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Protected areas and renewable energy generation are critical
tools to combat biodiversity loss and climate change, respec-
tively. Over the coming decades, expansion of the protected
area network to meet conservation objectives will be occurring
alongside rapid deployment of renewable energy infrastructure
to meet climate targets, driving potential conflict for a finite
land resource. Renewable energy infrastructure can have nega-
tive effects on wildlife, and co-occurrence may mean emissions
targets are met at the expense of conservation objectives. Here,
we assess current and projected overlaps of wind and solar pho-
tovoltaic installations and important conservation areas across
nine global regions using spatially explicit wind and solar data
and methods for predicting future renewable expansion. We
show similar levels of co-occurrence as previous studies but dem-
onstrate that once area is accounted for, previous concerns about
overlaps in the Northern Hemisphere may be largely unfounded,
although they are high in some biodiverse countries (e.g., Brazil).
Future projections of overlap between the two land uses pre-
sented here are generally dependent on priority threshold and
region and suggest the risk of future conflict can be low. We use
the best available data on protected area degradation to corrobo-
rate this level of risk. Together, our findings indicate that while
conflicts between renewables and protected areas inevitably do
occur, renewables represent an important option for decarboniza-
tion of the energy sector that would not significantly affect area-
based conservation targets if deployed with appropriate policy
and regulatory controls.
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G iven its contribution to greenhouse gas emissions, the global
energy sector will be required to undergo a substantial trans-

formation over the coming decades to combat climate change
and meet ambitions laid out in the Paris Agreement (1). There
is evidence that such a change is already occurring with global
renewable energy generation capacity reaching ∼2,537 GW in
2019, an increase of 7.4% on 2018. This trend will likely con-
tinue, with the International Energy Agency forecasting that
renewable energy capacity may increase by over 50% by 2024
(2). Much of this growth is expected to occur in the wind and
solar sectors (3).

Renewable energy technologies possess energy densities that are
orders of magnitude below conventional fossil fuels (4–9). While
coal and gas can reach power densities as high as 2000 Wm�2,
the most power-dense renewable technology (concentrating
solar power [CSP]) peaks at just 10 Wm�2 (10). For this reason,
there is increasing concern about the implications of the expan-
sion of renewable energy for the global land system (11). While
there has been a substantial focus on the land use implications
of bioenergy expansion (12), with one forecast that an area the
size of India will be required for energy crop production (13, 14),
less attention has been given to other forms of renewable energy.
This is an important omission; onshore wind energy could disrupt

up to 83,226 km2 of land by 2050 (15), while solar photovoltaic
(PV) and CSP have been shown to drive conversion of natural
land cover in the United States (16).

The expansion of renewable energy and the associated increase
in requirements for land may lead to conflict with other pressures
on finite land resources, most notably with food production and
biodiversity conservation. Based on a projection of future demand
associated with factors such as changing diets and demographics,
food production may need to increase by 100% of 2005 levels
by 2050 (17). Although some of this increase can be achieved
through improved agronomic practices and genetics, some
expansion of agricultural land will undoubtedly be required,
particularly as agricultural efficiency gains have stagnated (18, 19).
Simultaneously, efforts to halt the loss of global biodiversity have
led to calls for the existing Aichi Biodiversity Target 11, to protect
at least 17% of global land area, to be expanded to a target of
30%, with some advocates suggesting that half of Earth’s area
should be protected in some way or other (20). Together, these
issues represent a confluence of challenges for global sustainabil-
ity: how to balance demands for energy, food production, and bio-
diversity within a finite land area.

This study examines the interactions between two of these
sustainability challenges by considering whether renewable
energy technologies, in the form of onshore wind and solar PV,
represent an important stressor that will impact our ability to
achieve area-based conservation targets to address biodiversity
loss. Our analysis enables identification of areas where conflict
currently exists and, more critically, where tradeoffs might
occur in the future (21–25). This allows the direct local impacts
of renewable energy, which are relatively well known (4, 9), to
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be interrogated and potentially mitigated. Local impacts of
renewables on biodiversity can be considerable; wind turbines
have significant effects on volant species (26–29), while solar
PV can also have significant local effects including vegetation
removal and soil degradation (30–32).

