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Adrenocortical carcinoma (ACC) is a rare but clinically aggressive endocrine malignancy. Circular RNAs (circRNAs) were found to
play key roles in tumorigenesis. In the current study, we aimed to investigate the functions and mechanisms of a novel circRNA,
circ-CCAC1, in ACC cells. circ-CCAC1 expression levels in ACC tissue specimens and cell lines were evaluated by RT-qPCR.
Kaplan-Meier analysis was applied to explore the relationship between circ-CCAC1 and patients’ prognosis. Cell counting kit-8
(CCK-8), colony formation, acridine orange/ethidium bromide (AO/EB) double fluorescence staining, and Transwell assays
were performed to evaluate the functions of circ-CCAC1 in ACC cells. Bioinformatics analysis and a dual-luciferase reporter
assay were utilized to explore the mechanisms of circ-CCAC1. As a result, circ-CCAC1 was overexpressed in ACC tissue
samples and cell lines and correlated with poor prognosis. Gain- and loss-of-function tests demonstrated that circ-CCAC1 acted
as an oncogene in ACC. What is more, circ-CCAC1 enhanced C22orf46 expression by sponging miR-514a-5p in ACC cells. A
rescue assay illustrated that circ-CCAC1 facilitated ACC progression through miR-514a-5p/C22orf46 signaling. To sum up, we
identified a novel circRNA, circ-CCAC1, which may be used as a potential therapeutic target for ACC.

1. Introduction

Adrenocortical carcinoma (ACC) is a rare but clinically
aggressive endocrine malignancy [1–3]. The incidence of
ACC is around 0.7/10000 to 2/10000. ACC frequently occurs
in adolescent [4, 5]. Although the treatment of ACC has
made remarkable progression, the prognosis of ACC is still
unfavorable due to local infiltration or extensive metastasis
[6]. Moreover, ACC shows medium-low response rates to
conventional chemotherapy and emergence of chemoresis-
tance properties [7]. Therefore, understanding the molecular
regulation mechanism of ACC progression and identifying
an effective therapeutic target are the key issues for the treat-
ment of ACC.

Previous research used whole genome sequencing, and
findings indicated that greater than 98% of a genome was
transcribed into noncoding RNAs (ncRNAs). Circular RNAs
(circRNAs) are a novel type of ncRNAs. However, emerging
evidence indicates that several circRNAs are able to encode
peptides [8]. For instance, circ-SHPRH encodes a novel pro-
tein, SHPRH-146aa [9]. circRNAs are characterized by a
closed-loop structure with limited protein coding capacity
[10, 11] and have been found to function as oncogenes or
cancer suppressor genes in a wide variety of human cancers
[12, 13]. For example, circ_0001649 inhibits cholangiocarci-
noma progression in vitro and in vivo [14]. Accumulating
evidence has indicated that circRNAs play important roles
in cancer with respect to cell proliferation, migration,
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invasion, and apoptosis, as well as can be important bio-
markers that can predict patients’ prognosis [15, 16]. Fur-
thermore, important interactions between mammalian
circRNA and miRNA have been identified in assessments
of various types of cancers [17]. For example, hsa_circ_
101141 acts as a competing endogenous RNA (ceRNA) to
facilitate progression of hepatocellular carcinoma by regulat-
ing miR-1297/ROCK1 signaling [18]. Previously, the
researchers identified a novel circRNA, circ-CCAC1, which
functions as an oncogene in cholangiocarcinoma [19]. circ-
CCAC1 (circBase ID: hsa_circ_0043469; circBank ID: hsa_
circERBB2_014) is located on chr17: 37880978-37882106
and looped by exons 23-26 of ERBB2. The spliced variant
of circ-CCAC1 is 565 nucleotides long. Interestingly, we
found circ-CCAC1 was also remarkably increased in ACC,
which is related to poor prognosis among ACC patients.
Silencing of circ-CCAC1 inhibits ACC cell progression
in vitro. Mechanistically, circ-CCAC1 is the sponge of miR-
514a-5p, which promotes C22orf46 expression, thus promot-
ing the proliferation and aggressiveness of ACC. Our find-
ings provided a new insight for exploring a potential
therapeutic strategy for the treatment of ACC.

