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Abstract

Upper airway viral infections (URI) are a major cause of absence from school and work. Although morbidity is low in most of the

subjects, the complications of URI, including otitis media, sinusitis and exacerbations of asthma and chronic obstructive pulmonary

disease (COPD) have an enormous health impact. Despite the major health care consequences associated with these complications, our

understanding of how URI trigger upper airway symptoms and cause exacerbations of lower airway diseases remains limited. This article

reviews our current understanding of the pathogenesis of URI, and of viral exacerbations of asthma and COPD, and considers host

defense parameters that may regulate susceptibility to disease exacerbations. We will also consider current and potential therapeutic

approaches for the treatment of URI and their lower airway complications.
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1. Introduction: Upper respiratory viral infections (URI) and

their complications

URI, manifesting as the clinical syndrome we refer to as
the common cold, is the most frequent acute respiratory
illness experienced by humans. Adults will experience 2 to 4
colds each year, while children experience 6 to 10. As a
result of this, according to the Centers for Disease Control
and Prevention, 22 million school days are lost annually in
the United States due to colds. Although common colds
e front matter r 2007 Elsevier Ltd. All rights reserved.
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can be caused by a variety of different virus types,
including coronaviruses, parainfluenza virus and respira-
tory syncytial virus (RSV), the predominant viral patho-
gens, particularly in the autumn season, are human
rhinoviruses (HRV) [1–3].
Although simple colds in healthy individuals are

associated with little morbidity, it has long been known
that rhinovirus infections can precipitate or exacerbate
other diseases, including otitis media [4], and sinusitis [5,6].
More recently, growing evidence also has implicated URI
as the predominant risk factor associated with exacerba-
tions of both asthma and chronic obstructive pulmonary
disease (COPD).
In the case of asthma, there is a clear temporal

relationship between increase in hospitalizations for
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asthma exacerbations and outbreaks of URI [7,8], with a
major spike in early September, which is the peak time for
HRV infections. Moreover, prospective studies using RT-
PCR to assist in viral detection have demonstrated that
common respiratory viruses are associated with up to 60%
of asthma exacerbations in adults and over 80% of
exacerbations in children [9,10]. Although several viral
types were found during these exacerbations, the dominant
pathogen detected was HRV. HRV also was the most
common viral pathogen associated with asthma attacks in
young children over 2 years of age presenting in the
emergency room [11,12].

There also has been a growing appreciation regarding
the important role of URI in triggering exacerbations of
COPD [13]. Recent studies indicate that about half of all
COPD exacerbations are associated with viral infections,
and that HRV is, again, the dominant viral pathogen
[14,15]. Interestingly, respiratory viral infections are
associated with COPD exacerbations that are more
frequent, severe and have longer recovery times [14].

The ability of URI to serve as precipitants for exacerba-
tions of asthma and COPD has enormous consequences in
terms of both health care costs and patient’s quality of life.
The total health care costs for asthma in the United States
for the year 2000 was estimated at $12.1 billion [16], and
acute exacerbations account for half of the total health care
costs for the disease [17,18]. Similarly, acute exacerbations of
COPD are a major cause of hospitalizations and death, and
account for 70% of health care costs for the disease [19].
Moreover, exacerbation frequency is a major determinant of
health status and quality of life for COPD patients [20].

Despite the high incidence and serious complications of
URI, the mechanisms by which viruses induce upper
airway symptoms, or cause exacerbations of lower airway
diseases, remain poorly understood. Although it is possible
that different viral types may induce these outcomes via
variable mechanisms, it seems more likely that common
aspects of viral pathogenesis dominate. Given that HRV is
the major viral pathogen associated with colds and
exacerbations of asthma and COPD, we will focus on the
current status of our knowledge of the response to HRV
infection as representative of viral pathogenesis, indicating
differences with other viral types when appropriate.

