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Abstract

Food allergy (FA) is considered the ‘second wave’ of the allergy
epidemic in developed countries after asthma and allergic rhinitis
with a steadily growing burden of 40%. The absence of early
childhood pathogen stimulation embodied by the hygiene
hypothesis is one explanation, and in particular, the eradication of
parasitic helminths could be at play. Infections with parasites
Schistosoma spp. have been found to have a negative correlation
with allergic diseases. Schistosomes induce regulatory responses to
evade immune detection and ensure their long-term survival. This
is achieved via excretory/secretory (E/S) products, consisting of
proteins, lipids, metabolites, nucleic acids and extracellular vesicles,
representing an untapped therapeutic avenue for the treatment
of FA without the unpleasant side-effects and risks associated with
live infection. Schistosome-derived immunotherapeutic
development is in its infancy and novel discoveries are heavily
technology dependent; thus, it is essential to better understand
how newly identified molecules interact with host immune
systems to ensure safety and successful translation. This review will
outline the identified Schistosoma-derived E/S products at all life
cycle stages and discuss known mechanisms of action and their
ability to suppress FA.

Keywords: B regulatory cells, extracellular vesicle cargo, immune
modulators, proteins and peptides, Schistosoma-derived drug
discovery, T regulatory cells

INTRODUCTION

The current global prevalence estimate of allergic
diseases, including food allergy (FA), is up to 40%

of adults and children.1,2 The environmental
exposome, which includes viral and microbial
toxins, is well described by the hygiene hypothesis
as an important component of immune
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education. In addition, gastrointestinal parasites
are thought to be pivotal for the development of
immune tolerance caused by their powerful ability
to evade host immune detection.3 A compelling
number of clinical and epidemiological studies
suggest an inverse correlation among parasitic
infection, skin prick test (SPT) reactivity and
allergy symptom severity.4–10 It is also important
to note the reports of sensitisation and allergic
reactions to infection with helminths, such as
Ascaris lumbricoides, Anisakis and Schistosoma
spp.11–13 These are likely a result of the parallel
mixed T-helper type 1 (Th1) and 2 (Th2)
polarisation and inflammation induced by
helminth infections.14–17 Despite this, a large body
of evidence suggests that schistosome infections
confer protection against allergic diseases as a
result of their capacity to establish more robust
tolerance through the induction of both T- and
B-regulatory cells.18–22 These regulatory cells are
predominantly activated during chronic
schistosomiasis as a result of egg deposition and
migration. However, chronic egg production also
contributes to significant pathology as a result of
aberrant entrapment of eggs in ectopic locations,
making the use of therapeutic live infections
complex and dangerous.23 Despite the promising
therapeutic indications, extensive unmet need and
over a decade of discovery and pre-clinical
development on helminth excretory/secretory (E/S)
products, too few have progressed to clinical trial.
The regulatory responses induced by helminths,
including hookworms and schistosomes, offer
unique therapeutic opportunities for restoring
natural tolerance (regulatory T cells) unlike any
other drug or biologics commercially available.
Therefore, this review will outline and discuss
identified Schistosoma-derived E/S products at all
life-cycle stages, their known mechanisms and
their potential to suppress FA.

WORM-DERIVED BIOLOGIC DISCOVERY
RELIES HEAVILY ON TECHNOLOGICAL
CAPABILITIES

There are many hurdles that limit the therapeutic
breakthrough of helminth-derived molecules.
Advances in mass spectrometry-based techniques
have allowed for a significant increase in the
identification of novel secreted proteins over
the past 20 years. However, there is still a gap in
access to databases that curate protein sequences
and functional information of helminth products.

Consultation of conventional databases is not
straightforward. This is in part a result of the
striking ability of parasites to modify the amino acid
sequence (~5–30%) of known orthologous proteins,
altering their function and manipulating host
immunity to their advantage.24–27 To effectively
characterise molecular composition and function of
helminth E/S products, it is essential to isolate and
purify large enough concentrations from
large-molecular (lipo) protein contaminants, and
host, bacterial and parasite residues.28 The presence
of distinct extracellular particles (EPs), such as
exomeres, supermeres and extracellular vesicles
(EVs), complicates isolation further, necessitating
the use of additional steps and modification of
standard protocols, resulting in the loss of large
proportions of target molecules in the process.29

Larger volumes of starting material can compensate
for this loss; however, the major challenge with
helminths is the limited access to the parasite
material required for the production of sufficient
EPs, which is particular issue with Schistosoma spp.
caused by their complex life cycle that requires
access to mammalian and intermediate snail
hosts.29 As such, obtaining relevant schistosome life
cycle stages for culture is limited by infective larvae
(cercariae) and the number of parasites that can be
collected from sacrificed mammalian hosts.