2. Materials and Methods

2.1. Patients. Starting from January 2014 and proceeding
through February 2016, we collected 48 paired samples of
ACC tissues and corresponding noncancerous tissues from
patients admitted to the First Hospital of Qiqihar by way of
surgical resection (Table S1). All pathological specimens
were independently diagnosed by three clinical pathologists.
After sectioning, all ACC tissues and noncancerous tissues
were immediately stored in liquid nitrogen and then
preserved in a -80°C freezer. All aspects of experimental
designs and protocols were reviewed and approved by the
Committee for the Protection of Human Subjects at the
First Hospital of Qiqihar. All patients signed written
informed consent forms before surgical resection.

2.2. Cell Lines and Transfection. Human ACC cell lines
(H295R and SW-13) and an immortalized normal cell line
(Y1) were acquired from the Cell Bank of the Chinese Acad-
emy of Sciences (Shanghai, China). We cultured all the cell
lines in RPMI-1640 medium following the manufacturer’s
protocols and supplemented the medium with 10% fetal
bovine serum (FBS, Gibco). Next, we incubated all samples
in a humidified atmosphere with a constant temperature of
37°C and a 5% CO2 atmosphere.

circ-CCAC1-specific small interfering RNA (si-circ-
CCAC1-1, si-circ-CCAC1-2), C22orf46-specific siRNA (si-
C22orf46), siRNA-negative control (si-NC), miR-514a-5p
mimics, inhibitor, and negative controls were obtained from
GenePharma Co. Ltd. (Shanghai, China). Lipofectamine™
3000 (Invitrogen, USA) was used to transfect samples with
si-RNA or miRNAs. 125μL serum-free medium was used
to dilute 5μL Lipofectamine™ 3000 in a 1.5mL EP tube.
Meanwhile, 5μL siRNA (20μM) or 2.5μg plasmid vector
along with 5μL P3000™ reagent was diluted in 125μL
serum-free medium. After 5 minutes of incubation at room

temperature, the reagents in two tubes were combined. 15-
20 minutes later, the mixtures were added into a 2.5 cm dish
filled with serum-free medium. After 8 hours of incubation,
the medium was replaced by the medium containing 10%
FBS. All transfection experiments were repeated three times.
The knockdown efficiency was confirmed by real-time quan-
titative PCR (RT-qPCR) analysis. The targeted sequences of
the siRNAs specifically targeting to circ-CCAC1 are listed
as following: si-circ-CCAC1-1, 5′-ATGGTCAAATGAAG
CATACGT-3′, and si-circ-CCAC1-2, 5′-GATCATGGTCA
AATGAAGCAT-3′.

2.3. RT-qPCR. We used TRIzol (Thermo Scientific, USA) to
isolate total RNA from samples followed by the manufac-
turer’s protocols. Next, we quantified measures of total
RNA using a NanoDrop 2000. We next reverse-transcribed
fragments in samples into resultant cDNA. We used an ABI
7500 Fast RT-qPCR System for RT-qPCR assessments and
used 20μL for each RT-qPCR reaction mixture. Relative
expression levels were calculated by using the 2−ΔΔCt method.
PCR primers are listed as follows: circ-CCAC1: 5′-TGTGGA
GTTATGGTGTGACTGT-3′ (forward) and 5′-GCCATC
ACGTATGCTTCATTTG-3′ (reverse). GAPDH: 5′-GGGA
GCCAAAAGGGTCAT-3′ (forward) and 5′-GAGTCCTTC
CACGATACCAA-3′ (reverse).

Nuclear and cytoplasmic fractions of H295R/SW-13 cells
were partitioned using a PARIS Kit (Thermo Scientific). A
total of 107 fresh cultured cells were collected, placed on
ice, and resuspended with 500μL ice-cold cell fractionation
buffer. Cells were incubated on ice for 15min. Samples were
centrifuged at 500 g for 5min, and then the cytoplasmic frac-
tion was carefully aspirated away to a new tube from the
nuclear pellets. RNA isolation from chromatin and nucleo-
plasm was performed using a TRIzol reagent (Invitrogen)
according to the manufacturer’s protocol.

2.4. Western Blotting. The cultured cells were lysed in 2% SDS
buffer plus protease and phosphatase inhibitor cocktails
(Thermo Scientific, USA). BCA protein assay (Solarbio)
was used to measure the protein concentrations. Equivalent
samples were separated by SDS-PAGE and then transferred
into a PVDF membrane (Millipore). After immersion in 5%
skim milk at 22-25°C, the membrane was incubated with pri-
mary antibodies overnight at 4°C. After incubation with the
HRP-conjugated secondary antibody for 2 h, the membrane
was visualized using an ECL kit (Beyotime).