2. Viral infection and airway inflammation

It is clear that URI are associated with increased airway
inflammation. In particular, HRV infections lead to
increased numbers of neutrophils and lymphocytes in the
upper airways [21–23]. HRV infections also induce
neutrophilic recruitment to the lower airways in subjects
with asthma [24,25]. Consistent with this virally induced
pattern, many acute asthma exacerbations seen in the
clinical setting are characterized by increased levels of
neutrophils and lymphocytes in the airways [26–28].
Asthmatics who display this neutrophilic profile show a
poor response to inhaled corticosteroids [29]. Similarly,
while stable COPD is associated with a characteristic
infiltration of the bronchial mucosa with CD8+ T lympho-
cytes and macrophages, severe exacerbations of COPD are
associated with increased neutrophilic and lymphocytic
influx [30,31]. It seems reasonable, therefore, to infer that
viruses may trigger exacerbations of asthma and COPD
by enhancing already existing inflammation in the lower
airways.
The mechanisms by which viral infections are able to

enhance upper, and lower, airway inflammation are not
fully defined, but growing evidence supports the concept
that viral modulation of epithelial function may initiate the
inflammatory response.
The airway epithelial cell is the primary target for inhaled

pathogens and expresses receptors for several viral types.
Indeed, the epithelial cell is the only cell type in which HRV
has been detected, thus far, by in situ hybridization [32,33],
during in vivo infections. Moreover, there is now strong
evidence that, upon experimental nasal inoculation with
HRV, virus spreads to infect epithelial cells in the lower
airways [34,35], suggesting that epithelial infection may also
directly initiate lower airway inflammatory responses. In
contrast to viruses such as influenza and RSV, HRV
infections do not cause overt epithelial toxicity [36,37].
Thus, while the cytotoxic effects of influenza and RSV may
contribute to the severity of symptoms, it seems reasonable
to assume that alterations of epithelial biology represent a
common pathway of symptom development by multiple
virus types. In support of this concept, infection of epithelial
cells by HRV has been shown to generate a wide variety of
proinflammatory chemokines and cytokines, including IL-8
(CXCL8), ENA-78 (CXCL5), IP-10 (CXCL10), RANTES
(CCL5), IL-1, IL-6 and IL-11 [23,37–42]. Given that several
of these products also are detected in airway secretions
during HRV infections in vivo [23,38,42–44], it is likely that
they contribute to recruitment and activation of inflamma-
tory cells during infections. The ability to induce proin-
flammatory cytokine production from epithelial cells is also
shared by other viruses. For example, influenza infection
induces epithelial production of IL-6, IL-8 and RANTES
[45], while RSV infections induce expression of a wide range
of chemokine genes [46].
Although there is a clear potential for these chemokines

and cytokines to induce inflammation, the profile of
products described clearly has the capacity to recruit a
plethora of inflammatory cell types to the airways. Despite
this, a relatively selective cellular profile is seen during
infections in vivo. It is unclear what other parameters
regulate this limited pattern of inflammatory cell recruit-
ment. It also must be acknowledged that our under-
standing of the mechanisms by which virally induced
chemokine production occurs remains limited. In the case
of HRV infections, some chemokines are induced quickly
after viral exposure and do not seem to require viral
replication [41,47], while other genes are not induced
until several hours post-infection and are absolutely
dependent upon replicating virus [23,39]. Although both
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phosphatidylinositol 3-kinase and mitogen activated pro-
tein kinase pathways have been implicated in viral
induction of chemokines [47–49], the early signaling events
induced by virus remain poorly elucidated. Similarly, while
the viral replication intermediate, double-stranded RNA,
and the rhinovirus 3C protease both have been implicated
as mediators of late, replication dependent events
[23,50,51], the pathways by which such products induce
responses are not well defined. Moreover, while it is clear
that viral induction of some cytokines and chemokines
occurs via transcriptional pathways involving NF-kB and/
or interferon regulatory factor [23,52], our understanding
of the control of transcriptional and post-transcriptional
regulation of epithelial cytokine and chemokine production
in response to viral infection also is limited and requires
further study. Delineating those aspects of signaling that
may be unique for viral induction of chemokines may
provide a rational basis for targeted interventions, while
studies with selective chemokine or chemokine receptor
antagonists will be required to provide a definitive answer
on which are the key epithelial mediators involved in
disease pathogenesis.