Finally, a large body of evidence suggests that
helminth EVs diverge significantly from their
mammalian counterparts, posing a number of
unique challenges with consistent isolation
and purification of therapeutic EVs for in vitro and
in vivo studies.30–32 This necessitated the
development of additional guidelines to
complement the Minimal Information for Studies
of EVs (MISEV). Another significant challenge
associated with helminth EVs is the generation of
sufficient quantities of particles for structural or
functional studies, identifying helminth-specific EV
markers and successful characterisation. The
major reason for further investigation of
schistosome-derived compounds as therapeutics for
allergic disease, and FA in particular, is their
complex life cycle, which includes three distinct life
stages within the human host. Each of these stages
must undergo a complex migratory process
through the lungs, liver, gastrointestinal tract (GIT)
and blood vessels, where they are met with a
complex host immune response. However, this
particular parasite has fine-tuned the release of
various mucosal- and cell-specific compounds that
show promising applications for dampening
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allergen-induced inflammation, suppressing tissue
remodelling and restoring allergen tolerance.
Therefore, this review will discuss the therapeutic
benefits of Schistosoma spp. and recent discoveries
in schistosome derivatives, such as proteins, EVs
and micro-RNAs (miRNA) at all life cycle stages for
the treatment of FA.

THERAPEUTIC MANAGEMENT OF FA

The symptoms and severity of FA evolve over time
as a result of the complexity and multifactorial
nature of the immune response which is typically
divided into three phases: sensitisation,
immediate hypersensitivity reactions and delayed
hypersensitivity reactions. Allergen sensitisation
and the subsequent responses to food antigens can
be mediated by either immunoglobulin (Ig)

E-dependent or -independent mechanisms, or a
combination of both (Figure 1).33 Sensitisation
occurs through the progressive development of
tissue-resident memory T and B cells, which respond
in a dose-dependent manner to allergens and
stimulate allergen-specific antibody production.33

This is an essential process for allergic sensitisation,
providing the trigger for allergic response in case of
re-exposure, which can result in both immediate
reactions, including anaphylaxis and delayed
(cell-mediated) allergic reactions (Figure 2).34–37

The greatest unmet need in FA is the absence of
disease-modifying treatments. The recommendation
for symptom management relies on strict allergen
avoidance. Antihistamines and leukotriene receptor
antagonists, oral steroids and few biologics (anti-IgE
or IL-5 antibodies) aim at controlling the
downstream inflammatory cascade triggered by

Figure 1. Pathogenesis of allergic sensitisation to food-derived allergens. Damaged intestinal epithelial cells release inflammatory mediators

causing type 2 innate lymphoid cell activation and Th2 skewing cytokine production.124–128 APCs (DCs, B cells and epithelial cells) collect antigens

through the gut wall for presentation via MHC class II to naive CD4+ T cells in secondary lymphoid tissue, promoting CD4+ Th2-cell priming.

Activated Th2 cells prime B cells in an antigen-specific manner (IgE/IgG), which assist in germinal centre formation or become short-lived plasma

cells.129,130 Tfh cells modulate B-cell selection (high affinity), their differentiation into low- and high-affinity long-lived plasma cells and the

build-up of memory effector cells, providing the trigger for allergic response in case of re-exposure.131,132 APC, antigen-presenting cell; BCR,

B-cell receptor; FcR, Fc receptors; GM-CSF, granulocyte–macrophage colony-stimulating factor; Ig, immunoglobulin; IL, interleukin; MHC II, major

histocompatibility complex II; TCR, T-cell receptor; Tfh, T follicular helper cell; TGF-b, transforming growth factor beta; Th, T-helper cell; TSLP,

Thymic stromal lymphopoietin.

