, which
are thought to modulate the access of transcription factors to spe-
cific DNA regulatory elements (Bierne et al. 2012).

The most well-studied epigenetic responses to immune stim-
uli involve the post-translational modification of histone tails at
promoter and enhancer regions (Bierne et al. 2012; Monticelli
and Natoli 2013). Histone acetylation has been shown to be essen-

tial for the activation of many pro-inflammatory genes (Ghisletti
et al. 2010; Qiao et al. 2013), whereas increased activity of histone
deacetylases is often associatedwith gene repression in the context
of inflammation (Villagra et al. 2009). Moreover, recent studies
suggest that the response of innate cells to different immune chal-
lenges can result in the appearance of histone marks associated
with de novo enhancer elements (or latent enhancers) (Kaikkonen
et al. 2013;Ostuni et al. 2013). These de novo enhancers have been
postulated to contribute to a faster and stronger transcriptional re-
sponse to a secondary stimulus (Ostuni et al. 2013).

In contrast, we still know remarkably little about the role of
other epigenetic changes in controlling responses to infection.
DNA methylation has been particularly understudied, as a conse-
quence of the belief that methylation marks are highly stable
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and unlikely to respond to environmental perturbations on a short
time scale (Bierne et al. 2012; Monticelli and Natoli 2013). Recent
work, however, suggests that DNAmethylation patterns can rapid-
ly change in response to certain environmental cues (Klug et al.
2010; Guo et al. 2011; Dowen et al. 2012; Marr et al. 2014), raising
the possibility that rapid changes in DNAmethylation might play
a role in innate immune responses. To date, no studies have com-
prehensively investigated the contribution of rapid, active changes
in methylation (in contrast to passive changes during cell replica-
tion) to the regulatory programs induced by innate immune cells
in response to an infectious agent. More broadly, the few studies
in mammalian cells that demonstrate cell division-independent
changes in DNA methylation have only focused on a small num-
ber of CpG sites and, surprisingly, have suggested that such chang-
es are poorly predictive of changes in gene expression levels
(Bruniquel and Schwartz 2003; Klug et al. 2010; Guo et al. 2011;
Marr et al. 2014). Here, we report the first comprehensive epige-
nome and transcriptome analysis of monocyte-derived DCs—
professional antigen-presenting cells that play a central role in
bridging innate and adaptive immunity—before and after in vitro
infection with live pathogenic bacteria. All the data generated in
this study are freely accessible via a custom web-based browser
that enables easy querying and visualization of epigenetic profiles
at any genomic region of interest (http://luis-barreirolab.org/
EpigenomeBrowser).

Results

MTB infection induces active changes

in DNA methylation in human DCs

We infected monocyte-derived DCs from six healthy donors with
a live virulent strain ofMycobacterium tuberculosis (MTB), the caus-
ative agent of tuberculosis (TB) in humans.Monocyte-derived DCs
are ideally suited to study active changes in methylation because
they are post-mitotic and not expected to proliferate in response
to infection (Pickl et al. 1996; Ardeshna et al. 2000). To experimen-
tally confirm this assumption, we performed a carboxyfluorescein
diacetate succinimidyl ester (CFSE) proliferation assay. This meth-
od relies on the ability of the highly fluorescent dye carboxyfluo-
rescein to incorporate within cells. Following each cell division,
the equal distribution of these fluorescent molecules to progeny
cells results in a halving of per-cell fluorescence levels. We did
not detect any decrease in per-cell fluorescence at 18 h post-infec-
tion, which confirms that DCs do not proliferate after MTB infec-
tion (Fig. 1A). In contrast, we observedhigh rates of proliferation in
our positive control, human monocytic THP-1 cells (Fig. 1A).

At 18 h after infection, we obtained paired data on single
base-pair resolution DNA methylation levels (using whole-ge-
nome shotgun bisulfite sequencing, i.e., MethylC-seq) and ge-
nome-wide gene expression data (using mRNA sequencing, i.e.,
mRNA-seq) in noninfected and MTB-infected DCs. For MethylC-
seq data, we generated 8.6 billion single-end reads (mean of 648
± 110 SDmillion reads per sample) (Supplemental Table S1), result-
ing in an average coverage per CpG site of∼9× for each sample.We
detected an average of 24 million CpG sites in each sample, corre-
sponding to over 80% of CpG sites in the human genome.
Genome-wide methylation data between biological replicates
were strongly correlated, attesting to the high quality of the data
(mean r across all samples = 0.86) (Supplemental Fig. S1).

As expected for mammalian cells, most CpG sites were highly
methylated throughout the genome except near transcription

start sites (TSSs), CpG islands, and putative enhancer elements
(Supplemental Fig. S2A,B). We found a significant negative corre-
lation between gene expression levels and methylation levels
around TSSs (r =−0.39; P < 1 × 10−16) (Supplemental Fig. S2C,D),
highlighting the well-established role of proximal methylation
in the stable silencing of gene expression. Principal component
analysis of our data alongwithMethylC-seq data from21 other pu-
rified cell types and tissues revealed that the DC methylome is
closely related to that of other blood-derived cells, particularly cells
that share a common myeloid progenitor with DCs, such as neu-
trophils (Supplemental Fig. S2E).