Once viral infection of the epithelium initiates a proin-
flammatory process, subsequent production of other media-
tors that are not of epithelial origin may further contribute to
the inflammatory status of the airways. These mediators may
be derived from plasma or from other cell types within the
airway mucosa. Of the mediators assessed thus far, some are
relatively virus-specific, while others are observed with colds
induced by multiple viral types. For example, while RSV
infections have been reported to be associated with the
generation of virus-specific IgE and increased release of
histamine into nasal secretions [53], levels of histamine are
not increased in airway secretions during HRV infections
[22]. Moreover, while older antihistamines that display
anticholinergic and sedative properties do reduce rhinorrhea
during colds, second generation antihistamines lacking these
side effects are ineffective [54]. By contrast, other mediators,
such as kinins and leukotrienes have been associated with
infections due to more than one type of common respiratory
virus [22,55–57]. Defining the role of each of these mediators
in disease pathogenesis will, again, require studies with
effective and selective antagonists.

3. Host defense responses

Several factors are likely to play a role in determining the
severity of the clinical outcome to upper airway viral
responses, including the susceptibility of patients with
asthma or COPD to experience lower airway exacerba-
tions. Such factors include pre-existing immunity to a
particular viral strain and, in the case of lower airways,
the degree of disease control at the time of infection.
Another important factor is likely to be the variability
of the individual host immune and antiviral response
to infection. Although both innate and specific immunity
contribute to the host response to infection, it appears
as though the innate response is dominant early after
infection and is more likely to help regulate the sympto-
matic response. For example, while HRV infections elicit
antigen-specific humoral and cellular immune responses,
these are usually not detectable until after disease symp-
toms have resolved [58].
As may be expected based on its central role in viral

infection, the epithelial cell is a significant contributor to
the innate response to infection. As noted above, infected
cells release several cytokines and chemokines that can
recruit, and activate, cells of the immune system to the
airways. In addition, epithelial production of nitric oxide
(NO) appears to play an important role in host antiviral
responses [59]. Infection of cultured epithelial cells with any
of several common respiratory viruses leads to marked up-
regulation of inducible nitric oxide synthase (iNOS) and
increased generation of NO. A similar response occurs
during experimental HRV infections in vivo, in that levels
of epithelial iNOS induction correlate with levels of
exhaled NO. Interestingly, in this study, subjects with the
highest levels of exhaled NO cleared virus more rapidly and
had lower symptoms [60]. A rationale for this is provided
by several studies showing that NO exerts direct antiviral
activity against several common respiratory viruses, in part
by nitroslyating key thiol residues in viral proteases.
Moreover, it has been shown that NO also inhibits virally
induced generation of several cytokines and chemokines
from epithelial cells [59].
It also should be noted that infection of epithelial cells

with HRV induces the production of human b-defensin-2
(HBD-2) and HBD-3 [61]. These peptides are chemotactic
for immature dendritic cells expressing CCR6, as well as
other cell types contributing to the immune response, and
likely play an important role in linking innate and specific
immunity to HRV [62]. HBD-3 also can reduce the extent
of influenza infections by blocking the fusion of the virus
with cell membranes [63].
As viral replication progresses, and intact virus is

released into airway secretions, it can interact with other
cell types that may further contribute to the immune
response. Presumably, for example, dendritic cells initiate
antigen presentation to T cells in the airways or lymph
nodes to initiate the specific immune response. In addition,
monocytes and macrophages may release additional
cytokines, including interferons that can stimulate a variety
of interferon (IFN)-stimulated genes (ISGs) that collec-
tively limit virus replication and spread.

4. Therapeutic approaches

Traditional approaches to mitigate the effects of URI
have focused on symptomatic relief, although such
approaches have generally had modest success. The topical
anticholinergic, ipratropium bromide reduces rhinorrhea,
an effect mimicked to some degree, as noted above, by
older ‘‘first generation’’ antihistamines that are known to
also have anticholinergic properties. Similarly oral adrenergic
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drugs have modest benefit in terms of reducing nasal
blockage, while topical agents have a greater efficacy but
suffer from issues of rebound [54]. A somewhat greater
reduction in total symptoms was observed in experimental
HRV infections when a combination of IFN-a2b, together
with the first generation antihistamine, chlorpheniramine,
and ibuprofen was administered beginning 24 h after viral
challenge [64]. Although this represents an important proof
of concept regarding the effectiveness of combining an
antiviral compound with conventional compounds for
symptomatic relief, the practical utility of this combination
is limited by cost factors.

