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Chlamydia trachomatis secretion of proteases for 
manipulating host signaling pathways
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The human pathogen Chlamydia trachomatis secretes numerous effectors into host cells in 
order to successfully establish and complete the intracellular growth cycle. Three C. trachomatis 
proteases [chlamydial proteasome/protease-like activity factor (CPAF), tail-specific protease 
(Tsp), and chlamydial high temperature requirement protein A (cHtrA)] have been localized in 
the cytosol of the infected cells either by direct immunofluorescence visualization or functional 
implication. Both CPAF and Tsp have been found to play important roles in C. trachomatis 
interactions with host cells although the cellular targets of cHtrA have not been identified. All 
three proteases contain a putative N-terminal signal sequence, suggesting that they may be 
secreted via a sec-dependent pathway. However, these proteases are also found in chlamydial 
organism-free vesicles in the lumen of the chlamydial inclusions before they are secreted into 
host cell cytosol, suggesting that these proteases may first be translocated into the periplasmic 
region via a sec-dependent pathway and then exported outside of the organisms via an outer 
membrane vesicles (OMVs) budding mechanism. The vesiculized proteases in the inclusion 
lumen can finally enter host cell cytosol via vesicle fusing with or passing through the inclusion 
membrane. Continuing identification and characterization of the C. trachomatis-secreted proteins 
(CtSPs) will not only promote our understanding of C. trachomatis pathogenic mechanisms but 
also allow us to gain novel insights into the OMV pathway, a well-known mechanism used by 
bacteria to export virulence factors although its mechanism remains elusive.
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Valdivia, 2008; Zhong, 2009, 2011; Betts-Hampikian and Fields, 
2010) are not only necessary for completing the existing devel-
opmental cycle but also essential for ensuring a successful start of 
subsequent infection cycles. Identification and characterization 
of CtSPs may provide important knowledge for understanding 
chlamydial pathogenic mechanisms and improving diagnosis, 
treatment, and prevention of C. trachomatis infection. Thus, iden-
tification of CtSPs has become an intensively investigated topic 
for chlamydiaologists.

Chlamydia traChomatis-secreted proteases in 
pathogenesis
 A C. trachomatis genome typically encodes more than two doz-
ens of proteins with proteolytic activity (Stephens et al., 1998). 
A function-driven approach has led to the identification of a novel 
serine protease, designated as chlamydial proteasome/protease-
like activity factor (CPAF; Zhong et al., 2001). The chlamydial 
proteases are usually distributed in the chlamydial cytosol, peri-
plasmic region and/or various membranes for fulfilling their 
respective roles in chlamydial biology. However, some, includ-
ing CPAF (encoded by ORF CT858), the tail-specific protease 
(Tsp, CT441), and the chlamydial high temperature requirement 
protein A protease (cHtrA, CT823), are also found outside of 
the chlamydial organisms by direct visualization and/or func-
tional implication, suggesting that these proteases may be used by 
C.  trachomatis organisms to target host proteins for manipulating 
host signaling pathways.

