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Abstract. The South Asian countries have the most polluted cities in
the world which has caused quite a concern in the recent years due to
the detrimental effect it had on economy and on health of humans and
crops. PM 2.5 in particular has been linked to cardiovascular diseases,
pulmonary diseases, increased risk of lung cancer and acute respiratory
infections. Higher concentration of surface ozone has been observed to
have negatively impacted agricultural yield of crops. Due to its delete-
rious impact on human health and agriculture, air pollution cannot be
brushed off as a trivial matter and measures must be taken to address
the problem. Deterministic models have been actively used; but they
fall short due to their complexity and inability to accurately model the
problem. Deep learning models have however shown potential when it
comes to modeling time series data. This article explores the use of recur-
rent neural networks as a framework for predicting the hazard levels in
Lahore, Pakistan with 95.0% accuracy and Beijing, China with 98.95%
using the time series data of air pollutants and meteorological parame-
ters. Forecasting air quality index (AQI) and Hazard levels would help
the government take appropriate steps to enact policies to reduce the
pollutants and keep the citizens informed about the statistics.

Keywords: Air pollution · AQI · Forecasting · LSTM’s

1 Introduction

Air pollution has been brushed off for quite some time as a trivial subject but
the current research suggest the relentless damage it can cause humans and crop
yield. In particular the cities of South Asian countries such as China and India
have made to the list of most polluted cities and the cities of Pakistan are joining
the list due to increase in levels of particulate matter and toxic fumes from the
industries [17].
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Exposure to higher concentration of surface ozone can trigger allergic reac-
tions such as asthma and cause inflammation of air ways due to oxidative stress
[11,12]. PM2.5 has been associated with 4 to 8% increase in cardiopulmonary
diseases and lung cancer [10]. Air pollution has been linked to cardiovascular
diseases in urban communities. Most of the hospitalized patients suffering from
diseases like angina, myocardial infarction and heart failure have been put in
such a situation, due to the long-term exposure to combustion-derived nano-
particles that incorporate reactive organic and transition metal components [13].
Moreover, studies suggest that high concentration of surface ozone has a detri-
mental effect on crop yield [14,15]. In recent years, due to increase in awareness
of the bleak consequences of air pollutants, forecasting of air pollutants and
their impact on human and crops has become an active area of research. Several
deterministic and non-deterministic models were explored to model the behavior
of pollutants [7,16]. Deep leaning models have had quite some success when it
comes to modeling the problem and forecasting air pollutants. The meteorologi-
cal parameters due to their conducive behaviour in pollutant dissemination and
pollutant concentrations were used to forecast Hazard levels. Since the param-
eters used for modeling are time series, so the recurrent neural networks, Long
Short Term Memory (LSTM) networks are employed due to their ability to
accurately capture temporal trends [5–7].

The two major contributions of this article are the following:

1. Provide a dataset comprising of Lahore, Pakistan meteorological and pollu-
tants statistics.

2. Employ deep learning model to develop a forecasting and classification system
for assessing air quality.

2 Literature Survey

An LSTM model is trained in [1] on sensor data of Aerosol Optical Depth (AOD),
meteorology and particulate matter which can provide quite accurate prediction
of the concentrations of harmful gases (80% PM2.5 variability). The system has
been successfully deployed in Beijing, China and has helped in bringing down
the pollution in Beijing by 23%.

A supervised regression model is developed based on historical data of air
pollution in Sydney [2] which surpassed its contemporary ANN’s in terms of
accuracy in prediction and has high spatial resolution.

Forecasting air pollution is done through Multi-channel Ensemble framework
through supervised extraction and learning which out performs its contemporary
state of the art systems [3]. PM2.5, PM10, SO2, CO, NOx and ozone levels are
predicted quite accurately.

In [4] attempts are made to model the complex relation between different
parameters and its individual impact on pollutant levels using deep distribution
fusion network while the spatial correlation is modelled using deep neural net-
work. The system, deep air out performs ten state of the art baseline models
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and achieves an average accuracy of 81.1%, 63%, 46% in 1–6 h, 7–48 h, sudden
changes when deployed in 300+ cities of China.