We next assessed the occurrence and the extent to which the
response of DCs to a bacterial infection is accompanied by active
changes in DNA methylation, using the BSmooth algorithm
(Hansen et al. 2012). We defined MTB-induced differentially
methylated regions (MTB-DMRs) as regions of three or more con-
secutive CpG sites exhibiting a significant difference in methyla-
tion between the two groups (P < 0.01) and an absolute mean
methylation difference above 0.1 (Hansen et al. 2014). Using these
criteria, we identified 3271 MTB-DMRs, corresponding to both
hypermethylated regions (48%) and hypomethylated regions
(52%) (Fig. 1B; Supplemental Table S2). To independently validate
these changes, we generated methylation-sensitive pyrosequenc-
ing data on control versus MTB-infected DCs from five new
individuals. We targeted 21 CpG sites that were differentially
methylated in the MethylC-seq analysis, distributed across four
hypermethylated (11 CpG sites) and six hypomethylated MTB-
DMRs (10 CpG sites) (Supplemental Table S3).Wewere able to val-
idate 100%of the hypomethylated CpG sites, with effect sizes sim-
ilar to or greater than those identified in the original bisulfite
sequencing analysis (Fig. 1B,C; Supplemental Fig. S3A). In con-
trast, we were not able to validate any of the hypermethylated
CpG sites (Supplemental Fig. S3B), which indicates that most (if
not all) active changes in methylation observed in response to in-
fection are losses rather than gains in methylation, in accordance
with previous findings (Klug et al. 2010).

We found that only 6% of hypomethylated regions over-
lapped with a promoter (Fig. 1D) and that the vast majority of
hypomethylated regions were located distal to TSSs (median
distance of ∼35 kb from the nearest TSS) (Fig. 1E; Supplemen-
tal Table S2). Hypomethylated regions occurred in genomic re-
gions that show increased levels of evolutionary conservation
(Supplemental Fig. S4), a finding that supports their functional im-
portance. Moreover, gene ontology analysis revealed that these re-
gions are significantly enriched (false discovery rate [FDR] < 0.05)
near genes known to play a key role in the regulation of immune
processes, including the regulation of transcription, signal trans-
duction, and cell apoptosis (Fig. 1F; Supplemental Table S4). The
set of genes near hypo-DMRs included virtually all of the “master
regulators” of innate immune responses, including CREB5, REL,
NFKB1, IRF2, and IRF4. It also included key genes involved in
DC-mediated activation of B and T cells (e.g., CD83) and the regu-
lation of cell death (e.g., BCL2).

Active changes in methylation occur in regions enriched

for 5-hydroxymethylcytosine

The TET family proteins catalyze the conversion of methylated cy-
tosine (5mC) to 5-hydroxymethylcytosine (5hmC) and are thus
key players in the process of active demethylation. To evaluate if
5hmC levels dynamically change in response to MTB infection
(as expected if 5mC sites must pass through the 5hmC state before

Pacis et al.

1802 Genome Research
www.genome.org

http://luis-barreirolab.org/EpigenomeBrowser
http://luis-barreirolab.org/EpigenomeBrowser
http://luis-barreirolab.org/EpigenomeBrowser
http://luis-barreirolab.org/EpigenomeBrowser
http://luis-barreirolab.org/EpigenomeBrowser


demethylation), we generated single base-pair resolution maps of
5hmC across the genome using Tet-assisted bisulfite sequencing
(TAB-seq) (Yu et al. 2012) in one of the five original donors. As pre-
viously described for other cell populations (Song et al. 2011; Lister
et al. 2013), we foundmarkedly higher levels of 5hmC in gene bod-
ies of highly expressed genes, consistent with a role for 5hmC in
maintaining and/or promoting gene expression (Fig. 2A; Hahn
et al. 2013; Hon et al. 2014).

Next, we evaluated if 5hmC marks were enriched within hy-
pomethylated MTB-DMRs. We found that regions that became
hypomethylated post-infection were already associated with sig-
nificantly higher levels of 5hmC prior to infection (3.6-fold en-
richment; Wilcoxon test; P < 1 × 10−16). Upon infection, 5hmC
levels increased even further (Wilcoxon test; P = 1.57 × 10−11)
(Fig. 2B,C), suggesting that 5hmC plays an important role in the
cascade of events leading to active demethylation. The increase
in 5hmC appears to be specific to hypomethylated regions since
no enrichment was observed genome-wide, a result supported by
quantitative immunocytochemistry data (Fig. 2D,E). The strik-

ing enrichment of 5hmC within MTB-DMRs prior to infection
strongly suggests that, in addition to its role as a transitory deme-
thylation intermediate, 5hmC might also contribute to coordi-
nating the gene expression program induced in response to a
microbial stimulus.

MTB-DMRs overlap with enhancer elements that gain activation

marks upon infection

Given that MTB-DMRs are primarily found distal to TSSs, we pre-
dicted that MTB-DMRs would overlap with enhancer regions. To
test this hypothesis and evaluate how the chromatin states as-
sociated with MTB-DMRs dynamically change in response to
infection, we collected ChIP-seq data for six histone marks
(H3K4me1, H3K4me3, H3K27ac, H3K27me3, H3K36me3, and
H3K9me3) in noninfected and infected DCs (Supplemental
Table S1) from two additional donors. Using these data, we gener-
ated genome-wide, gene regulatory annotation maps for nonin-
fected and MTB-infected DCs using the ChromHMM chromatin