Recent work (33) has demonstrated considerable overlap
globally of renewable energy facilities and important conser-
vation areas (defined as the combination of protected areas,
Key Biodiversity Areas [KBAs], and wilderness areas), mainly
in regions with high prevalence of both land uses (e.g., Western
Europe). Wind power was found to overlap with the largest num-
ber of conservation areas. However, this study did not weight
overlaps by areas—countries with large areas of both protected
areas and renewables are likely to have higher absolute overlaps
than countries with smaller areas of both land uses. More criti-
cally, major gaps remain in our ability to predict future conflict
between wind and solar and protected areas (PAs) globally
because of data limitations. Previous studies have examined
potential future conflict using a variety of techniques including
data on facilities under development as a proxy for future threat,
using suitability layers based solely on resource availability, and
multicriteria approaches combining resource availability with
development feasibility (33–35). However, a lack of global har-
monized data on wind and solar installations means that the
assumption that renewable energy infrastructure can be pre-
dicted in these ways has not been systematically tested.

Here, we address current methodological shortcomings using
an available dataset (36) that allows us to systematically exam-
ine whether renewable energy infrastructure represents a salient
threat to area-based conservation. To answer this question, we
investigate the spatial overlap of onshore wind and solar PVand
important conservation areas, both following existing methods
and after controlling for area. Secondly, we address shortfalls in
previously used suitability-based approaches for predicting
renewable energy expansion by using wind and solar data (36)
to generate future development likelihood layers with random
forest (RF) modeling. Finally, we combine our renewables like-
lihood surfaces with existing projections of future PAs (37) to
assess the threat of future co-occurrence for renewables and
PAs.

Results
Owing to data limitations, the results presented here do not
provide a global picture; they instead aggregate results for
nine regions of the world with sufficient renewable energy
observations (Materials and Methods). In the first stage of our
analysis, we investigate the spatial overlap of onshore wind
and solar PV with important conservation areas, both follow-
ing existing methods and after controlling for area. Standard
spatial overlaps of renewable energy and important conserva-
tion areas using our harmonized data (Materials and Methods)
(36) largely corroborate recent work (33): We find that 3,666 wind
and solar PV installations out of a total of 24,624 (14.89%) occur
within important conservation areas (SI Appendix, Table S1).
We define important conservation areas following Rehbein et al.
(33): PAs; KBAs, as defined by the Key Biodiversity Area Part-
nership; and wilderness areas, “areas free of industrial scale
activities and other human pressures which result in significant
biophysical disturbance,” as defined by Allan et al. (38). PAs
and KBAs contain many of the overlapping installations (1,354
and 2,266), with wilderness areas containing 46 installations. Most
overlaps occur in PAs with no official International Union for
Conservation of Nature (IUCN) designation (n = 367). Although
the next highest number of PAs containing installations are
management categories V and VI, where limited development
is allowed (n = 169), there are still overlaps in areas designated
management category I to IV (n = 52), where no development

activity should occur (although the installations tend to be <100
megawatts; SI Appendix, Fig. S1). We also find that most conser-
vation areas containing renewable energy installations (820, or 76.
78%) occur in Europe (Northern, Central, and Southern) (SI
Appendix, Table S2). Three of the seven wilderness areas contain-
ing renewable energy installations occur in North America (also
the region with the largest area of wilderness globally, 8.513 mil-
lion km2).

Since renewable energy infrastructure and PAs are not cur-
rently mutually exclusive, it is possible that absolute overlaps
of renewable energy installations are likely to be higher as the
area of installations (and conservation areas) increases. Indeed,
historical overlaps suggest that this is the case, as the proportion
of overlaps remain constant as both areas increase (SI Appendix,
Fig. S2); looking at overlaps relative to area is therefore impor-
tant, as there is a strong correlation between renewable energy
overlap area and the amount of protected area per country
(SI Appendix, Table S3; R2

adj values of 0.3763 for PAs and 0.2904
for KBAs). We constructed simple linear regressions to assess
the degree to which countries had more (or less) area of overlap
(hereafter “relative overlap”) given the area of land, renew-
able energy, and conservation areas (Materials and Methods;
SI Appendix, Tables S6 and S7). This shows that despite the
large absolute number of overlaps in Europe, it is only Spain,
Portugal, and France that show more overlap than expected
relative to their respective areas. Outside of Europe, Brazil,
Uzbekistan, and the United States all exhibit unusually high
relative overlaps.

In documented instances in which overlaps do occur, we find
little evidence that renewable energy infrastructure has led to
instances of PAs being downgraded, downsized, or degazetted
(so-called “PADDD events”). Downsizing describes the reduc-
tion in area of a protected site, downgrading the weakening of
legal protection, and degazettement the complete loss of legal
protection. There were only eight overlapping records of such
events and renewable energy locations globally: six from vali-
dated PADDD polygons (all from the United States) and two
from buffered point data (one from Canada and one from China).
Although all instances were attributed the cause “Infrastructure,”
none of the records appeared to be directly linked to renewable
energy infrastructure development. The six records of overlap
in the United States were all examples of PADDD associated
with Bill H.R. 399 allowing the construction of infrastructure
(roads, etc.) for border security. The Canadian PADDD event
allows various forms of research to be conducted by industry
(and others) for infrastructure development, while the Chinese
record does not have associated metadata elaborating the cause
of the area downsizing.