2.5. Dual-Luciferase Reporter Gene Test. starBase 2.0 and
circBank databases were utilized for predicting the miR-
NAs potentially interacted with circ-TOP2A. The binding
relationship of 3′-untranslated region (UTR) of C22orf46
and miR-514a-5p was predicted by the TargetScan database.
For the dual-luciferase reporter gene test, we seeded ACC cells
into a 24-well plate and cultured the plate for 24h. To confirm
the interaction between miR-514a-5p and circ-CCAC1/3’-
UTR of C22orf46, we transfected the following into ACC cells:
circ-CCAC1/3′-UTR of C22orf46 wild reporter vector (pmir-

GLO), circ-CCAC1/3′-UTR of C22orf46 mutant reporter
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vector (Mut), and miR-514a-5p mimics or miR-NC. The
Dual-Luciferase Reporter Assay System (Promega, USA) was
used to examine measures of luciferase intensity.

2.6. Cell Counting Kit-8 (CCK-8). The viability of transfected
ACC cells was examined by CCK-8 assay. The cells were col-
lected, and the concentration was adjusted to 1500 cells/well
before they were maintained in a cell incubator for 0, 24, 48,
72, and 96 hours. After the indicated specific treatments,
10μL of CCK-8 was supplied to the wells and maintained
at 37°C. After incubation for additional 2 h, a microplate
reader (Multiskan EX, LabSystems, Helsinki, Finland) was
used to measure the absorbance at 450nm.

2.7. Colony Forming Test. Transfected ACC cells were seeded
in 6-well plates with a total of 500 cells per well with medium
containing 10% FBS and incubated at 37°C. After 10 days of
incubation, the colonies were fixed with 4% paraformalde-
hyde, then incubated with crystal violet (Sigma-Aldrich,
Shanghai, China) for another 15 minutes and enumerated
under the microscope.

2.8. Apoptosis Detection. For the AO/EB experiment, tumor
cells were preseeded and cultured overnight in a 6-well dish.
The preconfigured AO/EB solution (Solarbio, Beijing, China)
was added to each well. Finally, the apoptosis level was
observed under a fluorescent microscope system (Leica, Buf-
falo Grove, IL, USA). Due to the different transmembrane
characteristics of AO/EB, normal and apoptotic cells could
be identified. AO dyestuff could penetrate intact cell mem-
branes and specifically bind to nuclear DNA, emitting bright
green fluorescence. Instead, EB dyestuff could only enter
damaged cell, emitting red fluorescence.

2.9. Transwell Assay. Matrigel was dropwise added into
Transwell upper chambers with routine protocols. The
chambers were kept in a 4°C air-dried condition. ACC cells
were cultured till the phase of logarithmic growth. Cells were
harvested with a diluted cell density of 1 × 106. We then
added 200μL of cell suspension into the Transwell upper
chamber. Meanwhile, 600μL fresh nutrient medium was
added into the Transwell lower chamber. The remaining
Matrigel and ACC cells were cleaned after 24 h culture. Crys-
tal violet staining (30 minutes) was performed for cells in the
Transwell lower chamber.

2.10. Data Analysis. SPSS 22.0 and GraphPad Prism 8.3.0
were used for statistical analysis. The experimental data were
all presented as the mean ± standard deviation (S.D.). The
survival curve was generated and analyzed via Kaplan-
Meier plot and log-rank test. To compare the difference of
groups, we used Student’s t-test and one-way analysis of var-
iance (ANOVA). P < 0:05 indicated the presence of a signif-
icant difference.

3. Results

3.1. circ-CCAC1 Is Upregulated in ACC and Correlates with
Poor Prognosis. circ-CCAC1 was more stable than ERBB2
mRNA under the circumstance of RNase R (Figure 1(a)).