Figure 1. MTB-induced changes in methylation in post-mitotic human DCs. (A) CFSE-labeled THP-1 (left) and CFSE-labeled DCs (right). Proliferation was
assayed in either noninfected cells (NI) or cells infected for 18 h with MTB. Similar results were observed 48 h post-infection (Supplemental Fig. S16). (B)
Example of a region showing active loss of DNAmethylation in response toMTB infection (gray shading). The plot shows smoothed methylation values (y-
axis) for six noninfected (blue) and six MTB-infected samples (red). Thick blue and red lines show average methylation levels for noninfected and infected
cells, respectively. The inset on the right showsmethylation levels at two individual CpG sites within the hypomethylated region using bisulfite pyrosequenc-
ing as a validation method. (C) Scatterplot showing the correlation between MethylC-seq (x-axis; smoothed data) and pyrosequencing data (y-axis) for
mean differences in methylation between infected and noninfected cells, at 10 CpG sites within hypomethylated DMRs. Data are represented as mean ±
SEM, n = 6 for MethylC-seq and n = 5 for Pyro-seq. (D) Pie chart showing the distribution of hypomethylated regions in different genomic regions. Each
MTB-DMR is counted only once: The overlap of a genomic region excludes all previously overlapped MTB-DMRs, starting clockwise from promoters
(TSS ± 500 bp; red). (E) Distribution of distances of MTB-DMRs to the nearest TSS. (F) Representative gene ontology (GO) terms enriched among genes
associated with hypomethylated regions. To demonstrate that the enriched biological processes are largely robust to the cutoff used to define MTB-DMRs,
we show how these results differ depending on the number of differentially methylated CpG sites (P < 0.01) required to call an MTB-DMR (from at least
three to at least five consecutive sites).

Epigenetic changes in response to infection
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segmentation program (Fig. 3A; Supplemental Fig. S5; Ernst and
Kellis 2012). We found that 41% of hypomethylated regions over-
lapped with a ChromHMM-annotated enhancer region (defined
by the presence of H3K4me1) already present in noninfected
DCs, a 7.4-fold enrichment compared to genome-wide expecta-
tions (χ2 test; P < 1 × 10−16) (Fig. 3B,C; Supplemental Table S2).
Slightly higher enrichments (8.1-fold; P < 1 × 10−16) were observed
when defining chromatin states in MTB-infected DCs. Given the
high resolution of our histone maps, we could further distinguish
between active and inactive/poised enhancer elements based on
the presence or absence of the H3K27ac mark, respectively, in ad-
dition to H3K4me1 (Heintzman et al. 2007; Creyghton et al. 2010;
Rada-Iglesias et al. 2011). Overall, we found that MTB infection
leads to a significant increase of active enhancer elements (and
decrease of inactive/poised enhancers) colocalizing with MTB-
DMRs (Fig. 3B,C).

Wenext extended our analysis by examining chromatin tran-
sition states at hypomethylated regions in response to MTB infec-
tion. We found that 42% of hypomethylated regions occurred in
regions that exhibited infection-dependent changes in chromatin
state, a significantly higher proportion than expected compared to
the rest of the genome (Presampling < 0.001) (Fig. 3E). The chromatin
state transitions observed within hypomethylated regions were
primarily explained by the acquisition of histone activating marks
(e.g., H3K27ac) in MTB-infected cells. For example, among hypo-
methylated regions that overlapped with predefined enhancers
(i.e., enhancers observable in noninfected cells), 85% of those
that exhibit a change in chromatin state gained an activation
mark (H3K27ac or H3K27ac+H3K4me3) (Fig. 3F,G; Supplemental
Fig. S6A). This proportion was markedly larger than that observed

genome-wide (37%) (χ2 test; P = 1.1 × 10−59) (Fig. 3F). Notably, we
also found a large number of hypomethylated regions (n = 218;
12.7% of all hypomethylated regions) that overlappedwithhetero-
chromatin/repressed regions before infection but gained de novo
enhancer marks upon MTB infection (H3K4me1 [+H3K27ac +
H3K4me3]). The number of de novo enhancers we observed
among hypomethylated regions was significantly higher than ex-
pected by chance (Presampling < 0.001) (Fig. 3D,E,G; Supplemental
Fig. S6A). The identification of enhancers only present in infected
DCs resembles recent findings showing that, in response to differ-
ent immune stimuli, mouse macrophages can gain de novo puta-
tive enhancer regions that were absent in naive cells (Kaikkonen
et al. 2013; Ostuni et al. 2013). Interestingly, we observed that
5hmCwas significantly enriched among de novo hypo-DMRs pri-
or to infection (Wilcoxon test; P = 5.27 × 10−149), suggesting that
5hmCmight be an early “premarking”mechanismof enhancer ac-
tivation, even before the deposition of H3K4me1 marks (Supple-
mental Fig. S6A,B).

Finally, we found that MTB-induced activation or de novo
gain of enhancer elements at hypomethylated regions was associ-
ated with the induction of putative enhancer RNAs (eRNAs)
(Wang et al. 2011) in these intergenic regions (as measured by
whole-transcriptome RNA-seq) as well as with increased levels
of histone marks associated with transcriptional activity (Supple-
mental Fig. S7). Moreover, changes in eRNA levels in response to
MTB infection show a striking positive correlation with changes
in gene expression levels of nearby genes (r = 0.49, P = 7.6 × 10−13)
(Supplemental Fig. S7), in support of a mechanistic link between
demethylation, eRNA production, and the regulation of proximal
protein-coding genes (Lam et al. 2014).