In the second analysis, we address shortfalls in previously
used suitability-based approaches for predicting renewable energy
expansion by using wind and solar data to generate future
development likelihood layers. Our results demonstrate that
existing state-of-the-art methods for predicting future wind and
solar based on resource potential with development feasibility
(development potential indices [DPIs]) (34) do not adequately
capture the solar PVand wind estate in our study regions. DPIs
for actual wind and solar installations did not differ substantially
from an equal number of randomly located background points
within our global dataset (36), signaling the DPIs are poor pre-
dictors of installation locations (SI Appendix, Fig. S3). We there-
fore used RFs to build probability of occurrence layers (RF
potential [RFP] models) for wind and solar PV in select regions
using a suite of global variables and our global dataset (Materials
and Methods). These RFP models performed well, exhibiting a
mean accuracy of 0.87 and mean κ of 0.731 for solar PV and
0.901 and 0.802, respectively, for wind. Importantly, RFP models
in all regions also outperformed the DPIs when tested with an
independent dataset of wind and solar infrastructure locations
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(receiver operator characteristic curves in SI Appendix, Fig. S4
and area under the curve values in SI Appendix, Table S4).

For solar PV, accessibility ranks highest for variable impor-
tance (Materials and Methods) for most RFP model regions
(SI Appendix, Fig. S5); horizontal solar irradiance is largely unim-
portant for all regions except Central and Southern Europe and
South Asia. Road density also appears to be an important predic-
tor across most model regions. For wind, wind speed appears to
be the most important predictor in all but Russia and the Bal-
kans. Accessibility is not as universally important as with solar
PV but still appears somewhat influential for all regions along
with livestock density and wind speed.

Finally, we combine our renewables likelihood surfaces with
existing projections of future PAs (37) to assess the threat of
future co-occurrence for renewables and PAs. Bivariate plots of
renewable likelihoods versus PA priority expansion rankings are
presented in Fig. 1. From these, we isolate the top 30% of cells
for expansion of each renewable technology and the top 30% of
PA expansion rankings in Fig. 2. Insets for Figs. 1 and 2 show
details for the US wind corridor, which already houses numer-
ous wind installations; Germany, Europe’s renewables power-
house; urban China; and the high-biodiversity Atlantic forests
of Brazil. High correlation between both wind and solar PV
with PA priority expansion rankings can be seen in Fig. 1 in
Germany and the Atlantic forests of Brazil. Different spatial
distributions of wind and solar PV likelihood in the United
States and China drive differences in priority overlaps between
the two renewable technologies in these regions (Fig. 2).

Overlaps between RFP models of renewables and existing
PA expansion rankings (37)—shown to be a good predictor of
designations (SI Appendix, Figs. S6 and S7)—vary by region,
priority threshold, and renewable technology (Fig. 3). Overlap
ratios provide a summary of the spatial co-occurrence of two
binary responses, accounting for differences in the areas of the
responses; values >1 indicate over-representation given the
areas, while values <1 indicate under-representation. Ratios
here are calculated by dividing the percentage of PA priority
cells that overlap priority renewable energy areas by the percent-
age of total land covered by priority renewable energy areas.
These ratios are bound between 0 for complete spatial disaggre-
gation (no overlap) and 1/x for perfectly overlapping priorities,
where x is the percentage priority renewable energy area in a
given region (e.g., 30% land devoted to renewables would pro-
vide an upper bound of 3.33, regardless of the area of PA priori-
ties). A value of 1 would indicate no spatial relationship between
PA priority expansion areas and priority renewable areas (Mate-
rials and Methods and graphical representation in SI Appendix,
Fig. S12). For solar PV in Central Europe, when the PA priority
expansion area is >1% (Fig. 3, Top row excluding Leftmost plot),
PA priority expansion areas are already over-represented (i.e.,
overlap ratio >1) for even small areas of renewable priority.
As renewable priority areas increase in coverage to 20%, the
overlap ratio becomes even greater, suggesting that PAs and
renewable priority areas spatially correlate in this range. Overall,
however, overlaps between renewable energy priority areas and
PA priority expansion areas tend to be either under-represented
or representative of the wider landscape except for Central
Europe and the Middle East for solar PV and the Middle East
and Northern Europe for wind.