introduction
Chlamydia trachomatis is the most frequently reported bacte-
rial sexually transmitted infection in the US (Centers for Disease 
Control Prevention, 2009), which, if untreated, can lead to severe 
complications characterized with inflammatory pathologies, 
including pelvic inflammatory diseases, ectopic pregnancy, and 
infertility (Land et al., 2010). The chlamydial intracellular replica-
tion is thought to significantly contribute to the C. trachomatis-
induced inflammatory pathologies (Stephens, 2003; Wyrick, 2010). 
A typical chlamydial replication cycle starts with the invasion of an 
epithelial cell with a chlamydial infectious elementary body (EB), 
which is facilitated by chlamydial injection of preexisting effectors 
into the epithelial cell to induce and modulate endocytosis (Clifton 
et al., 2004, 2005; Engel, 2004; Hower et al., 2009). Once internal-
ized, an EB differentiates into a non-infectious but metabolically 
active reticulate body (RB). The RB makes new proteins not only 
for multiplication but also for secretion into the inclusion lumen 
and membrane (Rockey et al., 1995, 2002; Luo et al., 2007a,b,c; 
Li et al., 2008) as well as host cell cytosol (Valdivia, 2008; Zhong 
et al., 2009, 2011; Betts-Hampikian and Fields, 2010) via a type III 
secretion (T3S, Fields and Hackstadt, 2000; Valdivia, 2008; Betts-
Hampikian and Fields, 2010), sec-dependent secretion (Chen 
et al., 2010b), or an autotransporter (Henderson and Lam, 2001; 
Wehrl et al., 2004; Carlson et al., 2005; Vandahl et al., 2005; Kiselev 
et al., 2009; Byrne, 2010) pathways. After replication, the progeny 
RBs differentiate back into EBs for spreading to near-by cells. It 
is thought that the C. trachomatis-secreted proteins (CtSPs; ref: 
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proteolytic activities with a broad proteolytic substrate specificity 
(Huston et al., 2007, 2008). HtrA is a hexamer formed by staggered 
association of trimeric rings and the access to the proteolytic sites 
in central cavity is controlled by 12 PDZ domains in the sidewall 
(Krojer et al., 2002, 2010). In eukaryotic cells, HtrA responds to 
unfolded proteins in the endoplasmic reticulum (ER) by cleaving 
and releasing the ER membrane-anchored transcription factors 
ATF6 and SREBP into nucleus to activate the expression of proteins 
required for the unfolded protein response and cholesterol biosyn-
thesis (Brown and Goldstein, 1999; Ye et al., 2000). In bacteria, the 
periplasmic HtrA, in response to the binding of C-terminal pep-
tides from unfolded/reduced outer membrane proteins, cleaves, and 
releases the σE-factor to activate stress response genes (Walsh et al., 
2003). Since HtrA is required for bacterial survival under high tem-
perature, it is called High temperature requirement (Htr) protein 
(Missiakas et al., 1997). Although both the tertiary structure and 
function of HtrA are well-known, the role of cHtrA in chlamydial 
pathogenesis remains unclear. The finding that cHtrA was localized 
both in the chlamydial inclusion lumenal space and the host cell 
cytosol suggests that the chlamydial periplasmic cHtrA may also 
contribute to the chlamydial proteolysis strategies for manipulat-
ing host cell signaling pathways. However, it is still unknown how 
the secreted cHtrA contributes to chlamydial pathogenesis. Can 
the secreted cHtrA gain access to host cell ER to regulate the host 
unfolded protein stress responses? What are the cellular targets 
of the secreted cHtrA during chlamydial infection? Interestingly, 
HtrA from the human gastric pathogen Helicobacter pylori is also 
secreted outside the bacteria (Lower et al., 2008). More importantly, 
it can cleave E-cadherin to disrupt epithelial tight junction, which 
may benefit the bacterial invasion of the gastric epithelial tissues 
(Hoy et al., 2010). Since HtrA and other conserved proteases are 

 Chlamydial proteasome/protease-like activity factor is an 
extensively studied Chlamydia-secreted serine protease with a 
water  molecule-mediated catalytic triad consisting of residues 
H105, S499, and E558. CPAF and it can undergo autoprocessing 
for activation (Dong et al., 2004a,b; Huang et al., 2008; Chen et al., 
2009, 2010a). CPAF has a broad substrate specificity and attacks a 
wide spectrum of host proteins, including the transcriptional fac-
tors USF-1 (Zhong et al., 1999) and RFX5 (Zhong et al., 2000) for 
potentially evading immune recognition, and HIF-1 (Rupp et al., 
2007) for dealing with stress responses, the BH3-only proteins 
(proapoptotic members of the Bcl-2 family; Fischer et al., 2004; 
Dong et al., 2005; Pirbhai et al., 2006) for inhibiting apoptosis 
(Fan et al., 1998; Greene et al., 2004; Xiao et al., 2004, 2005; Zhong 
et al., 2006), the DNA repairing enzyme PARP [Poly (ADP-ribose) 
polymerase], and cell cycling proteins (Balsara et al., 2006; Paschen 
et al., 2008) for altering cell cycle, cytoskeleton proteins (keratins 
8 and 18, vimentin Dong et al., 2004c; Kumar and Valdivia, 2008; 
Savijoki et al., 2008) for promoting inclusion expansion, and even 
cell surface proteins CD1d (Kawana et al., 2007) and nectin-1 (Sun 
and Schoborg, 2009). Although the functional consequences of 
some of the host protein degradation by CPAF remain unknown, 
the host protein degradation should benefit C. trachomatis intracel-
lular growth (Zhong, 2009).