Figure 2. 5hmC is enriched in MTB-DMRs prior to infection. (A) Metagene profiles of 5hmC levels relative to Ensembl transcripts expressed at different
levels in human DCs. We grouped genes in four quantiles based on their expression levels in noninfected DCs. (B) Barplots showing mean 5hmC/C ratios
within hypomethylated regions, before (blue) and after infection (red). (C) Composite plots of patterns of 5hmC before (blue) and after (red)MTB infection
±3 kb around the midpoint of hypomethylated regions. (D) 5hmC staining in noninfected (top panel) and MTB-infected DCs (bottom panel). 5hmC levels
are given by the levels of Alexa 488 (green:middle panel). Cells counterstained with DAPI to localize the nucleus are shown in the first panel. (E) Box plots
showing the distribution of 5hmC staining intensity. No significant differences were observed between the two groups.
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MTB-DMRs are bound by signal-dependent transcription factors

Wenext asked ifMTB infectionwas associated with changes in the
levels of chromatin accessibility in MTB-DMRs. We mapped re-
gions of open chromatin in noninfected and infected DCs based
on genome-wide sequencing of regions showing high transposase
(Tn5) sensitivity (using ATAC-seq in one additional donor)
(Buenrostro et al. 2013). Overall, we observed that MTB-DMRs
colocalize with regions of open chromatin, which further reinforc-
es the regulatory potential of these regions (Fig. 4A). Interestingly,

we found that the response to MTB infection was accompanied by
a striking increase in Tn5 sensitivity levels in hypomethylated re-
gions, which indicates that the chromatin in these regions became
more accessible after infection (Fig. 4A). This observation is com-
mensurate with our data showing the acquisition of active histone
marks in these regions and further supports the idea that hypome-
thylated regions frequently reflect the presence of regulatory ele-
ments that become more active in response to infection.

An attractive feature of ATAC-seq data is the ability to identify
motif instances occupied by transcription factors (TFs) within

Figure 3. MTB-DMRs overlap with enhancer elements that become active upon infection in hypomethylated regions. (A) Combination of histone pat-
terns used to define the seven chromatin states. The precise relative contribution of each chromatin mark to each of the chromHMM-defined states can be
found in Supplemental Figure S3. Note that state 7 was defined by either no signal or the presence of either H3K27me3/H3K9me3. (B) Pie charts showing
the distribution of chromatin state annotations genome-wide (on noninfected cells) and within all MTB-DMRs in either noninfected (NI) or MTB-infected
cells. The chromatin state codes are as defined in A. (C) Fold enrichments of the different chromatin states within hypomethylated regions as compared to
genome-wide expectations in noninfected (blue) and MTB-infected cells (red). (D) Heat map of the proportion of hypomethylated regions by chromatin
transition state. The x-axis represents the chromatin states defined in noninfected DCs and the y-axis the chromatin state of the same region in MTB-in-
fected DCs. The two bold inner boxes indicate two subgroups of hypomethylated regions, (left) predefined enhancers (detectable enhancers in noninfected
DCs) and (right) de novo enhancers (detectable enhancers only in MTB-infected DCs). The numbers inside the cells refer to the proportion of hypomethy-
lated regions that undergo each of the highlighted transitions. (E) (Top panel) Histogram showing the observed proportion of regions that change chro-
matin state after infection (any transition) when sampling 1000 random sets of regions matched to the chromatin states found in noninfected samples
within hypomethylated regions. Each random set contains the same number of hypomethylated regions as those identified in the true data (n = 1714).
The blue triangle represents the observed proportion of hypomethylated regions that changed chromatin state in response toMTB infection. (Bottom pan-
el) Same as above but focusing on regions of the genome labeled as heterochromatin/repressed before infection (state 7; n = 790) that gain de novo en-
hancer marks uponMTB infection (states 3, 4, or 5). The purple triangle represents the proportion observed within the true set of hypomethylated regions.
(F) Bar plot showing the proportion of hypomethylated regions that overlap with enhancers and show dynamic changes in chromatin state, as defined by
the gain or loss of H3K27ac mark. (G) Composite plots of patterns of H3K4me1 and H3K27ac ChIP-seq signals ±3 kb around the midpoints of hypome-
thylated regions (x-axis) overlapping with predefined (left) and de novo (right) enhancers.
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regions of open chromatin (Neph et al. 2012; Buenrostro et al.
2013). We did so by using a modified version of the Centipede al-
gorithm (Pique-Regi et al. 2011) specifically devised to test for ag-
gregate differential binding of TFs between two experimental
conditions. This method, which we call CentiDual, compares the
intensity of the Tn5 sensitivity-based footprint across all matches
to a givenmotif in the genome, between noninfected and infected
samples (see Methods for details on the statistical model). We
found compelling evidence for measurable, genome-wide tran-
scription factor activity (i.e., binding to the genome; Bonferroni-
corrected P < 0.05) in either noninfected or infected DCs for 264
TF bindingmotifs, representing over 200 unique transcription fac-
tors (some TFs can bind different motifs) (Supplemental Table S5).
Of these TF binding motifs, we found 55 that were differentially

bound between noninfected and infected DCs (Bonferroni-cor-
rected P < 0.05; 27 show increased binding and 28 show decreased
binding) (Fig. 4B). Among TF binding motifs showing increased
genome-wide binding after infection, we found several that are as-
sociated with NF-κB/Rel (e.g., NFKB1, REL) and IRF (e.g., IRF1,
IRF2) family members (Fig. 4B; Supplemental Table S5), both of
which play a primary role in the regulation of inflammatory sig-
nals in response to infection (Smale 2010). Interestingly, several
CTCF motifs showed significantly decreased binding in infected
DCs (Bonferroni-corrected P < 1.85 × 10−14) (Supplemental Table
S5). CTCF is a well-established transcriptional insulator (Ong and
Corces 2014), raising the possibility that the release of CTCF in re-
sponse to infectionmight be an important mechanism for the reg-
ulation of efficient immune responses.