Discussion
Studies tend to suggest that the expansion of renewable energy
is a de facto threat to biodiversity (24, 35); one warns that the
number of active renewable energy facilities in important conser-
vation areas could increase by 42% by 2028 (33). The results
here suggest that existing studies may be overly pessimistic for
our study regions. The reality is more nuanced: Future

expansion of renewables and PAs are both possible with relatively
little overlap in these regions. Some measure of overlap should
be seen as inevitable as available land diminishes for varying sus-
tainability goals (39), and especially as a number of IUCN PA
categories explicitly allow infrastructure development (40).
Thoughtful planning of renewable energy installations may also
alleviate some of the pressure on lands important for biodiversity
(21, 22, 34, 41). However, our findings suggest that even in rap-
idly developing regions such as East and South Asia, PA priority
expansion areas occur no more frequently in priority renewable
energy areas than they do in the wider landscape (Fig. 3). Even
in regions where the overlap ratio is significantly higher than one,
indicating over-representation of overlapping areas (e.g., Europe
and the Middle East), there still exists ample land within which
to site renewable energy and PAs separately if appropriate policy
and regulatory controls are employed. It is also important to note
that the likely counterfactual to rapid deployment of renewable
energy is not no additional energy infrastructure, but rather myr-
iad energy scenarios, many including fossil fuels. Although fossil
fuels are more energy dense in terms of their spatial footprint,
they have been shown to impact priority conservation areas both
directly through conversion, degradation, pollution, or distur-
bance of habitats and indirectly by increasing access for loggers,
farmers, hunters, and settlements (42, 43). Furthermore, a con-
tinuation of reliance on fossil fuel energy has an extremely high
likelihood of causing dangerous climate change (44, 45), which
itself threatens the effectiveness of global PAs (46).

Our RFP models outperformed the previous DPIs at pre-
dicting wind and solar installations when applied to a different
dataset than used to build the RFP models (Materials and
Methods; SI Appendix, Fig. S4 and Table S4). This suggests the
data used to build the RFP models adequately capture the bio-
physical and socioeconomic parameter space of predictors of
these technologies and that our data-led approach, which includes
a broader set of independent variables than previous approaches
as well as their interactions, can help improve the identification of
likely expansion areas. Furthermore, removing unnecessary land
constraints—also seen in Santangeli et al. (35)—likely contributes
to the improved performance of the RFP relative to the DPIs.
Slope and elevation, for example, were relatively unimportant
for RFP predictions despite their use as constraints for gener-
ating the DPIs. The difference between the approaches was
notably more pronounced for solar than for wind. Onshore
wind energy planning outcomes are strongly associated with
the size of turbines and visual impact (47, 48), suggesting larger,
remote wind projects are more likely to be developed. Larger
projects may require maximization of resource efficiency to
recoup significant capital costs, which may explain the disparity
and why wind speed appears more important in the wind RFP
model than irradiance in the solar model (SI Appendix, Fig. S5).
Solar PV has, on average, a much smaller spatial footprint than
wind (0.07593 < 6.728 km2; ref. 36) and is more likely to be
accepted on poor quality agricultural land (47). This allows
solar PV to be sited closer to existing electricity transmission
networks, which may drive costs down so that they need not
be recouped so aggressively by resource efficiency. Consequently,
this makes solar PV less amenable to prediction by existing,
resource availability–focused approaches.

The RFP layers depend heavily on the assumption that his-
toric drivers of renewable energy predict its expansion. In rap-
idly changing socioecological conditions, past predictors of land
use change are unlikely to remain relevant for long (49, 50).
However, there are two reasons why we believe the predictors
used in this study will remain stable in the near term (we define
near term as the next several years to two decades). First, the
renewable energy estate is still arguably in its infancy, and it is
unlikely that the best sites for expansion have all been filled yet.
Second, there is research to suggest that socioeconomic drivers
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cause renewable energy to become clumped in “hazard havens”
where planning permission for projects is more likely for those
close to other similar developments (47, 51). However, caution
is required: As competition for land becomes even more
intense, more research will be needed to assess whether predic-
tors have shifted. This will become easier to assess as the renew-
able energy estate matures and time series analyses are possible
in the same way as they now are for agriculture, in which recent
cropland expansion has been shown to differ significantly from
historic expansion (50). It may also open up regions excluded
here to analysis; current data limitations introduce significant
geographical bias here. While our study regions do cover a wide
range of renewable energy and PA coverage (e.g., PA coverage
is 18% in Central Europe and 2.6% in Middle East), significant
differences between regions’ predictors suggest that results here
cannot be extrapolated to, for example, regions in Africa. More
research will be needed as renewable energy infrastructure in
these regions proliferates.