ª 2024 The Author(s). Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of

Australian and New Zealand Society for Immunology, Inc.
2024 | Vol. 13 | e70001

Page 3

M Rogers et al. Schistosomes, a cure for food allergy?



allergen exposure (Figure 1).38 Currently, long-term
relief is obtained after allergen immunotherapy
(AIT), a process aiming to increase the threshold
amount of allergen tolerated without promoting
the activation of effector responses, especially
anaphylaxis (Figure 2).39 AIT promotes the induction
of allergen-specific regulatory T (Tregs) cells,
specifically FoxP3+ IL-10-producing inducible (i)
Tregs. However, IL-10-producing regulatory B cells
(Br1) have recently emerged as potential targets for
AIT owing to their ability to induce both iTregs and
FoxP3+ natural (n) Tregs, inhibit dendritic cell (DC)
maturation, suppress effector responses and
increase serum IgG4.40 Unfortunately, the
therapeutic benefits of AIT are slow to emerge and
only temporary, as the entire desensitisation process
needs to be repeated every few years. This illustrates
the need for novel therapeutic strategies that
promote sustained natural tolerance suited for the
complex and evolving nature of FA symptoms.

IMMUNE EVASION BY SCHISTOSOMES

A hallmark of schistosomiasis is the induction of
Th2 responses, which occur following egg
deposition, with IL-4, IL-5, IL-13, eosinophilia and
IgE production by B cells. The primary role of this
mechanism is to protect the host and reduce worm

and egg burden by killing parasites within infected
tissues and promoting intestinal expulsion.41 Most
of these modulatory effects are mediated by the
release of a suite of modulatory E/S products that
ensure the successful establishment of the parasite
within the host (Figures 3–5). To infect mammalian
hosts, aquatic cercariae penetrate the skin and
epithelium, shedding their tail as quickly as a few
minutes post-penetration to become
schistosomula. After traversing the basal lamina
(up to 3 days post-infection), schistosomula enter
the dermis and penetrate local capillaries
(Figure 3). Schistosomula then migrate to the lung
vasculature, where they mature into a more
elongated shape to facilitate passage to the portal
vein of the liver (Figure 4). Juvenile worms pair up
and once mature will migrate to the mesenteric
vessels to begin sexual reproduction, releasing
between 100 and 300 (S. haematobium and
S. mansoni) and over 2000 (S. japonicum) eggs per
day (Figure 5).42 Because of the risk of adverse
events during infection, including hypersensitivity
reactions induced by skin penetration (cercarial
dermatitis), pulmonary migration and initial egg
laying (Katayama syndrome) and fibrosis of the
liver and surrounding organs caused by aberrantly
entrapped eggs (hepatosplenomegaly), live
therapy is unlikely to occur.43 However, countless

Figure 2. Pathogenesis of allergic challenge reactions to food-derived allergens. Secondary challenge causes allergen-specific antibodies to

crosslink to Ig FceRs (IgE binding) or FccRs (IgG binding) on granulocytes and phagocytes. This contributes to early- and late-phase reactions. The

overwhelming production of inflammatory mediators from granulocytes promotes increased vascular permeability, localised tissue inflammation

and, in severe cases, anaphylaxis. cystLT, cysteinyl leukotrienes; FccRs, Fc gamma receptor; FceR, Fc epsilon Fc receptor; Ig, immunoglobulin;

IL, interleukin; PAF, platelet-activating factor; TNF, tissue necrosis factor.
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E/S products are produced through this process,
including proteins, carbohydrates, lipids, peptides,
metabolites, nucleic acids and EPs, capable of
altering the host immune function and tissues
themselves. This plethora of immunomodulatory
compounds produced by schistosomes can be
harnessed to benefit FA.

PROTEINS

Larval schistosomes

Schistosomula engage with several different
skin-resident innate immune cells during the
initial infection stage, including HLA-DR+ (MHC
class II receptor) DCs, most likely Langerhans cells
and keratinocytes (Figure 3).44 Larvae rapidly shed

their glycocalyx, impeding complement attacks
and immunoglobulin recognition by eosinophils
and neutrophils.45 The mechanisms involved in
larval migration through the vasculature and the
lungs are poorly understood; however, in vitro
studies suggest that larval survival is heavily
reliant on the tight regulation of host CD4+