Wenext usedCentiDual to test for differential bindingwithin
MTB-DMRs. Within hypomethylated regions, we found increased
binding (FDR < 0.1) at eight TF binding motifs after infection.
Strikingly, all of these motifs were associated with immune-in-
duced TFs from the NF-κB/Rel (e.g., REL; FDR = 1.57 × 10−6), AP-1
(FDR = 4.9 × 10−3), or IRF (FDR = 3.97 × 10−3) families (Fig. 4C;
Supplemental Table S5). This result demonstrates that hypo-
methyated regions correspond to places where immune-activated
TFs are recruited after infection. In accordancewith this argument,
we found that, in infected DCs, TF binding motifs associated with
NF-κB/Rel, AP-1, and IRF families were all significantly enriched
within hypomethylated regions (up to 16-fold) (Supplemental
Fig. S8A). Indeed, in MTB-infected DCs, over 50% of the hypo-
methylated regions were bound by at least one of these signal-de-
pendent TFs, which corresponds to a 3.8-fold increase relative to
chance expectations (based on sampling random regions of the ge-
nomematched for length andGCcontent; χ2 test; P = 3.94 × 10−63)
(Supplemental Fig. S8B).

MTB-DMRs are associated with genes differentially expressed

in response to MTB infection

Finally, we asked if genes associated with hypomethylated regions
were more likely to change expression levels in response to infec-
tion. We classified 2051 and 1947 genes as significantly up- or
down-regulated post-infection, respectively (FDR < 1 × 10−4 and
|log2 fold change| > 1) (Supplemental Table S6). We next tested
whether genes located near hypomethylated regions were more
likely to be differentially expressed upon MTB infection relative
to all genes in the genome. To do so, we first associated each hypo-
methylated regionwith a unique gene using the following criteria:
If a hypomethylated region was located within a gene body, the
region was assigned to that gene; otherwise, we assigned each hy-
pomethylated region to the gene with the TSS closest to the
midpoint of the MTB-DMR. Then, we tested for an enrichment of
differentially expressed (DE) genes among three classes of genes:
(1) “hypo-DMR-genes” corresponding to the set of genes associated
with hypomethylated regions (n = 1291); (2) “predefined-DMR-
genes” corresponding to the set of genes in hypomethylated
regions that overlapped with predefined enhancer elements (n =
508, a subset of class 1); and (3) “de novo-DMR-genes” correspond-
ing to the set of genes in hypomethylated regions that overlapped
with de novo enhancer elements (n = 180, also a subset of class 1).

We found that hypo-DMR-genes (class 1) were significantly
enriched among DE genes (1.6-fold, χ2-test; P = 1.07 × 10−17) (Fig.
5A,B) compared to all genes in the genome, consistentwith the ob-
servation that changes in DNAmethylation were globally correlat-
ed to changes in expression after infection (Supplemental Fig. S9).

Figure 4. MTB-DMRs are bound by signal-dependent transcription fac-
tors. (A) Tn5-accessibility profiles before (NI) and after MTB infection, ±3
kb around the midpoints of hypomethylated regions. (B) Scatterplot com-
paring transcription factor occupancy score predictions between nonin-
fected (x-axis) and MTB-infected DCs (y-axis). The size of the dots is
proportional to the level of statistical significance supporting differential
binding in response toMTB infection. Red dots represent TFs that show ev-
idence for increased binding after MTB infection, and blue dots represent
TFs that show evidence for decreased binding after infection. The inset on
the top left corner shows the genome-wide footprint of the NF-κB (p50)
motif (motif ID: M00051) in noninfected (blue) and MTB-infected DCs
(red). In this example, the footprint in MTB-infected DCs is clearly stron-
ger, which supports increased TF binding to the NF-κB (p50) motif
genome-wide, upon MTB infection. (C) TF motifs (motif IDs in parenthe-
ses) that show significantly increased binding in hypomethylated regions
after MTB infection.
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This enrichment was noticeably stronger
for predefined-DMR-genes (class 2; 1.9-
fold, P = 3.37 × 10−14) and even more so
for de novo-DMR-genes (class 3; 2.5-
fold, P = 6.52 × 10−14). Indeed, among
de novo-DMR-genes, 54% were DE,
even at the very stringent cutoffs we
used to define DE genes (Fig. 5A,B).
Among DE genes associated with hypo-
methylated regions, 74% were up-regu-
lated after MTB infection—substantially
more than the 51%of up-regulated genes
observed genome-wide (χ2-test; P = 4.4 ×
10−79) (Fig. 5C,D). This observation was
even more pronounced when focusing
specifically on predefined-DMR-genes
(class 2) and de novo-DMR-genes (class
3), for which 78% (P = 8.68 × 10−36) and
94% (P = 6.9 × 10−23), respectively, were
associated with increased expression lev-
els in response to infection (Fig. 5C).

