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The tumor, node, metastasis (TNM) staging system is the uni-
versally accepted process that evaluates disease extent, guides
prognosis, and leads to algorithms linked with treatment plans
[1]. However, with the emergence of precision cancer medi-
cine, there is increasing need for the development and imple-
mentation of integrated models beyond the TNM staging
system that may aid clinicians in their decision making. This is
particularly important in non-small cell lung cancer (NSCLC)
with recent discoveries of actionable mutations in epidermal
growth factor receptor (EGFR) mutations, translocations of
echinoderm microtubule-associated protein-like 4-anaplastic
lymphoma kinase, and the c-ros oncogene 1 receptor tyrosine
kinase, which can be used to guide biomarker-based treat-
ment decisions. As tumors are spatially and temporally hetero-
geneous, techniques such as biopsies are limited in their
ability to characterize tumors in their entirety and are subject
to sampling error. Similarly, longitudinal biopsies aimed to
assess resistance mechanisms or treatment response are
expensive and often impractical or unacceptable to patients.
In contrast, medical imaging is a noninvasive and readily
repeatable investigation that may provide a more comprehen-
sive understanding of tumor phenotype, allowing monitoring
of treatment response and disease progression [2].

Historically, medical images have been described using
limited metrics to characterize tumors typically related to size,
density or qualitative aspects (e.g., necrotic or cystic change,
ground glassing, spiculation). With advances in image acquisi-
tion, standardization, and analysis, objective quantitative
descriptors or “radiomics” are being investigated to enable
interrogation of medical images beyond the limits of visual
inspection [2]. The conversion of these images to multidimen-
sional histograms of image intensities can subsequently be
mined using bioinformatics tools, measuring properties such as
heterogeneity and guide models, which may increase diagnos-
tic, prognostic, and predictive accuracy [3]. The overall hypothe-
sis of this approach is that advanced analysis of standard
imaging (such as computed tomography [CT]) can noninvasively
augment clinical prognostic nomograms, correlate imaging

phenotypes with genomic and proteomic expression, and
therefore support clinical decision making.

The scope for using radiomics to guide clinicians in their
decision process is considerable. Using this approach has
demonstrated independent prognostic and predictive capaci-
ties in multiple tumor types, including head and neck, lung,
glioblastoma, testicular, and hepatocellular carcinoma [2, 4–6].
Its capacity to quantify intratumoral heterogeneity assists with
prognostication, as it is recognized that increased heterogene-
ity is associated with poorer outcomes and is a significant
cause of treatment resistance [7–10]. For example, Aerts et al.
demonstrated that a radiomic signature composed of limited
features (tumor density, shape, and intratumoral heterogene-
ity) in NSCLC and head and neck cancers could improve
TNM prognostic models [2]. Similarly, CT texture analysis of pri-
mary pulmonary lesions in a separate study in NSCLC provided
a quantitative assessment of tumor heterogeneity that inde-
pendently predicted overall survival [8].

Beyond refining prognostication, a radiomics approaches may
also generate “imaging biomarkers” that assist in predicting
responses to target-drug matching or immunotherapy, as the
tumor microenvironment may exhibit distinct radiological fea-
tures discernible by quantitative imaging metrics. In NSCLC, radio-
mic features have been used to predict responses to immune
therapy as well as immune-related adverse events such as pneu-
monitis [11]. In addition, a radiomics approach may also help to
assess responses to treatment by distinguishing between progres-
sion and treatment-related pseudo-progression. In glioblastoma,
the use of RECIST criteria to determine treatment response can
be challenging. Although specific radiological criteria such as the
Response Assessment in Neuro-Oncology criteria have been
developed to address this issue [12, 13], textural features onmag-
netic resonance imaging or positron emission tomography may
also assist in discriminating between the two [14, 15].