 Although Tsp was not detected outside of inclusions using 
standard immunofluorescence assays (data not shown), it was 
found to cleave host NF-κB in C. trachomatis-infected cells (Lad 
et al., 2007a,b), suggesting that an undetectable amount of Tsp 
might be secreted into host cell cytosol for interrupting NF-κB 
function. During C. trachomatis infection, there were conflicting 
observations: On one hand, C. trachomatis infection activated a 
wide variety of inflammatory cytokines, including IL-1, IL-6, IL-8, 
and TNFα (Rasmussen et al., 1997; Cheng et al., 2008); On the 
other, no significant NF- κB activation was detected in the infected 
cells (Xiao et al., 2005; Lad et al., 2007a). It turned out that the 
C. trachomatis organisms used the MAP kinase pathway to promote 
chlamydial acquisition of host lipids, during which inflammatory 
responses were inevitably activated (Su et al., 2004). The lack of NF- 
κB activation was probably due to the chlamydial ability to actively 
silence the NF- κB inflammatory pathway. NF- κB p65 was cleaved 
into two major fragments (p40 and p20) by Tsp (Lad et al., 2007a) 
and CPAF (Christian et al., 2010). Since the N-terminal fragment 
p40 maintained the ability to interact with I-κBα (a cytoplasmic 
inhibitor of NF-κB) and to bind to DNA but lacked transactivation 
capability, the p40 might be able to block the residual full length 
p65-mediated response via a dominant negative effect (Lad et al., 
2007a). Tsp was also reported to interact with the host SRAP1 co-
activator of estrogen receptor α (Borth et al., 2010). However, the 
biological significance of chlamydial Tsp-host SRAP-1 interaction 
remains unknown.

 We recently detected the C. trachomatis periplasmic protease 
cHtrA in both the chlamydial inclusion lumen and host cell cytosol 
(Figure 1), suggesting that the chlamydial periplasmic protein 
cHtrA is also secreted into host cells. The secretion appeared to be 
specific since no other chlamydial periplasmic proteins including 
CT067 (Miller et al., 2009) were detected outside of the chlamydial 
inclusions (Figure 1 and data not shown). Normally, HtrA from 
eukaryotic and prokaryotic species exhibits both chaperone and 

Figure 1 | Chlamydial high temperature requirement protein A (cHtrA) is 
selectively secreted into host cell cytosol. The Chlamydia trachomatis-
infected HeLa cells grown on coverslips were processed at 36 h after infection 
for an immunofluorescence assay as described previously (Zhong et al., 1997). 
The samples were triply labeled with mouse anti-cHtrA [CT823 (A)] or YtgA 
[CT067 (B)] antibodies visualized with a goat anti-mouse IgG conjugated with 
Cy3 (red), a rabbit anti-IncA antibody visualized with a goat anti-rabbit IgG 
conjugated with Cy2 (green), and the DNA dye Hoechst (blue). The images 
were acquired using an Olympus confocal microscope. Green arrows indicate 
inclusion membrane while the red arrow indicates cHtrA secreted into host 
cell cytosol. Note that only cHtrA but not YtgA was detected outside of the 
inclusion membrane although both are considered chlamydial periplasmic 
proteins (Miller et al., 2009).



www.frontiersin.org February 2011 | Volume 2 | Article 14 | 3

Zhong Chlamydial proteases in pathogenesis

references
Balsara, Z. R., Misaghi, S., Lafave, J. N., and 

Starnbach, M. N. (2006). Chlamydia 
trachomatis infection induces cleavage 
of the mitotic cyclin B1. Infect. Immun. 
74, 5602–5608.

Betts-Hampikian, H., and Fields, K. 
(2010). The chlamydial type III secre-
tion mechanism: revealing cracks in a 
tough nut. Front. Microbiol. 1:114. doi: 
10.3389/fmicb.2010.00114

Bomberger, J. M., Maceachran, D. P., 
Coutermarsh, B. A., Ye, S., O’Toole, 
G. A., and Stanton, B. A. (2009). 

 Long-distance delivery of bacterial 
virulence factors by Pseudomonas 
aeruginosa outer membrane vesi-
cles. PLoS Pathog. 5, e1000382. doi: 
10.1371/journal.ppat.1000382

Borth, N., Massier, J., Franke, C., Sachse, 
K., Saluz, H. P., and Hanel, F. (2010). 
Chlamydial protease CT441 interacts 
with SRAP1 co-activator of estrogen 
receptor alpha and partially alleviates 
its co-activation activity. J. Steroid 
Biochem. Mol. Biol. 119, 89–95.

Brown, M. S., and Goldstein, J. L. (1999). 
A proteolytic pathway that controls 

the cholesterol content of membranes, 
cells, and blood. Proc. Natl. Acad. Sci. 
U.S.A. 96, 11041–11048.

Byrne, G. I. (2010). Chlamydia trachomatis 
strains and virulence: rethinking links 
to infection prevalence and disease 
severity. J. Infect. Dis. 201(Suppl. 2), 
S126–S133.

Carlson, J. H., Porcella, S. F., McClarty, 
G., and Caldwell, H. D. (2005). 
Comparative genomic analysis of 
Chlamydia trachomatis oculotropic 
and genitotropic strains. Infect. 
Immun. 73, 6407–6418.