Real time air-pollution predication is carried out in Daegu city, Korea [5] by
processing the big data received from the air quality sensing modules installed on
taxis. The spatial distribution of the pollutant levels is fed to a CNN model. For
accurate processing of the temporal data; LSTM is used with a NN in parallel to
cater for the meteorological factors effecting pollutant concentration. The testing
results in an accuracy of 74% in real time over the data collected over a span of
four months.

Spatial-temporal information is used in [6] to predict air quality using a combi-
nation of neural networks called ST-DNNwhich attempts tomodel the correlations
between several meteorological conditions, elevation space and PM levels. LSTM
is used to model long term temporal relations i.e. historical time series relation;
CNN extracts the relationship between terrain information and pollutant levels
while ANN is used with the current data and thereby models high frequency infor-
mation.When evaluated onTaiwanandBeijing dataset, the network outperformed
the baseline and comparative networks under consideration.

In order to enact policies to alleviate the pollution levels, accurate prediction
is needed to carry out informed decisions. The temporal data of pollutants along
with meteorological data is processed by a recurrent model [7], LSTM to forecast
air pollutants since LSTMs have the ability to capture sequential relations. The
frame work can predict air pollution 5–10 h in the future quite well but as the
future time steps are increased beyond 10 h, we see degradation in performance.
Since short term data of 6–10 h is needed to predict future time steps, power
consumption can be reduced by turning the sensors on at specific intervals to
collect data.

Artificial neural network (ANN) is used to predict PM10 concentration at 6
subways in Seoul, Korea [8]. Due to impracticality of monitoring PM10 directly at
the crowded stations, PM10 concentrations are obtained from public data service
near subway stations (PM10 out). In addition, it is observed that the shape and
depth of the platform at the subway stations play an important role in influencing
the model performance. The framework was able to predict PM10 concentrations
at the platforms with an accuracy 67–80% depending upon parameters; inflow
of PM10 (PM10 in), outflow of PM10 (PM10 out), ventilation operation, shape
and depth of platform.

In [9], air pollution is forecasted using spatio-temporal data of city of Tehran,
Iran obtained over a span of 10 years. Several machine learning methods such as;
regression support vector machine, geographically weighted regression, artificial
neural network and auto-regressive nonlinear neural network are evaluated on
two datasets, one of which is cleaned via Savitzky-Golay filter while the other
dataset was noisy due to missing entries. On both datasets, nonlinear autore-
gressive exogenous (NARX) neural network displays superior performance with
exceptional performance over the former dataset.
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3 Prediction Model Framework

In this article, we use a recurrent neural network that is; long short-term memory
(LSTM), to capture the temporal trends of pollutant data. LSTM’s perform
better on sequential data as it takes the historical events into account by taking
the output at instant t-1 as input in addition to inputs at t. This characteristic
introduces the concept of Memory in neural networks which is of import when
it comes to analyzing data of pollutants as it varies temporally.

Equation 1 and 2 describe the working of an RNN; where H is the tanh
activation function, W defines the weight matrices between hidden and input
layer (Wxh), hidden and hidden layer (Whh), hidden and output layer (Why),
xt the input sequence, ht the hidden vector of a module at instant t and b the
bias to compute output yt by iterating across these equations from t = 1 to T.

ht = H(Wxhhxt + Whhht−1 + bh) (1)

yt = Whyht + by (2)

Though, RNN perform better when the sequences are short but suffer inher-
ently from exploding gradient problem when working with data having long term
dependencies. This problem is tackled by LSTM’s which due do its gated mem-
ory architecture resolves the issue of vanishing and exploding gradients and is
able to retain information for an extended period of time. Equation 3, 4, 5, 6
describes the input, forget and output gate and cell activation vectors of LSTM
architecture respectively. Where σ is the sigma activation function.

it = σ(Wxixt + Whiht−1 + bi) (3)

ft = σ(Wxfxt + Whfht−1 + bf ) (4)

ot = σ(Wxoxt + Whoht−1 + bo) (5)

ct = ft ∗ ct−1 + it ∗ tanh(Wxgxt + bg) (6)

ht = ot ∗ tanh(ct) (7)