More generally, our RFP models produced here refute sug-
gestions that overlap between energy resource potential and pri-
ority PA expansion areas necessarily promotes conflict between
the two (35). Renewable energy installations operate in complex
environmental and socioeconomic envelopes that cannot be eas-
ily predicted on resource potential alone. The World Resources
Institute Global Power Plant Database, which provides data on
commissioning years (1896 to 2019) for a host of energy installa-
tions, provides further evidence that the threat of renewable
energy to conservation areas globally is not increasing. Some
renewable energy plants (wind and other renewables—hydro,
geothermal, and biomass) do present generally higher propor-
tions of overlap with conservation areas than conventional fuels
(SI Appendix, Fig. S2). This could also be an underestimation;
the authors highlight that wind and solar plants in the database
cover only 49.48 and 21.03% of global installed capacity com-
pared to >80% for conventional fuels. However, despite huge
increases in the number of renewable energy plants and PAs,
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Fig. 1. Wind (A) and solar PV (B) likelihood versus PA priority expansion rankings. Wind and solar PV likelihood is the predicted probability (0 to 1) that
an energy installation is present in a given grid cell. Probabilities represent the output of RF classification models trained on a spatially explicit global
wind and solar PV database for the year 2020 and a suite of biophysical and socioeconomic predictors. Models were run for regions with more than 100
installations recorded; regions with fewer than 100 are excluded. PA priority expansion rankings are from a previous study that used spatial prioritization
software to rank global cells (0 to 1, low to high) using species richness, ecoregion, and extinction risk. Current PAs and cells containing a wind or solar
PV installation are excluded. Note: Input data were aggregated to 30-km2 resolution for readability; the values appear truncated at extreme latitudes for
solar because the underlying global horizontal irradiance data do not provide values for these regions.
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the percentage overlap has remained relatively constant over
time. Moreover, for three out of four wind and solar overlaps,
the PA was designated after the installation was commissioned
(SI Appendix, Fig. S2B).

Our results also bring important additional context to the
question of the degree of current overlaps of wind and solar
infrastructure and conservation areas. Our simple overlap results
corroborate similar studies (SI Appendix, Fig. S1 and Table S1)
(33). While the exact impacts of renewable energy technologies
on biodiversity are far from well known, bird and bat mortality of
wind turbines is one of the most evidenced impacts (28). As
such, it is of concern that 1,090 utility-scale wind installations
currently occur in KBAs, 79.69% of which are specifically desig-
nated as Important Bird and Biodiversity Areas (IBAs), a net-
work of sites that are significant for the long-term viability of
naturally occurring bird populations. Recently released IUCN
guidance for wind and solar project developers details ways to

minimize infrastructure impacts on biodiversity and local com-
munities, including avoidance of KBAs (52).

It is important to frame any overlap analysis in the context of
land areas, especially when PAs make up ∼14.41% of global
land area, KBAs 13.9%, and wilderness areas 20.17%. A coun-
try with limited land area, a large PA network, and extensive
renewable energy infrastructure would find it much harder to
limit the overlap than one that was land rich. This is exempli-
fied by most absolute overlaps occurring in Southern, Northern,
and Central Europe, regions with large renewable energy
estates and an extensive PA network compared with their size.
That said, Brazil’s high level of overlap, both absolute and rela-
tive to areas, is potentially worrying as it is one of the world’s
most species-rich countries, with a fast-growing economy (53).

While the number of overlaps with wilderness areas pre-
sented here was too small to provide a useful sample for model-
ing, the numbers roughly correspond to previous studies: Five