There is also a growing literature on the use of ‘‘natural’
remedies for the treatment of colds. Although the rationale
for the use of zinc in the treatment of colds is not well
established, multiple studies have evaluated the effectiveness
of various zinc salts in this regard. Overall, the results
of these studies have been inconclusive. A recent, well-
controlled trial, however, found that zinc salts had an
extremely modest effect in reducing symptoms of experi-
mental HRV infections and was ineffective in natural colds
[65]. Similarly, echinacea and ginseng have been widely
reported as herbal remedies for colds. Most of the trials to
evaluate such agents have been small and have generated
conflicting data. Recent randomized trials with relatively
large number of subjects reported modest efficacy of a
ginseng extract in reducing the frequency of natural colds
[66], but found no significant effect of an extract of echinacea
in experimental HRV infections [67]. A major issue in regard
to trials of herbal remedies, of course, is that there is no
standardization of extracts used across studies. Indeed, given
that the identity of any proposed ‘‘active’’ ingredient is
unknown, it is impossible to know what to standardize.

All of the above trials have been limited to analyzing
effects on nasal symptoms, and have never evaluated
effects on viral exacerbations of asthma or COPD. Given
the data reported, however, it seems unlikely that they will
provide any major benefit. Indeed, an interesting question
is whether drugs that are currently used for the treatment
of asthma and COPD have any beneficial effects during
viral exacerbations. There is no doubt that the use of
corticosteroids, long acting b-agonists, or leukotriene
receptor antagonists, alone or in combination, to maintain
optimal asthma control has proven efficacious in reducing
number of asthma exacerbations, and the use of oral
corticosteroids early in exacerbations helps prevent re-
lapses. Effects on basal inflammation, however, may not
necessarily translate to effects on viral-specific inflamma-
tion, and there have been no defined studies of the effects
of these medications during asthma or COPD exacerba-
tions of known viral origin. Corticosteroids have little
efficacy in HRV-induced colds [68], and it is of interest that
asthmatics who display prominent sputum neutrophilia,
perhaps indicative of viral etiology, are poorly responsive
to inhaled corticosteroids [29]. Because of these limitations,
alternative therapeutic approaches to virally induced air-
way disease continue to be sought.
An obvious strategy is to use antiviral approaches.
Influenza vaccine is clearly effective in reducing upper
airway symptoms, and in preventing lower disease exacer-
bations, induced by this virus during the winter months.
Unfortunately, vaccination approaches are not feasible for
HRV, given the large number of viral serotypes, and have,
thus far, proven unsuccessful in the case of RSV infections.
Neutralizing antibody prophylaxis has proven effective in
preventing RSV-induced bronchiolitis but cost factors limit
a broader utility and, again, major feasibility issues would
arise with using this approach for HRV. Selective antiviral
approaches have shown more promise. In the case of
influenza, neuraminidase inhibitors have been available for
several years and have proven clinical efficacy in reducing
development and severity of symptoms. At least two
approaches also have been used to develop potential
antiviral agents against HRV. The novel capsid-binding
inhibitor, pleconaril, prevents viral uncoating. In natural
colds, oral pleconaril (400mg) administered three times
daily led to a significant, but modest reduction in
symptoms and also shortened the reported duration of
colds [69]. Concerns regarding effects on cytochrome P450
3A4, however, precluded further development as an oral
treatment. The alternative antiviral approach used for
HRV infections has targeted inhibition of the viral 3C
protease, which is necessary for cleavage of the viral
polyprotein and, thus, replication. Topical administration
of one 3C inhibitor, ruprintrivir, significantly inhibited
symptoms in experimental HRV infections even when
administered beginning 24 h after infection, although
multiple daily dosing was required [70]. Neither of these
drugs has been evaluated for their ability to limit HRV-
induced exacerbations of lower airway diseases.

5. Conclusions

Upper respiratory tract viral infections and their
complications lead to a significant burden on health care
systems throughout the world. Current treatments are less
than ideal, and a greater insight into the molecular basis by
which common viruses induce both upper and lower
airway symptoms is needed if alternative therapeutic
approaches are to be developed rationally. The delineation
of which specific cytokines and chemokines are key
contributors to disease pathogenesis, and elucidation of
signaling pathways selective for viral modulation of
epithelial cell function may identify novel targets for
therapy. Alternatively, endogenous enhancement of key
host antiviral and host defense molecules, or the topical
administration of such molecules may provide alternative
approaches to reduce the sequelae of viral infection.
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