Total RNA was isolated to measure the expression levels of
circ-CCAC1 and ERBB2 mRNA after treatment with actino-
mycin D at different time points. We found that the half-life
of circ-CCAC1 was longer than its linear isoform (ERBB2
mRNA) (Figure 1(b)). circ-CCAC1 expression was signifi-
cantly higher in ACC tissues compared to noncancerous
samples (Figure 1(c)). According to the median value of
circ-CCAC1, we classified the enrolled ACC patients into
two groups (high and low expression groups). We found
that high circ-CCAC1 expression was linked to worse overall
survival (P = 0:006) for the ACC patients after surgery
(Figure 1(d)). Next, we evaluated the expression of circ-
CCAC1 in ACC cell lines (H295R and SW-13) and a normal
cell line (Y1). As a result, the two ACC cell lines exhibited
significantly higher levels of circ-CCAC1 compared to Y1
cells (Figure 1(e)).

3.2. circ-CCAC1 Promotes ACC Cell Proliferation and
Aggressiveness. To facilitate explorations of the roles that
circ-CCAC1 may have played in the progression of ACC,
we designed two circ-CCAC1 siRNAs that would knock
down circ-CCAC1. We found that the levels of circ-CCAC1
were notably downregulated in H295R cells that had been
transfected with si-circ-CCAC1-1/-2 (Figure 2(a)). Addition-
ally, an overexpression study was conducted on SW-13 cells
due to its lowest expression of circ-CCAC1, and the overex-
pression efficiency of circ-CCAC1 vector was favorable
(Figure 2(a)). Furthermore, ERBB2 mRNA expression levels
were unaffected after circ-CCAC1 knockdown/overexpres-
sion (Figure 2(b)). We used CCK-8 and colony formation
tests to detect ACC cell viability and clone-forming capacity
affected by circ-CCAC1. The results confirmed that silencing
of circ-CCAC1 significantly inhibited cell viability and clone-
forming capacity (Figures 2(c) and 2(e)). Conversely, overex-
pression of circ-CCAC1 accelerated cell growth in vitro
(Figures 2(d) and 2(f)). Furthermore, AO/EB double staining
assay indicated that the cell growth-promoting role of circ-
CCAC1 is partly attributed to its suppression on cell apo-
ptosis in ACC cells (Figures 2(g) and 2(h)). Results from
Transwell assays indicated that silencing of circ-CCAC1
attenuated the migratory and invasive potential of H295R
cells (Figure 2(i)). By contrast, elevated circ-CCAC1 strength-
ened the migratory and invasive capacities of SW-13 cells
(Figure 2(j)).

3.3. circ-CCAC1 Enhanced C22orf46 Expression by Sponging
miR-514a-5p in ACC. As displayed in Figures 3(a) and 3(b),
circ-CCAC1 was mainly localized to the cytoplasm of the
two ACC cell lines. circRNAs can affect tumor cell malignant
behaviors via sponging certain microRNAs [17, 18]. There-
fore, we hypothesized miRNAs would bind to circ-CCAC1
and examined this prediction by using web-based circRNA-
miRNA prediction tools. As a result, five miRNAs (miR-
182-5p, miR-1343-3p, miR-514a-5p, miR-3619-5p, and
miR-6746-5p) were predicted by both circBank and starBase
2.0 databases (Figure 3(c)). Silencing of circ-CCAC1
increased miR-514a-5p expression in H295R and SW-13
cells. The expression levels of other miRNAs were unchanged
(Figures 3(d) and 3(e)). In addition, miR-514a-5p expression
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was downregulated in ACC samples relative to their normal
counterparts (Figure 3(f)). TCGA datasets indicated that
the patients with low expression of miR-514a-5p had a worse
prognosis (Figure 3(g)). Furthermore, miR-514a-5p was