0 2000 4000km
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PA priority

RE priority

No priority

A

0 2000 4000km
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PA priority

RE priority

No priority
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Fig. 2. Overlap between the top 30% land for wind (A) and solar PV (B) energy and the top 30% land for PA priority expansion. The top 30% land for
wind and solar PV energy comprise the top 30% most likely cells to contain a wind or solar PV installation outside cells already containing one. This pre-
dicted probability is the output of RF classification models trained on a spatially explicit global wind and solar PV database for the year 2020 and a suite
of biophysical and socioeconomic predictors including wind speed and global horizontal irradiance. Models were run for regions with more than 100
installations recorded; regions with fewer than 100 are excluded. The top 30% land for PA priority expansion comprises the top 30% ranked cells outside
of cells already protected. The ranking was developed by a previous study to maximize coverage of species richness, species threat, and ecoregions. Note:
Input data were aggregated to 30-km2 resolution for readability; the values appear truncated at extreme latitudes for solar because the underlying
global horizontal irradiance data do not provide values for these regions. RE, renewable energy.
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of the seven wilderness overlaps occur in North America and
East Asia. This is a surprisingly low figure, especially consider-
ing wilderness areas in North America alone represent 8.513
million km2 of undeveloped land, and previous research has
suggested that energy infrastructure encroachment into wilder-
ness areas may threaten previously untouched biodiversity (8,
33, 34, 54, 55). For comparison, the 2.562 million km2 of PAs in
the United States and Canada contain 173 overlapping installa-
tions. The dearth of installations in North America’s large
expanse of wilderness, as defined by (38) and used in (33), may
be a reflection of the technical difficulties of remote renewable
power; previous studies have had to heavily constrain renew-
able suitability layers by distance to settlements to account for
this (35, 54), whereas others have questioned the feasibility of
some renewable projections on account of weak transmission
and ancillary service proposals (56).

It has also been suggested that renewable energy expansion
may threaten important conservation areas through PADDD;
Rehbein et al. (33), citing Mascia and Pailler (57) and Symes
et al. (58), suggest that installations within strict PAs “strongly
predict subsequent [PADDD], which leads to worse biodiversity
outcomes” (p. 3047). However, the results here, using the best
available PADDD data (59), did not identify any PADDD
events that were irrefutably caused by the siting of renewable

energy installations. Moreover, with 1,354 instances of well-
established renewable energy installations in PAs, six instances
is a small figure (0.517%). Of course, renewable energy installa-
tions could be a contributing factor to one of the other primary
causes of PADDD—for example, industrial-scale resource
extraction and development or local land pressure and claims
(59)—but currently there is no way of adequately testing this
assertion. Regardless, best evidence suggests that renewable
energy installations per se do not predict subsequent PADDD.

Conclusion
Overall, our analyses suggest that future expansion of renewables
and PAs are possible at regional scale with relatively little overlap.
This finding is supported by our results that show—if land areas
are considered—that current levels of overlap between wind,
solar, and important conservation areas, while unfortunate, are
not disproportionately large. Furthermore, there is some evi-
dence to suggest they are also not increasing. Careful land use
zoning is still very much required, particularly in densely popu-
lated regions such as Europe, and it is still unclear what the
effects of a much more expansive extension in required areas
would be. However, our results are encouraging as they suggest,
for the regions considered and in the near term, that the vital
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rollout of renewable energy infrastructure required to meet cli-
mate objectives could proceed in a way that does not present a
major threat to area-based conservation efforts.

Materials and Methods
Renewable Energy Data. The spatially explicit wind and solar data represent
12,581 and 12,043 installations worldwide in 153 countries, totaling 322.8 and
125.6 GW of capacity, respectively (36). They currently represent the best
available data for wind and solar infrastructure globally. These datasets
were created by extracting features from OpenStreetMap and applying a
spatial clustering algorithm. Data were filtered as suggested by the authors;
installations not tagged as “water,” solar installations over 1 ha in area, and
wind installations with greater than four turbines, except we did include
installations tagged as “urban.” Wind and solar PV DPIs were taken from a
study that produced gridded 1-km2 resolution indices using multicriteria
decision analyses that took into account resource potential and develop-
ment feasibility (34).

Initial assessment of the DPIs showed that globally, 21.56% of installations
in the spatially explicit data are present in grid cells that were classified as
unsuitable for development of that renewable energy at 1-km2 resolution,
e.g., with a steep slope or high elevation (>30% or >3,000 m, respectively)
(ref. 34, online-only table 2). This suggests the DPI approach is missing some
installations when masking out unsuitable land at 1 km2, either because
renewable energy installations exist at a smaller spatial scale than 1 km2 or
the constraints imposed do not actually constrain renewable energy develop-
ment, e.g., installations can exist where elevation>3000m.

We also obtained an independent validation dataset: the Global Power
Plant Database (GPPD) version 1.2.0 from the World Resources Institute, avail-
able at https://datasets.wri.org/dataset/globalpowerplantdatabase. This was
used withoutmodification.