Within this context, in this issue of The Oncologist, Lee and
colleagues sought to address whether radiomic features on pre-
operative CTs for 339 patients with pathological stage I–III lung
adenocarcinoma could be prognostic in addition to baseline
clinicopathological features [16]. Lung cancer is a particularly
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interesting model to investigate with radiomics, as it is a hetero-
geneous disease entity with a high somatic mutational burden
[17]. Outcomes are poor, particularly in those patients with
locally advanced nodal involvement. Thus, there is considerable
scope to improve outcomes through discovery of radiological
features that may enable judicious selection of disease modify-
ing agents complementary to conventional treatment modal-
ities. The researchers’ key finding was that the integration of 31
selected radiomic features led to better discriminative perform-
ance compared with standard TNM variables, with the C-index
improving from 0.74 to 0.77.Two radiomic features were signifi-
cant on multivariate analysis: maximum value of the outer third
of the tumor (hazard ratio [HR], 1.001; p 5 .017), which is
thought to represent the tumor microenvironment [18, 19],
and size zone variance (HR, 0.998; p 5 .038), which is thought
to measure intratumoral heterogeneity [7–10]. Although this
technique is novel and gives unique insight into tumor biology
using imaging phenotypes, many questions remain about its
clinical translatability. Of note, the hazard ratios for both radio-
mic features were close to the null value, suggesting that nei-
ther was strongly prognostic for overall survival in comparison
with conventional clinicopathological variables. This is reflected
in the marginal improvement of the C-index of the combined
nomogram compared with using standard TNM variables alone.
In addition, in clinical practice, minimally invasive or radiological
staging is commonly used to inform treatment selection. How-
ever, it is recognized that clinically node-negative NSCLC may be
pathologically upstaged in 14%–19% of cases [20, 21]. There-
fore, it is unclear whether the proposed decision-making model
that was built on postoperative pathological findings would
remain valid in the preoperative setting.

Although using radiomics is a promising approach, there
are still several challenges limiting its routine implementation
into clinical practice. First, there is a lack of standardization with
regard to image acquisition, reconstruction, and annotation of
volumes of interest. Harmonization of quantitative image gen-
eration and reporting is essential to ensure that future studies
are reproducible and data can be shared efficiently between
sites [22]. Furthermore, many of these processes, such as con-
touring volumes of interest, require skill and content expertise
that take time to acquire, limiting the rate of uptake into rou-
tine practice. Although automated contouring may assist, it is
of variable reproducibility depending on the degree of differen-
tiation from neighboring structures such as vessels [23, 24].
Second, radiomics will produce a significant amount of data for
each patient. Although correlations between quantitative
features and prognosis or treatment outcomes may be able to
be obtained statistically, it may be difficult to attribute causality
to the radiomic features [3]. External validation of these

correlations in independent, prospective, multicenter cohorts
or radiomic substudies of ongoing clinical trials will be vital to
ensure that models generated from retrospective studies
remain robust in the broader population.

Further exploration of the correlation between radiomics
features representing the interaction between the tumor and
immune infiltrates and responses to immunotherapy is
required. The challenges of programmed death-ligand 1 staining
as a way of predicting response to immunotherapy in different
tumor types have been well documented [25, 26]. Radiomics is
well placed as an alternative method of holistically quantifying
a tumor’s interaction with immune infiltrates, although further
work is required to define the relevant radiomic features. For
example, the definition of the outer third of the tumor, and
how this is delineated on contouring, remains ambiguous and
possibly challenging to reproduce. Although efforts are under-
way to explore this in the context of metastatic NSCLC, similar
techniques may hold promise in selecting patients for adjuvant
immunotherapy after definitive chemoradiotherapy in locally
advanced disease [27]. This may be particularly relevant as tis-
sue confirmation prior to chemoradiation is typically via needle
biopsy, which is prone to sampling error. Similarly, radiomics
may also assist in the prediction of response to targeted thera-
pies. Currently, biopsy samples are used to test EGFR mutation
status in lung adenocarcinoma. However, variations in mutant
DNA allele concentration and intratumoral heterogeneity may
lead to false negative results [28–30]. Liu et al. demonstrated
that the addition of radiomic features to a pre-existing clinical
model resulted in significant improvement in the model’s ability
to predict for an EGFR mutation in lung adenocarcinoma [31].

Lastly, incentives are required to address the challenges of
standardization, information sharing, and the management of
“big data.” This will require a multidisciplinary effort from infor-
mation technology, radiologists, bioinformaticians, statisticians,
and clinicians. In the future, it is envisaged that quantitative
data will be routinely extracted from imaging and combined
with clinicopathological information to improve the diagnostic
accuracy and predictive power of clinical decision-making mod-
els. This will help expand radiomics beyond a boutique research
area into a clinically useful translational technology.
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Editor’s Note:

See the related article, “Comprehensive Computed Tomography Radiomics Analysis of Lung Adenocarcinoma for Prognostication,”
by Ho Yun Lee et al., on page 806 of this issue.
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