3.1 Employed Datasets

The architecture was evaluated using two datasets, the modified UCI dataset
published by [7] and on a dataset we introduced with parameters recorded in
Lahore, Pakistan. The modified UCI dataset has meteorological data of wind
speed, direction, air pressure, temperature, dew point, wind speed, cumulative
rain hours and cumulative snow hours. Pollutant data of only PM2.5 is recorded
25 times throughout the day. The parameters are collected over a span of 7 years
with 43,825 samples from 2010 to 2017 across 35 different stations in Beijing,
China. We have taken average of the data per day and on the basis of PM2.5

concentration, we calculate the AQI value which is determined by the standard
formula developed by environment protection agency (EPA), US. Based on the
AQI value, a column of hazard level is added to the dataset. The information
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of date, hour, day, month, and year in the dataset is removed and pre-processed
using normalization.

We obtained the time series pollutants data from environmental protection
agency (EPA) Punjab, Pakistan for a span of 2 years from 2017 to 2019. The data
of air pollutants is received from 6 stations across the city which includes particu-
late matter (PM10, PM2.5), Nitrogen dioxide, Sulphur dioxide and surface ozone.
The meteorological parameters play an instrumental role towards pollution dis-
semination and concentration in a particular region, thus the meteorological
department of Pakistan was contacted to obtain the statistics of wind direc-
tion, temperature, barometric pressure, humidity, visibility and type of weather.
The data of air pollutants and meteorological statistics are combined and pre-
processed to form a dataset of 1500 samples for monitoring and predicting the
hazard levels in the form of AQI. We have categorized the hazard into six lev-
els according to the pollutants concentration defined by air quality index (AQI)
values set by EPA, US as described in Fig. 1.

Fig. 1. Air Quality Index set by environment protection agency, US

3.2 Network Architecture

The frame work comprises of three layers; a single LSTM layer followed by two
dense layers with activations of Tanh and softmax respectively.

The network is evaluated on Lahore dataset by using metrics of sparse cat-
egorical cross entropy and accuracy. Batch size of 16 is used with adam as an
optimizer and the network is trained for 300 epochs with a data split of 70/15/15
for training, validation and testing.

For modified UCI dataset, the network is trained for 300 epochs with a data
split of 70/15/15, batch size of 8 and adamax as an optimizer. Python packages
of Keras, tensorflow, Scikit-Learn and Pandas are used to model the network.
Early stopping techniques are used by observing the loss on the validation data
to reduce over-fitting by curtailing the training period.
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3.3 Tuning Network Hyper-Parameters

The hyper-parameters of LSTM model is then tuned based on data to configure
optimal parameters. Batch size, Numbers of training epochs, optimizer, learning
rate and type of activation function are some of the hyper-parameters tuned by
employing grid search algorithm (GSA) to improve performance of the model.
We started with tuning the number of training iterations and batch size simulta-
neously. The model was modified based on these optimal hyper-parameters and
the grid search algorithm was run again to find an appropriate optimizer. The
model was then tuned based on these parameters to find an activation function
that boosts the performance of the LSTM model using grid search algorithm.

According to the results of grid search algorithm, for Lahore dataset, the
optimal hyper-parameters for the LSTM model are listed in Table 1, 2, 3 and 4.
In Table 2, we select tanh as an activation as it gives better performance with
all the other parameters tuned.

Table 1. Selection of training iter-
ations and Batch size using GSA
on Lahore dataset

Batch size Epoch number Accuracy

16 300 0.92832

8 350 0.92115

16 350 0.91398

8 300 0.91398

32 350 0.91039

32 300 0.91039

64 350 0.89964

Table 2. Optimal activation func-
tion selection using GSA on Lahore
dataset

Activation function Accuracy

softsign 0.92832

tanh 0.92473

hard sigmoid 0.92115

linear 0.92115

relu 0.91039

softplus 0.91039

sigmoid 0.90323

softmax 0.82079

The results of grid search algorithm for modified UCI dataset are tabulated
in Table 5, 6, 7 and 8.