Finally, we performed a paired time-
course analysis of gene expression and
DNA methylation levels for six hypo-
DMRs (associated with six immune-relat-
ed genes: IRF4, REL, TRAFD1, CD83,
BCL2,NFKB1) aimed at defining the rela-
tive order of changes in DNA methyla-
tion versus changes in gene expression.
We found that differential methylation
was undetectable at 2 h post-infection,
even though half of the genes associated
with these sites (three out of the six genes
tested) were already significantly up-reg-
ulated (Fig. 5E). Thus, we speculate that
demethylation is not required for TF
binding at enhancer elements or for the
subsequent up-regulation of the associat-
ed gene.However, for all CpG sites tested,
themagnitude of DNAhypomethylation
(relative tononinfected cells) increased at
later time points untilmethylmarkswere
almost completely erased in infected
cells, even if for most genes the largest
fold changes in gene expression were ob-
served at earlier time points (Fig. 5E).

Discussion

The possibility that active changes in
methylation, particularly demethylation,
can occur in mammals has been a matter
of debate for decades (Ooi and Bestor
2008; Pastor et al. 2013). Here, we pro-
vide compelling evidence that the re-
sponse of human DCs to MTB infection
is accompanied by widespread, rapid
loss in DNA methylation. Although
many possible mechanisms can account
for these losses (Kohli and Zhang 2013),
the observation that hypomethylated re-
gions show increased levels of 5hmC in

Figure 5. Differential methylation is coupled to differential gene expression. (A) Proportion of differen-
tially expressed (DE) genes (y-axis) observed among all tested genes and among genes associated with
different subgroups of hypo-DMRs. (B) QQ-plot showing that genes in the vicinity of hypo-DMRs show
stronger statistical evidence for being differentially expressed in response toMTB infection (P-values on y-
axis) compared to all genes tested (P-values on x-axis). (C) Proportion of up- and down-regulated genes
among DE genes associated with the different subgroups of hypo-DMRs. (D) Examples of genes encod-
ing for two key transcription factors, NFKB1 (left panel) and IRF4 (right panel) that are strongly up-regu-
lated in response to MTB infection and for which we identified one or more hypomethylated regions
(gray shading) that overlap with putative enhancer elements. Normalized read signals for the indicated
features are shown for noninfected (blue tracks) and infected conditions (red tracks). (K4me1) H3K4me1,
(K27ac) H3K27ac, (Tn5) transposase-accessible chromatin, (mRNA) mRNA expression levels. (E)
Changes in DNA methylation levels (y-axis) measured by pyrosequencing across four time points after
MTB infection (2, 18, 48, and 72 h) along with the corresponding fold changes in log2 scale (log2FC)
in normalized gene expression of the associated gene. Blue and red lines represent average methylation
levels in noninfected andMTB-infected DCs, respectively. All data are represented as mean ± SEM, with a
minimum of three biological replicates per group. PyroMark and real-time PCR data are reported in
Supplemental Tables S7 and S8, respectively.
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response toMTB infection strongly suggests that the family of TET
proteins (TET1, TET 2, and TET3) is involved in this process. This
possibility is further supported by recent studies showing that
TET2 is required for active DNA demethylation in human mono-
cytes (Klug et al. 2013) and during brain development (Lister
et al. 2013). TET2 is also highly expressed in DCs at both the
mRNA and protein levels (Supplemental Fig. S10).

By integrating our methylation maps with ChIP-seq data on
six histone marks, we show that active demethylation occurs al-
most exclusively at distal regulatory elements, particularly enhanc-
ers. This observation, which is robust to the cutoffs used to call
MTB-DMRs (Supplemental Fig. S11), parallels what has been previ-
ously described in differentiating cells and during developmental
processes (Ji et al. 2010; Stadler et al. 2011; Ziller et al. 2013) despite
the fact that themechanisms controlling active and passive chang-
es in methylation are markedly different (Kohli and Zhang 2013).
In contrast to previous studies that also reported active changes in
methylation (e.g., in response to neuronal activation [Guo et al.
2011], or during monocyte differentiation into macrophages or
dendritic cells [Klug et al. 2010]), we found a strong association be-
tween DMRs and changes in gene expression of nearby genes. The
apparent discrepancy between our results and those previously re-
ported is probably explained by the fact that past studies have only
investigated active methylation changes in promoter regions,
which our data suggest are infrequent, or only on a small subset
of all CpG sites in the (mouse) genome (∼1%).Moreover, we decid-
ed to focus on differentially methylated regions (three or more
consecutive differentially methylated CpGs) instead of methyla-
tion changes at individual CpG sites (Klug et al. 2010; Guo et al.
2011), a decision that likely enriched our analysis for DMRs in-
volved in changes in gene expression. In support of this hypothe-
sis, we found that the enrichment for DE genes becomes stronger
as we focus on MTB-DMRs with a larger number of differently
methylated CpG sites (Supplemental Fig. S11). More broadly, our
results highlight the key importance of using single base-pair reso-
lution maps of the DNA methylome in order to fully capture the
relationship between changes in methylation and changes in
gene expression.