Th-cell responses (Th2, Th1, Th17 and Treg),
favoring Th1/Th17 skewing to ensure larval
migration, maturation and survival.46,47 Larvae
and adult worms generate an additional layer of
protection from the host during migration by
cloaking themselves in blood group antigens,
MHC proteins and IgG Fc receptors (FcR) as well as
releasing E/S products, such as elastase-like serine
proteases that cleaves IgE, to avoid
immunoglobulin-based attacks (Figure 4).48 Few

Figure 3. Immune regulation and evasion strategies of Schistosoma spp. larval stages in the human host. Cercariae penetrate host skin and produce a

myriad of proteases to degrade host structural molecules and allow the larvae to penetrate local venules for pulmonary migration. Schistosomula also

releases regulatory molecules such as Sm16, SmVal8 and prostaglandin to influence immune cell function to promote larvae survival. APC,

antigen-presenting cell; C3, complement component 3; DC, dendritic cell; E/S, excretory/secretory products; ECM, extracellular matrix; EVs, extracellular

vesicles; Ig, immunoglobulin; IL, interleukin; NO2, nitrogen dioxide; PGD2, prostaglandin D2; PGE2, prostaglandin E2; Sm16, S. mansoni 16 kDa

immunomodulatory protein; SmGST, S. mansoni glutathione S-transferase isoenzyme; SmVAL8, S. mansoni venom allergen-like protein 8; TLR, toll-like

receptor.
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of these proteins have been further characterised
in vivo/in vitro; however, S. japonicum thioredoxin
peroxidase (rSjTPx) was shown to reduce CD86

and MHC class II expression on macrophages,
which downregulates antigen presentation and
effector T-cell activation.49 Sm16, a 16.8 kDa

Figure 4. Immune regulation and evasion strategies of Schistosoma spp. adult worms in the human host. Following pulmonary migration,

elongated immature worms migrate to the portal veins, where they pair up and finish maturing. During this time, the worms release a myriad

of compounds in their E/S products that impede coagulation and promote vasodilation and parasite feeding/survival. Adult worms also

incorporate host factors into their tegument and release modulatory compounds to evade host immune response. Coupled adults then move to

the mesenteric vessels of the host intestines and worms their E/S molecules to ensure the survival of their eggs prior to extravasation and

during migration. C3, complement component 3; E/S, excretory/secretory products; EVs, extracellular vesicles; Ig, immunoglobulin; MAC,

membrane attack complex; MHC I, major histocompatibility complex class I; rSj-C, recombinant S. japonicum cysteine protease inhibitor; rSj-C,

recombinant S. japonicum cysteine protease; SjTPx-1, S. japonicum thioredoxin peroxidase-1; Sm22.6, 22 kDa adult S. mansoni antigen; Sm29,

29 kDa adult S. mansoni antigen; SmATPDase1, S. mansoni ATP diphosphohydrolase; SmCalp1/2, S. mansoni calpain protease 1/2; SmKI,

S. mansoni serine protease inhibitor; SmSP2, S. mansoni serine protease 2.
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Figure 5. Immune regulation and evasion strategies of Schistosoma spp. eggs in the human host. Following oviposition, eggs must extravasate

out of the mesenteric vessels and migrate through the intestinal mucosa into the lumen for excretion in faeces. To facilitate this, schistosome

eggs manipulate the host granulomatous immune response by producing E/S compounds, which promote Th2 granulomatous inflammation, M2

polarisation and decrease leukocyte recruitment. In addition, migrating eggs E/S products promote regulatory T-cell (Treg) expansion both directly

and indirectly through the activation of regulatory B cells (Breg). This complex interaction between migrating eggs and the host immune cells

allows for safe passage of eggs through the intestinal mucosa without causing lasting damage to the host tissue. 20:1 Lyso-PS, schistosomal

lysophosphatidylserine; E/S, excretory/secretory products; IL, interleukin; M2, macrophage type 2; omega-1, S. mansoni glycoprotein; SmCKBP,

S. mansoni chemokine-binding protein; TGF-b, transforming growth factor beta; Th, T-helper cell; a1/IPSE, alpha 1/IL-4-inducing principle of

S. mansoni eggs.
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S. mansoni larval and egg protein, assists in early
survival by compromising classical macrophage
activation, dermal neutrophil migration and
eosinophil recruitment to slow antigen
presentation and delay the effector T-cell
response (Table 1).50 Sm16 is the major protein
involved in promoting IL-1ra to suppress effector
T-cell activation in the skin, giving it potential as
a therapeutic for inflammatory skin disorders.51