downregulated in H295R and SW-13 cells than Y1 cells
(Figure 3(h)). A negative association between circ-CCAC1
and miR-514a-5p was identified in ACC tissues (Figure 3(i)).
We constructed a luciferase reporter vector of Wt and Mut
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Figure 1: circ-CCAC1 expression in ACC tissues and cells and its clinical importance. (a) circ-CCAC1 was resistant to RNase R digestion in
ACC cells. (b) Relative circ-CCAC1 and linear ERBB2 mRNA expression at different time points. (c) circ-CCAC1 and ERBB2 mRNA
expression in 48 pairs of ACC tissues/adjacent normal tissues by RT-qPCR. (d) Kaplan-Meier analysis with log-rank test for overall
survival in ACC patients according to circ-CCAC1 expression. (e) Relative expression of circ-CCAC1 in ACC and normal cells by RT-
qPCR. ∗∗P < 0:01.
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Figure 2: circ-CCAC1 facilitates ACC cell progression. (a) Relative expression of circ-CCAC1 was detected by RT-qPCR after transfection.
(b) Relative expression of ERBB2 mRNA was detected by RT-qPCR after transfection. (c) Cell viability was detected after downregulating
circ-CCAC1 in H295R cells by CCK-8. (d) Cell viability was detected after upregulating circ-CCAC1 in SW-13 cells by CCK-8. (e) Clone-
forming ability was detected after downregulating circ-CCAC1 in H295R cells by colony formation assay. (f) Clone-forming ability was
detected after upregulating circ-CCAC1 in SW-13 cells by colony formation assay. (g) Cell apoptosis was detected after downregulating
circ-CCAC1 in H295R cells by AO/EB staining assay. (h) Cell apoptosis was detected after upregulating circ-CCAC1 in SW-13 cells by
AO/EB staining assay. (i) Cell migration and invasion was detected after downregulating circ-CCAC1 in H295R cells by Transwell assay.
(j) Cell migration and invasion were detected after upregulating circ-CCAC1 in SW-13 cells by Transwell assay. ∗P < 0:05, ∗∗P < 0:01.
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circ-CCAC1 (Figure 3(j)). The vectors were cotransfected with
miR-514a-5p mimics or mimics-NC in H295R and SW-13
cells. We found that miR-514a-5p mimics remarkably sup-
pressed the luciferase signal relative to the negative control
(Figure 3(k)). The TargetScan database was used to predict
the downstream targets of miR-514a-5p, and C22orf46 was
chosen for further study. Pearson’s correlation analysis dem-
onstrated that circ-CCAC1 expression was positively corre-
lated with the levels of expression of C22orf46 for our
examinations of ACC human tissue samples (Figure 3(l)).
TCGA datasets indicated that the patients with upregulated
C22orf46 expression had a worse overall survival
(Figure 3(m)). Next, we examined expression levels of

C22orf46 and found significantly higher levels of C22orf46
in ACC cells (Figures 3(n) and 3(o)). Additionally, we found
that knocking down of miR-514a-5p significantly enhanced
the levels of C22orf46 mRNA in H295R cells, whereas
ectopic-expressed miR-514a-5p attenuated C22orf46 mRNA
expression (Figure 3(p)). Dual-luciferase reporter assays indi-
cated that cotransfection with Wt-C22orf46 3′-UTR reporter
and miR-514a-5p mimics induced significant inhibition of
luciferase activity in ACC cells (Figures 3(q) and 3(r)).

3.4. circ-CCAC1 Plays an Oncogenic Role via Upregulating
C22orf46 Expression in ACC Cells. We then cotransfected
with si-circ-CCAC1-1 and C22orf46 vector in H295R cells,
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followed by Western blotting. circ-CCAC1 inhibition down-
regulated C22orf46 expression, whereas cotransfection with
C22orf46 vector significantly increased C22orf46 expression
levels (Figure 4(a)). In addition, ectopic expression of circ-
CCAC1 enhanced C22orf46 expression in SW-13 cells.
While, after cotransfection with si-C22orf46, the expression
of C22orf46 was partially reversed (Figure 4(a)). CCK-8,
colony formation, and Transwell experiments displayed
that increasing C22orf46 reversed the inhibition of H295R
cell growth and invasion caused by si-circ-CCAC1-1
(Figures 4(b), 4(d), and 4(f)). Overexpression of circ-
CCAC1 triggered ACC cell progression, while this effect
was partially reversed by cotransfection with si-C22orf46
(Figures 4(c), 4(e), and 4(g)).

4. Discussion

ACC is one of the most aggressive malignancies worldwide
[2, 3]. Although remarkable progression has been achieved
recently in the diagnosis and treatment of ACC, the progno-
sis is still dismal in ACC patients [4]. Although numerous
studies have revealed that alterations in the oncogene and
tumor suppressor gene contribute to the progression and
metastasis of ACC [3], the precise molecular mechanism
remains vague. Accumulating lines of evidence indicates that
circRNAs play important roles in the dynamics underlying
epigenetic regulation, transcription, and posttranscriptional
regulation and may facilitate development and progression
of tumorigenesis [16–18]. For example, circRNA GLIS2
promotes colorectal cancer cell motility via activation of
the NF-κB pathway [20]. A recent study indicated that cir-
cRNA_100782 promotes proliferation and metastasis of gas-
tric cancer by downregulating tumor suppressor gene Rb by
adsorbing miR-574-3p in a sponge form [21]. Mounting
studies have shown that circRNAs can regulate the biological