Biodiversity Conservation. PA data used were from the December 2019 release
of the World Database on Protected Areas (WDPA) (60). PA data were proc-
essed according to accepted practice (33, 37, 61, 62). Point locations for PAs
were excluded, as well as polygons <5 km2 in reported area. Only terrestrial
PAs were considered and those with status Designated, Inscribed, or Estab-
lished. We also obtained data on KBAs (September 2019 iteration) (63). KBAs
are designated by the IUCN and signify sites contributing significantly to the
global persistence of biodiversity. As with PAs, we excluded KBAs with only
point data as well as those designated as marine IBAs. Areas of “wilderness”
were collected from a previous study (38) identifying the remaining large,
conterminous areas of the world with the lowest human footprint. The areas
identifiedwere split by country but otherwise used without modification.

Priority expansion areas for PAswere obtained from a previous study looking
to assess the effects of land change and national versus global priorities on the
efficacy of the global PA estate, obtained from https://www.fairdata.fi/avaa/
(37). This study used range maps of all threatened terrestrial vertebrates identi-
fied by the IUCN Red List of Threatened Species at the time (24,757 species glob-
ally) and the world’s 827 World Wildlife Fund ecoregions. The analysis took the
2013 PA network and identified areas outside these that represented the best
opportunities for expansion, with rankings weighted on species numbers
and ecoregion representativeness using the conservation spatial planning
tool Zonation (version 4). The data are available at 0.008333° resolution,
WGS84 projection. They ran two allocation scenarios to expand PAs to
given thresholds: one that ranked cells globally and one that ranked cells
nationally. For each of these scenarios, they discounted these expansion areas
by projected land change to 2040, resulting in four overall scenarios: global
designation with 2040 land use, global designation with 2000 land use,
national designation with 2040 land use, and national designation with 2000
land use. In order to correctly use the PA priority expansion rankings, we used
archiveWDPA data from June 2013. Asmentioned in Rehbein et al. (33), China
has since removed a large portion of its PA estate from the WDPA, and a very
large PA in Saudi Arabia was significantly downsized between 2013 and 2019.
The spatial prioritization process described in Pouzols et al. (37) ranked PAs
present in June 2013 with the highest ranking. Unless masked out with the
archive WDPA data, the disappearance of these large PAs between June 2013
and December 2019 would lead to artifacts of artificially high rankings in the
global grid; this was corrected through the combined use of PA data from
June 2013 and December 2019.

Data on PADDD were downloaded from PADDDTRACKER (available at
https://www.padddtracker.org/). These datawere collated in a study that orig-
inally identified 3,749 PADDD events (59). Between 1892 and 2018, 519,857
km2 has been removed from protection, with 1.660 million km2 downgraded.
For the purposes of this (spatial) study, these data were filtered by events with

known locations, as recommended by the authors. This stipulation removed
61 events. As with other conservation data, events with point data were
excluded; this exclusion removed 23.89% of the total area affected by PADDD
events. Furthermore, events were filtered by the event cause: only events
where the cause was identified as “Infrastructure” were included. This gener-
ated six PADDD events of interest, totaling 24.84 km2. As the figure was so
low, we elected to include previously excluded point data, buffered to their
reported areas. This added a final two events.

Creation of the Wind and Solar PV Potential Layers. We evaluated both the
PA priority expansion data and renewable energy DPIs for their ability to pre-
dict occurrences (SI Appendix). While the PA priority expansion data per-
formed well, the DPIs did not. Regional wind and solar PV RFP layers were
therefore created using the zoon and raster R packages (64, 65). The zoon
package allows users to create reproducible workflows for distribution model-
ing. For the observed occurrence of renewable energy facilities, we use a spa-
tially explicit global database of wind and solar PV (36). With no formal
absence data and because group discrimination species distribution models
(those with presence/absence data) tend to perform better than profile meth-
ods (presence only) (65–67), we looked to generate sensible pseudoabsences,
a well-established technique in species distribution modeling (68, 69). While
previous studies create probability layers by layering constraints atop resource
potential maps, this method uses no constraints except for land surface and
allows us to scrutinize what drives the distribution of the renewable energy
estate. We chose RF models over two similar methods because it showed bet-
ter accuracy in preliminary tests, even without the parameter tuning RFs can
implement (SI Appendix, Fig. S8). World regions with >100 observations of
wind and solar PV occurrences were selected. The rationale for this is that we
consider 10 predictor variables and wanted to maintain a ratio of at least 10
events per predictor variable (as this ratio has been shown to function as a
useful threshold for logistic regression, e.g., classification) (70). These regions
were Middle East, Southern Europe, South America, North America, South
Asia, Russia and the Balkans, East Asia, Northern Europe, and Central Europe
with sample sizes ranging from 145 to 3,639.We used a ratio of 1:1 pseudoab-
sence points to presence points, as suggested by Barbet-Massin et al. (68) for
classification models such as RF. This led to our threshold for classifying a pres-
ence being 0.5. Performance metrics were calculated using 10-fold, 5-repeat
cross validation in the first instance. Furthermore, to enable a fair comparison
of the DPIs with our created RFP layers, we tested the predictive power of
both indicators against an independent dataset of wind and solar power-
plants (SI Appendix, Fig. S2), the GPPD (Renewable Energy Data).