Recombinant rSj16, the S. japonicum homologue
of Sm16, has been shown to induce alternative
macrophage activation, splenic CD4+FoxP3+ Tregs,
suppression of DC activation and CD4+CD25�

T cells and increased IL-10 and IFN-c production
in vitro and in vivo.52,53

Few experimental studies have been performed
exploring the benefit of larval infection in allergy.
S. japonicum lung stage infection was shown to
ameliorate ovalbumin (OVA)-induced allergic
airway inflammation (AAI) in mice.54 The
migrating larvae induced the proliferation of
CD4+CD25+Fox3+ Treg in the lungs and draining
lymph nodes via the upregulation of Epor and
Klra17 and the downregulation of B-cell
activation genes Dock2, Irf4, Rac2, Lgals3, H2-Oa,
Pdcd1lg2, Sash3 and Mzb1, resulting in a
significant decrease in OVA-specific IgE levels.
Despite their primary localisation to the skin and
lungs, schistosomula are in direct contact with the
host microcirculation, making it likely that larval
E/S products could promote a tolerogenic immune
environment in the GIT in preparation for egg
laying and migration. Therefore, all larval stages
of Schistosoma spp. infection offer a range of
tolerogenic E/S products and represent an
untapped library of compounds that could reduce
allergic inflammation.

Adult schistosomes

Adult schistosomes home to the mesenteric veins
of the small bowel (S. mansoni, S. japonicum) or
vesicle venules of the bladder (S. haematobium)
and begin oviposition (5–8 weeks post-infection).
During this time, Th1 cytokine (TNF-a, IL-3 and
IFN-c) levels decrease, and the immune response
becomes more Th2 skewed (6–8 weeks
post-infection) to destroy migrating eggs and
reduce parasite burden. This Th2 bias is achieved
by promoting IL-4, IL-5 and IL-13 production, Ig
class switching to IgE on B cells and eosinophil
expansion.55 As with schistosomula, adult worms
secrete E/S products to avoid detection (Figure 4).

Many of these products originate from the
tegument, the dynamic outer surface of
the schistosome that rapidly sheds and
self-renews.56 S. japonicum tetraspanning orphan
receptor (SjTOR) is a tegument-derived product
aimed at fighting complement-mediated parasite
death.57 Schistosomes secrete their E/S products
to regulate and minimise Th2-induced pathology
within the host caused by egg laying and
migration, with the percentage of Tregs
(CD4+CD25+FoxP3+) in granulomas peaking
between 8 and 12 weeks after infection.58 In
mice, Sj-C (S. japonicum tegument-derived
cysteine protease) reduced antigen presentation
in splenic DCs via MHC class II complexes, leading
to the proliferation of CD4+CD25+Foxp3+ Tregs
and the production of IL-4, TGF-b and IFN-c
(Figure 4).59 IL-10 also plays a central role, with
1-(11Z-eicosenoyl)-glycero-3-phosphoserine 20:1
(20:1 lyso-PS) actively inducing IL-10-producing
Tregs through TLR2/6 heterodimer activation on
DCs.60,61 Interestingly, an important role was
identified for the IL-4 receptor alpha (IL-4Ra)
signalling to potentiate the suppressive functions
of Treg in vivo, illustrating the importance of the
multifactorial aspect of the host–parasite
cross-talk during infection.62 Adult worms
therefore appear to produce a suite of
immunomodulatory compounds that induce type
2 immunity, which could be beneficial to
promote gut repair and mucosal healing, and
tolerogenic processes responsible for the
induction and activation of CD4+CD25+FoxP3+

Tregs and the careful modulation of IL-4/IL-10
production.

The therapeutic properties of adult worm E/S
products have been investigated either using
direct injection of soluble worm antigen (SWA)
(whole or derivatives) or indirectly via single-sex
infection models. In the latter, mice and humans
are infected with only male cercariae to avoid egg
production, ensuring that the host is only exposed
to adult worm-derived products.63 Schistosoma
spp. live infections have been shown
experimentally to protect against allergy,
inflammatory bowel disease, arthritis and
anaphylaxis.64 In 2020, a controlled human trial
(n = 17) using S. mansoni male-only infections was
undertaken, where all volunteers exhibited
schistosome worm and egg-specific IgG1,
antigen-specific CD4+ T-cell production of Th2 and
IFN-c cytokines.63 However, despite the lack of
egg production, 18% of volunteers experienced
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severe adverse side effects, including cercarial
dermatitis and acute schistosomiasis, illustrating
the continuing risks associated with therapeutic
use of live schistosome infections. Few adult
worm-derived immunomodulatory molecules have
been identified and tested in allergic diseases.
Most studies use models of AAI (Table 1) and
show a significant modulation of Th2 responses
in favor of IL-10 production in the lung.65,66