The optimized hyper-parameters highlighted in italics are reconfigured by
incorporating early stopping criterion using the validation set which improves
the performance of the model employed.
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Table 3. Results of optimizer
selection using GSA on Lahore
dataset

Optimizer Accuracy

Adam 0.931899

Adadelta 0.92473

Nadam 0.91756

Adamax 0.91398

RMSprop 0.91039

Adagrad 0.88889

SGD 0.55197

Table 4. Optimal learning rate
selection using GSA on Lahore
dataset

Learning rate Accuracy

0.002 0.935454

0.001 0.921169

0.01 0.914026

0.2 0.896169

0.1 0.889026

0.3 0.462922

Table 5. Selection of training iter-
ations and Batch size using GSA
on modified UCI dataset

Batch size Epoch number Accuracy

8 300 0.98609

32 300 0.98609

64 500 0.98510

16 300 0.98411

64 300 0.98361

32 500 0.98312

16 500 0.98262

8 500 0.98213

8 100 0.97120

Table 6. Optimal activation func-
tion selection using GSA on modi-
fied UCI dataset

Activation function Accuracy

tanh 0.98709

hard sigmoid 0.98560

sigmoid 0.98560

linear 0.98312

relu 0.98262

softsign 0.98262

softplus 0.98064

softmax 0.87388

Table 7. Results of optimizer
selection using GSA on modified
UCI dataset

Optimizer Accuracy

Adamax 0.98759

Adadelta 0.98461

RMSprop 0.97617

Adam 0.97567

Nadam 0.97368

Adagrad 0.95680

SGD 0.94836

Table 8. Optimal learning rate
selection using GSA on modified
UCI dataset

Learning rate Accuracy

0.002 0.972691

0.001 0.951837

0.01 0.943893

0.1 0.936941

0.2 0.935452

0.3 0.767130
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4 Result and Analysis

The hyper-parameters are tuned using grid search algorithm on the training set
and on the validation data with respect to the categorical cross entropy error. It
is observed that the model performs best with batch size of 8 with training of 300
epochs on the Beijing dataset and batch size of 16 with training of 300 epochs on
Lahore dataset. Moreover, adam and adamax are employed as an optimizers for
Lahore and Beijing datsets respectively which helps in convergence at a faster
pace. Figure 2 shows that model when trained for 300 epochs on the modified
UCI dataset attains a maximum validation accuracy of 98.9583% at epoch 288
and an accuracy of 98.95% on the test set. Thus the temporal characteristic of
the data is modeled quite accurately using the recurrent network architecture.
Figure 3 depicts the prediction model performance on the test set.

(a) Training and Validation accuracy
(b) Loss and accuracy results of train-
ing/dev set during the final epochs of mod-
ified UCI dataset

Fig. 2. Network training results on modified UCI dataset

Fig. 3. Actual Vs. Predicted values of employed architecture on modified UCI dataset

The second dataset comprises of parameters recorded over a span of 2 years,
thus after tuning the hyper-parameters, we train the network with a batch size of
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16 for 300 epochs with early stopping criterion to avoid over-fitting. The results
of training are described in Fig. 4 with maximum accuracy achieved at epoch 143
on the validation set. On the second dataset, an accuracy of 95.0% is achieved on
the test set as depicted in Fig. 5. The deterioration in performance of the LSTM
model for the Lahore dataset is due to the limited time series data required to
infer the trends.

(a) Training and Validation accuracy
(b) Loss and accuracy results of train-
ing/dev set during the final epochs

Fig. 4. Network training results on Lahore, Pakistan dataset

Fig. 5. Actual Vs. Predicted values of employed architecture on Lahore, Pakistan
dataset

5 Conclusion

A model for forecasting hazard level has been devised and its performance is
evaluated on the meteorological and pollutant data of two of the most polluted
cities in the world; Beijing, China and Lahore, Pakistan. It is observed that
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despite different topography and meteorological information, the proposed net-
work models the complexity of the diverse temporal information quite well. The
proposed architecture after employing GSA optimization is able to forecast the
hazard levels of the next 24 h with an accuracy of 95.0% on the data recorded in
Lahore, Pakistan and 98.95% on Beijing, China dataset due to ability of LSTM’s
to model temporal data and is thus able to learn the trends of air pollutants.
This is an effective measure for the people going out to take necessary precau-
tions and assist the environment protection agencies to enact policies and take
steps towards reducing the health and economic risk caused due to high level of
pollutants.
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