Centers for Disease Control and 
Prevention. (2009). “Sexually trans-
mitted disease surveillance, 2008,” 
in U. S. Department of Health and 
Human Services, Atlanta, GA. Available 
at: http://www.cdc.gov/std/stats08/
toc.htm

Chen, D., Chai, J., Hart, P. J., and Zhong, 
G. (2009). Identifying catalytic resi-
dues in CPAF, a Chlamydia-secreted 
protease. Arch. Biochem. Biophys. 485, 
16–23.

Chen, D., Lei, L., Flores, R., Huang, Z., Wu, 
Z., Chai, J., and Zhong, G. (2010a). 

membrane was induced to undergo vesiculation (Matsumoto and 
Manire, 1970) and chlamydial organism-free vesicles were detected 
both inside (Jorgensen and Valdivia, 2008) and outside of inclusion 
membrane (Giles et al., 2006). The vesiculized proteases may fur-
ther enter host cell cytosol by vesicle fusing with or passing through 
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known to play important roles in bacterial pathogenesis (Ingmer 
and Brondsted, 2009), identifying cellular targets of the Chlamydia-
secreted cHtrA should provide novel insights into chlamydial 
pathogenic mechanisms.

potential pathways required for C. traChomatis 
secretion of proteases into host cell cytosol
All three proteases localized in the host cell cytosol contain an 
N-terminal signal sequence, suggesting that they may be trans-
located into the periplasmic region via a sec-dependent secretion 
pathway. Among the many known secretion pathways, the sec-
dependent or twin-arginine translocon (Tat) pathway is used by 
bacteria to deliver proteins into the periplasmic space. The Tat 
translocase, consisting of the TatA/E, B and C proteins, is respon-
sible for transporting folded proteins across the inner membrane 
(Dilks et al., 2003; Lee et al., 2006). However, C. trachomatis genome 
does not encode any homolog of the Tat translocases (Stephens 
et al., 1998) but encodes all essential components required for a 
functional sec-dependent pathway (Stephens et al., 1998), suggest-
ing that C. trachomatis organisms can use the universally conserved 
sec-dependent pathway to translocate proteins with an N-terminal 
signal sequence from cytoplasm into periplasmic regions. Indeed, 
we have previously demonstrated that a sec-dependent pathway 
is required for exporting CPAF to host cell cytosol (Chen et al., 
2010b). The N-terminal signal sequence of CPAF (CPAFss) was 
cleaved from mature CPAF and CPAFss directed translocation of 
PhoA into bacterial periplasm.

However, the sec-dependent pathway alone can only deliver its 
cargoes into the periplasmic region. The periplasmic proteins are 
further exported outside of the bacterial organisms using the chap-
erone/usher, autotransporter, or Type II outer membrane GspD 
pore complex pathways. Although chlamydial genome encodes 
homologs of both autotransporters and GspD, these pathways 
deliver periplasmic proteins out of the organisms in free form. It 
is hard to imagine how free proteins secreted into the inclusion 
lumen can pass through the inclusion membrane and enter host cell 
cytosol in a regulated/controlled manner. Interestingly, both CPAF 
(Figure 2) and cHtrA (data not shown) were detected in organism-
free granules in the lumen of inclusions before their secretion into 
host cell cytosol. It is thus hypothesized that the chlamydial pro-
teases that are translocated into the periplasmic regions may be 
further exported to the lumen of inclusions via an outer membrane 
vesicles (OMVs) budding mechanism. This hypothesis is supported 
by various previous observations that the chlamydial RB outer 

Figure 2 | Detection of CPAF in chlamydial organism-free vesicles in the 
lumen of chlamydial inclusions. The Chlamydia trachomatis-infected HeLa 
cells grown on coverslips were processed at 18 h (A), 24 h (B), or 40 h (C) 
after infection as indicated on top of the figure for an immunofluorescence 
assay as described in Figure 1 legend except that the monoclonal antibody 
100a against CPAF was used to replace the mouse antibodies and a rabbit 
anti-chlamydial organism antibody was used to replace the anti-IncA antibody. 
The images were also acquired using an Olympus confocal microscope. 
Green arrows indicate chlamydial organisms. Red arrows indicate CPAF-laden 
granules that are free of chlamydial organisms while the yellow arrow 
indicates CPAF that overlaps with chlamydial organisms. Red arrowheads 
indicate CPAF molecules secreted into host cell cytosol. Please note that at 
the early time points, CPAF was detected in granules in the inclusions and 
many of the CPAF-positive granules were free of chlamydial organisms in the 
24 h sample.
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