Male-only worm (S. mansoni and S. japonicum)
infections and an S. japonicum worm-derived
peptide (SJMHE1) can suppress AAI to both
house dust mite (Dermatophagoides
pteronyssinus) and OVA/alum models by
decreasing eosinophilia and increasing lung Tregs
(CD4+CD25+FoxP3+IL-10+).67,68 These studies also
observed a reduction in IL-4- and IL-5-producing Th2
cells, IFN-c-producing Th1 cells and IL-17-producing
Th17 cells, and reduced allergen-specific IgE
following adult worm antigen exposure. Recently,
recombinant Sm200 and SmKI-1 proteins were
found to suppress Blomia. tropicalis-induced AAI
in mice by altering IL-10 production in the lung
and decreasing IL-4, IL-5 and eosinophil
peroxidase (EPO) production. In addition, Sm200
enhanced IL-10 production in PBMCs from atopic
individuals, although the target cell nor the
source of the cytokine was further identified
(Table 1).69

Finally, S. mansoni single-sex infection was
shown to fully ameliorate anaphylaxis to
penicillin V in mice.70 Protection was mediated by
both IL-10-producing Bregs and FoxP3+ Tregs,
which were induced either directly via
antigen presentation or expanded as a
result of the pro-tolerogenic environment created
by IL-10-producing Bregs. Given the similarities
between food- and drug-induced allergies, these
results provide significant insight into the immune
mechanism by which adult schistosomes may
protect from FA. It is important to note that
studies in S. mansoni on male versus female worms
during infections have indicated marked
differences in their transcriptional profile and
immune function, with female worms often
overlooked despite their essential role in
promoting tolerance during infections.71,72 As
such, single-sex infections are an imperfect way to
study the effects of worm-only infection in allergic
disease, making crude worm E/S and purified
derivatives from both sexes essential to accurately
study worm-only effects and the development of
potential FA therapeutics.

Schistosome eggs

Following oviposition, schistosome eggs extravasate
through the endothelium and migrate through the
gut mucosa to exit the host and renew their life
cycle (Figure 5).73 Extravasated eggs immediately
become the target of Th2 granulomatous
inflammation. These modified granulomas are
highly organised multicellular structures consisting
of an egg surrounded by M2 macrophages
(recruited from Ly6Chi monocytes), IL-4-, IL-5- and
IL-13-producing Th2 CD4+ cells, eosinophils and mast
cells, all of which are encapsulated by stromal
cells/fibroblasts.74 The function of granulomas is to
entrap and destroy migrating eggs while protecting
the host from cytotoxic egg secretions. However, in
an act of immune trickery, Schistosoma spp. eggs
have co-evolved to manipulate host Th2 granulomas
and promote their own migration through the gut
mucosa into the gut lumen (Figure 5).75 Within the
granulomas, mature eggs release their E/S
compounds, which contain a myriad of
immunomodulatory molecules that have unique
‘adhesive’ characteristics (proteins, glycoproteins and
carbohydrates) which is used to create a
pro-regulatory environment close to the egg to
promote a ‘safe pathway’ for the granulomas (with
the egg safe inside) to follow into the gut
lumen.76–78 Schistosoma spp. E/S products are
predominantly taken up by myeloid and
plasmacytoid DCs (mDCs and pDCs, respectively), as
well as B cells resulting in phenotypic and functional
modifications (Figure 5).79–81 For example,
S. mansoni omega-1 (Ω-1), a glycoprotein, is the
primary Th2 inducer secreted by eggs due aΩ-1 has a
glycosylation pattern that allows uptake by mouse
bone marrow-derived DC mannose receptors,
causing Th2 polarisation, type 2 cytokine production,
M2 macrophage activation and Th2 granuloma-
mediated egg migration82–87 S. japonicum-infected
mice show a significant expansion of splenic B1
(CD19+CD11b+CD5+/�) cells that activate follicular
and cytotoxic T cells.88,89 These B cells were shown to
upregulate CD5, CD23, PD-L1 and TGF-b and
S. mansoni chronic egg production promoted Fas
ligand-, IL-4- and IL-10-expressing Bregs, enhancing
apoptosis of CD4+ and CD8+ effector cells.20,90–92 The
tolerogenic activity of S. japonicum egg antigens on
splenic B cells was shown to be TLR7 dependent.88