We show that demethylation is often associatedwith the gain
of histone activation marks and the recruitment of immune-acti-
vated TFs in response to infection. The recruitment of NF-κB and
other master regulators to hypomethylated regions is likely associ-
ated with the opening of the chromatin in these regions, although
it remains unclear whether the chromatin opens to allow the bind-
ing of these TFs (i.e., prior to binding) or if the observed increase in
chromatin accessibility is a consequence of the binding itself. Our
results shed some light on this problem. Specifically, we observed
that changes in gene expression sometimes tend to occur prior to
detectable changes in DNA methylation, at least in the hypo-
DMRs we investigated in our time-course experiment. These re-
sults support a model in which TF binding to enhancers leads to
gene up-regulation followed by active demethylation, rather
than vice versa, consistent with the sequence of events proposed
for other cellular contexts (Stadler et al. 2011; Schubeler 2015).
We note, however, that our pyrosequencing data do not allow us
to distinguish between 5mC and 5hmC. Thus, it is possible that
5hmC levels were increased 2 h post-infection and that these
changes preceded the activation of certain enhancers, as recently
suggested in T cells (Ichiyama et al. 2015). More generally, we can-
not completely exclude the possibility that demethylation oc-
curred prior to changes in gene regulation but only in a small
proportion of the cells (1%–2%, based on the sensitivity threshold

of pyrosequencing assays) (Tost and Gut 2007), making it difficult
to detect at the 2-h time point. Under this scenario, demethylation
in only a few cells could account for the observed changes in gene
expression. However, we have previously shown that >30% of DCs
uptake MTB bacteria after only 1 h post-infection using the same
protocol (Barreiro et al. 2012), and in single-cell RNA-seq data
from dendritic cells, >50% are transcriptionally responsive to im-
mune challenge (Shalek et al. 2014). Thus, it seems unlikely that
our results reflect a response driven by only a small minority of
cells. Importantly, even if TF binding instigates changes in meth-
ylation, binding alone is not sufficient; the vast majority (>99%)
of binding events induced by infection occur at regions that do
not change methylation (Supplemental Fig. S12).

Finally, there is increasing evidence that, after a first encoun-
ter with a pathogen or other immune stimulus, innate immune
cells keep such attacks “in memory.” As a result, they are able to
mount faster and stronger gene transcriptional responses upon re-
stimulation and exhibit increased resistance to secondary infec-
tion. This process, termed trained immunity (Monticelli and
Natoli 2013; Quintin et al. 2014; Saeed et al. 2014), has been attrib-
uted to epigenetic reprograming at the level of histone H3methyl-
ation based on the observation that distal regulatory elements that
gain de novo H3K4me1 (i.e., de novo enhancermarks) in response
to immune activation generally do not lose this mark after the
stimulation has ceased (Ostuni et al. 2013). Although epigenetic
programming through histone modifications might be an impor-
tant factor in trained immunity, our results raise the possibility
that changes in DNA methylation might also contribute to
short-term memory in innate immune cells. Indeed, changes in
DNAmethylationmight be ideally suited as amechanismof epige-
netic memory since these changes are expected to be thermody-
namically more stable and longer lasting than changes in
histone marks. In support of this idea, we observed that the mag-
nitude of DNA hypomethylation gradually increased with time
since infection and never reverted back to higher levels during
our 72-h time-course experiment. Moreover, we show that the
gain of de novo enhancers—assumed to account for trained immu-
nity—often occurs concomitantly with the loss of DNA methyla-
tion in the same regions. Our results thus raise the possibility
that trained immunity might not only be due to post-transcrip-
tional changes in histone marks but also, and possibly primarily,
due to changes in DNA methylation.

Methods

Biological material and sequencing libraries

Details of the experimental and statistical procedures can be found
in the SupplementalMethods section. Blood samples fromhealthy
donors were obtained from the Indiana Blood Center. A signed
written consent was obtained from all of the participants and
the project was approved by the ethics committee at the CHU
Sainte-Justine (protocol #4023). Blood mononuclear cells from
each donorwere isolated by Ficoll-Paque centrifugation, and blood
monocytes were purified from peripheral bloodmononuclear cells
(PBMCs) by positive selection with magnetic CD14 MicroBeads
(Miltenyi Biotec). Monocytes were then derived into DCs as previ-
ously described (Barreiro et al. 2012) and subsequently infected
with MTB for 18 h at a multiplicity of infection of 1-to-1. For the
ChIP-seq and ATAC-seq experiments, we used heat-killed bacteria
(5-to-1 ratio), which leads to virtually the same transcriptional
response at 18 h as that observed with live MTB (r = 0.91)
(Supplemental Fig. S13). RNA-seq libraries were prepared using

Pacis et al.

1808 Genome Research
www.genome.org



the TruSeq RNA Sample Prep Kit v2 or the Illumina Total Stranded
RNA Library kit, as per the manufacturer’s instructions. MethylC-
seq libraries were generated by ligation of methylated sequencing
adapters to fragmented genomic DNA, followed by gel purifica-
tion, sodium bisulfite conversion, and six cycles of PCR amplifica-
tion. TAB-seq libraries were generated as previously described (Yu
et al. 2012), and ChIP-seq libraries for the six histone marks were
prepared following the Illumina protocols, with minor modifica-
tions (see Supplemental Methods). ChIP-seq signals from the
two biological replicates were highly concordant (mean r = 0.94
and range = 0.87–0.99) (Supplemental Fig. S14) and were com-
bined for all analysis. Finally, ATAC-seq libraries were generated
from 100,000 cells, as previously described (Buenrostro et al.
2013). Sequencing was performed using the Illumina HiSeq 2000
or 2500, as per the manufacturer’s instructions.