behaviors of cancer cells via target genes, thus exerting a piv-
otal role in the progression of malignancies [22]. Zhang et al.
found that overexpressed circ-PIP5K1A contributes to colon
cancer progression by suppressing miR-1273a expression
[23]. The other study indicated that circ-TSPAN4 facilitates
lung adenocarcinoma metastasis by elevating ZEB1 via
sponging miR-665 [24]. However, the functions and mecha-
nisms of circRNAs in ACC remain unclear. A recent study
indicated that circ-CCAC1 was enhanced in cholangiocarci-
noma and indicated that circ-CCAC1 was likely to affect
tumorigenesis and metastasis in human cancers [19]. circ-
CCAC1 is located on chr17: 37880978-37882106 and is
looped by exons 23-26 of ERBB2. We found that circ-
CCAC1 expression was also overexpressed in ACC tissue
specimens than normal tissues and correlated with worse
overall survival. Nevertheless, the independent prognostic
role of circ-CCAC1 was not investigated. We then evaluated
the functions of circ-CCAC1 in tumorigenesis and progres-
sion of ACC cells. Gain- and loss-of-function assays illus-
trated that circ-CCAC1 significantly increased the viability,
clone-forming, migration, and invasion of ACC cells. What
is more, the cell growth-promoting role of circ-CCAC1 was
partially dependent on its suppression on cell apoptosis.

Increasing evidence showed that there were extensive
interaction networks involving ceRNA, in which circRNAs
could regulate the target RNA by binding to the miRNAs
and titrating from the binding site on the protein coding
messenger [25]. Target molecules regulated mutual expres-
sion by competing to bind miRNA’s response element
(MRE). Evidence suggested that the ceRNA regulatory model
had been validated in other cancers [25, 26]. The localization
of circRNAs suggests how they exert their functions. circ-
CCAC1 primarily localized to the cytoplasm rather than
the nucleus, suggesting its mechanism in the posttranscrip-
tional level. In this work, our results indicated that miR-
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514a-5p expression was significantly lower in ACC tissues and
cell lines. Meanwhile, a negative correlation was observed
between miR-514a-5p and circ-CCAC1 expression. We found
that circ-CCAC1 could sponge and negatively regulate miR-
514a-5p expression in ACC cells. In fact, miR-514a-5p has
been confirmed as a tumor suppressor gene in some types of
human cancers [27]. Moreover, miR-514a-5p was regulated
at the posttranscriptional level. For example, miR-514a-5p
could be sponged by long noncoding RNA TRIM52-AS1
and SNHG7, thus releasing its suppression on MRPS18A
and ELAVL1, respectively [28, 29]. However, the functions
and mechanisms of miR-514a-5p in ACC are still unclear.
The above evidence suggested that miR-514a-5p functions
as a tumor suppressor gene in tumors. Next, we verified
that miR-514a-5p directly combined with the 3′-UTR of
C22orf46. Hence, we hypothesized that circ-CCAC1 induces
the promotion of ACC malignancy by way of its interactions
with miR-514a-5p to upregulate C22orf46 expression. Fur-
thermore, a rescue assay demonstrated that the oncogenic
role of circ-CCAC1 is partially dependent on its regulation
of C22orf46 in ACC cells. C22orf46 was rarely studied before.
The functions and mechanisms of C22orf46 are still unclear.
To the best of our knowledge, this is the first study revealing
the oncogenic role of C22orf46 in human cancers. In addi-
tion, we found it could be regulated at the posttranscriptional
level in ACC cells. However, there are still some limitations
within the study. For example, the detailed downstream
targets of C22orf46 are worthy of investigation. The ani-
mal study is needed to validate the in vitro data. Addition-
ally, a larger cohort of patients should be included in the
study to further identify the clinical value of circ-CCAC1
in ACC patients.

To sum up, circ-CCAC1 functions as a sponge for miR-
514a-5p to enhance C22orf46 expression, which subse-
quently contributes to ACC tumorigenesis and progression.
These findings may provide additional insights into the
molecular events responsible for ACC carcinogenesis.
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