The following global datasets were used in which all were reprojected,
and in some cases aggregated, toMollweide equal-area projection, 1-km2 res-
olution for the RF analysis to create the RFP layers:

• 2015 accessibility (travel time to cities) (71);
• 2005 gridded data of cattle, goats, and sheep derived from the Gridded

Livestock of theWorld datasets (72);
• 2005 cropland percentage per pixel (73);
• Elevation (and calculated slope), available from http://viewfinderpanoramas.

org/dem3.html;
• Gridded distance from PAs, calculated from the protected area data

described above;
• 2015 population density from the Gridded Population of the World

version 4 (74);
• Total road density from the Global Roads Inventory Project dataset (origi-

nally in WGS84 0.08333° resolution and simply disaggregated to 0.008333°
resolution) (75);

• Global horizontal irradiance from the Global Solar Atlas, available from
https://globalsolaratlas.info/; and

• Global wind speed at 100m height from the Global Wind Atlas, available
from https://globalwindatlas.info/.

Bivariate Global Grids. To present the relationship between our wind and
solar PV RFP layers and the PA priority expansion rankings, we created
global bivariate grids. The PA priority expansion layer (global 2040 land
use scenario) was masked with current protected cells at 1-km2 resolution
as well as the archive data from June 2013 at 1-km2 resolution, and the solar
PV and wind RFP layers were masked with current wind and solar installa-
tions at 1-km2 resolution. Global bivariate grids were created by reclassifying
input raster data into 10 bins of equal representation and then combining
each RFP layer with the PA priority expansion layer to create global grids
with 100 unique values. For plotting, the process was identical, except the
input raster data were aggregated with bilinear interpolation to 30 km2 and
projected to an Eckert IV equal area.
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Overlap Ratios. We calculated the ratio of overlap of top priority PA
expansion areas and renewable energy areas (50, 76). Overlap ratios
enable like-for-like comparisons of overlaps between two binary
responses (PA and energy in this case) for different areas and indicate if
overlaps are over-represented (>1) or under-represented (<1) given the
land available. For a given static threshold of PA priority area (1, 10, or
30% of total land area), we iteratively added the highest-ranking renew-
able energy RFP cell within the region until coverage reached 30%. At
every step, we calculated the overlap ratio by dividing the percentage of
PA priority cells that overlap priority renewable energy areas by the per-
centage of total land covered by priority renewable energy areas. For
example, if 20% of PA priority areas overlap with priority renewable
energy areas and priority renewable energy areas cover 30% of a region,
then the ratio is 0.2/0.3 = 0.66. If, however, 40% of PA priority areas over-
lapped with priority renewable energy areas covering 30% of a region,
the ratio is 0.4/0.3 = 1.25. See SI Appendix, Fig. S12 for a graphical expla-
nation of overlap ratios.

Spatial Overlaps. Spatial overlaps were conducted using two different meth-
odologies. The first looked at absolute overlaps. Simple spatial overlaps of
renewable energy installations and conservation areas were performed
using the sf and raster R packages. Data were reprojected to Mollweide
equal-area projection to ensure comparability of areas at all latitudes.
Spatial overlaps were based on the predicate st_contains_properly, a func-
tion that ensures only installations completely contained within conserva-
tion areas were considered. This was done to minimize the risk of boundary

inaccuracies flagging false overlaps where an installation and a conservation
areamerely intersect each other.

The second overlap methodology looked at overlaps relative to the area of
renewable energy and conservation priority in each country. We fitted simple
linear models: overlap area ∼ renewable area + conservation area + land area
per country (SI Appendix, Tables S3, S6, and S7); countries with large positive
standardized residuals are those with more renewable infrastructure overlap-
ping conservation areas than predicted relative to other countries with similar
PA and renewable energy estates.

A simple absolute overlap process was also performed for renewable
energy installations and the PADDD events of interest. However, as point data
comprised a significant portion of these data (27.9%), we opted to include
buffered point data in this analysis; the radii for the circular buffers were cal-
culated from the reported area of the PADDD event.

Data Availability. All data resulting from the analyses have been deposited
in Figshare, DOI: 10.6084/m9.figshare.15062550. Previously published data
were used for this work (34, 36, 37).
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