CFSE proliferation assay

DCs and THP-1 cells were covalently labeled with carboxyfluores-
cein diacetate succinimidyl ester (Life Technologies) as described
in detail elsewhere (Quah and Parish 2010). Briefly, cells were
washed with PBS and resuspended with 5 mM CFSE. After a
5-min incubation at room temperature, cells were thoroughly
washed with PBS containing 5% FCS before plating in complete
culture medium.

5hmC staining

The protocol was adapted from Santos et al. (2003). DCs were cul-
tured on poly-L-lysine-coated coverslips and fixed for 30 min in
4% paraformaldehyde in PBS and permeabilized with 0.2%
Triton X-100 in PBS for 30 min at room temperature (RT). Cells
were then washed with 0.05% Tween 20 in PBS and were treated
with 1 M HCl plus 0.1% Triton X-100. After 30 min at 37°C, cells
were incubated with 100 mM Tris/HCl (pH 8.5) for 30 min and
blocked for 2 h in PBS with 1% BSA, 0.05% Tween-20, and 2%
goat serum. Cells were incubated with 5-hydroxymethylcytosine
antibody (ActiveMotif), followed by Alexa 488 goat anti-rabbit an-
tibody (Life Technologies) for 1 h at RT. The slides were mounted
with Fluoromount G (SouthernBiotech), and cells counterstained
with DAPI to localize the nucleus. A laser-scanning microscope
(Zeiss LSM 700) in the tile scanmode was used to capture a mosaic
of images. Fluorescencewas quantified using Fiji software. Average
fluorescence estimates were calculated from 1769 noninfected
cells and 1532 MTB-infected cells.

Read processing and alignment

Sequencing data were processed using the Illumina analysis pipe-
line, and FASTQ format reads were aligned to the human reference
genome (GRCh37/hg19) using Bowtie 2 (Langmead and Salzberg
2012). Methylation levels for each CpG site were estimated by
counting the number of sequencedC (“methylated” reads) divided
by the total number of reported C and T (“unmethylated” reads)
at the same position of the reference genome using the Bismark
package (Krueger and Andrews 2011). The summarized methy-
lation estimates of strand-merged CpG sites were used to identify
differences in methylation between noninfected and infected
samples using the R package BSmooth (Hansen et al. 2012).
RNA-seq-based gene expression levels were estimated using
HTSeq and differently expressed genes following MTB infec-
tion of DCs using the R package DESeq2 (Anders et al. 2013).
ChromHMM (Ernst and Kellis 2012) was used to segment the ge-
nome into different chromatin states based on six histone modifi-
cations and the ChIP input. The ChromHMM model was learned
separately for both infected and noninfected DCs (main text) or

using a unified model that learns and defines chromatin states
in both infected and noninfected DCs at the same time (Supple-
mental Fig. S15).

ATAC-seq data processing and footprinting analysis

Footprinting analyses were performed using a modified version of
the Centipede algorithm (Pique-Regi et al. 2011) specifically de-
vised to test for differential binding between two experimental
conditions. To determine which TFs were active in the first step,
we calculate aZ-score corresponding to the PWMeffect in the prior
probability in Centipede’s logistic model, and we determined as
active those that had a Bonferroni-corrected P < 0.05. The Z-score
corresponds to the β parameter in:

log
pl

1− pl

( )
= a+ b PWMscorel,

where πl represents the prior probability of binding in Centipede’s
model in motif location l. In the second step, we first trained
Centipede assuming that the footprint was bound in the two con-
ditions. Then, we fixed themodel parameters and generated a like-
lihood ratio and posterior probability πlt for each condition t
separately and for each site l. To detect if the footprint was more
active in one of the two conditions, we fit a logistic model that in-
cluded an intercept for each condition (α and δ), the PWM effect β,
and PWM times the treatment effect γ:

log
plt

1− plt

( )
=a× (1− It ) + b× PWMscorel + d× It + g

× (It × PWMscorel),
where It is an indicator variable that takes the value 1 if t = “treat-
ment” and 0 if t = “control.” We then calculated a Z-score for the
interaction effect γ, corresponding to the evidence for condition-
specific binding.

Data visualization in the Immune Epigenome Browser

The browser, implemented using the WashU Epigenome Browser
web interface (Zhou and Wang 2012), can be accessed at http://
luis-barreirolab.org/EpigenomeBrowser. Along with RefSeq gene
annotations, it includes 25 data tracks showing (1) the genomic
location of MTB-DMRs, (2) smoothed site-specific 5mC values,
(3) 5hmC values, (4) all histone mark ChIP-seq read signals
(H3K4me3, H3K4me1, H3K27ac, H3K27me3, H3K36me3, and
H3K9me3), (5) Tn5-transposase (i.e., chromatin accessibility)
read signals, (6) mRNA read signals, and (7) predicted binding sites
for the 55 transcription factors that significantly change genome-
wide binding levels in response to MTB infection. All data sets are
shown for both noninfected (NI) and MTB-infected (MTB) condi-
tions with respect to the GRCh37/hg19 reference sequence. Note
that, for ease of visualization, several tracks are not shown under
default parameters. These can be added by going to: Tracks→
Custom tracks→ List of all.

Data access

Data generated in this study have been submitted to the NCBI
Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.
gov/geo/) under accession numbers GSE64173 (ATAC-seq),
GSE64175 (ChIP-seq), GSE64181 (TAB-seq), GSE64182 (wtRNA-
seq), GSE64179 (mRNA-seq), and GSE64177 (MethylC-seq).
PyroMark and real-time PCR data are reported in Supplemental
Tables S7 and S8, respectively.
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