This suggests that schistosome egg E/S products are
potent inducers of tolerance via the differentiation
and/or expansion of Bregs. AAI models suggest that
schistosome-induced Bregs are distinct from classical
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Bregs and are able to impair Th2 activation and
promote tolerance independently of Tregs and APCs
respectively. The regulatory potential of these
schistosome-stimulated Bregs is heavily reliant on
IL-10 and TGF-b production.18

Eggs are the primary stimulator of Tregs,
including both nTregs and iTregs. However,
functional studies have only focused on
CD4+CD25+FoxP3+ phenotypically defined cells to
address schistosome-suppressive mechanisms
essential for regulating Th1 and Th2 responses.93

IL-10 production by Tregs in hepatic granulomas has
been reported to inhibit Th1/Th2 cytokine
production by DCs and iTregs, effectively
suppressing egg-killing Th2 responses.94,95 However,
IL-10 production in response to S. japonicum egg
deposition also provides important negative
feedback signals to Tregs, creating a favorable Th2
environment to facilitate granuloma formation and
life cycle progression.96 Exogenous administration
of IL-10 to OVA-sensitised animals following the
adoptive transfer of CD4+CD25+ Tregs purified from
S. japonicum-infected donors protected from AAI.97

Furthermore, ex vivo restimulation of splenocytes
from these mice with S. mansoni crude egg extract
in the presence of recombinant IL-10 resulted in a
decreased frequency of TGF-b-expressing Tregs as
well as their TGF-b expression levels.97

Several studies have demonstrated that crude
SEA or whole freeze-killed eggs are a source of
immunomodulatory compounds for the treatment
of AAI (Table 1).98–100 Interestingly, epitope
mapping of the S. japonicum egg-derived protein
SjP40 identified several IFN-c-producing pro-Th1
immunodominant peptides capable of dampening
OVA-induced AAI.101 However, despite the
decrease in lung IL-4, IL-5 and IL-13, as well as
allergen-specific IgE levels, the degree of
protection induced by these products was
significantly less robust compared to Breg- and/or
Treg-mediated regulation.102 Recently, crude
S. japonicum SEA was shown to alleviate
OVA-induced AAI by upregulating lung and spleen
CD4+CD25+FoxP3+ Tregs and decreasing eotaxin,
IL-4, IL-1b and IL-18 in BAL. Importantly, using
liquid chromatography and in vitro Treg induction
experiments, this study identified nine target
Treg-promoting proteins (Table 1). Finally, in vitro
stimulation of IMR-90 lung fibroblasts with SEA
protected from LPS-induced inflammation by
downregulating inflammatory cytokine production
(IL-6, IL-8, IL-1b and IFN-c). This was achieved by
modulation of the Janus kinase (JAK)/signal

transducer and activator of transcription (STAT)-1
pathway, an essential pathway to allergic disease
progression.103 Few egg-derived proteins have
fully resolved mechanisms of action; however,
these studies indicate that these compounds
have exquisite abilities to regulate the
pro-inflammatory molecular pathways at a
systemic level that will benefit FA.

The important therapeutic differentiation of
schistosomes, and eggs, in particular, is the
induction of Bregs. Indeed, the IL-4-inducing
principle of S. mansoni eggs (IPSE)/alpha-1 can
specifically target CD23lowCD21+ mouse splenic
marginal zone B cells by upregulating CD86
expression and IL-10 production to promote
regulatory skewing (Table 1). Co-culture of
IPSE/alpha-1-conditioned Bregs with naive
CD4+CD25� splenic T cells induced CD25+FoxP3+

Treg polarisation.104 Adoptive transfer of
S. mansoni-conditioned CD1d+ Bregs into
OVA-sensitised mice suppressed AAI by recruiting
FoxP3+ Tregs to the lung in a CD1-dependent
manner. This capacity to modulate B cells was also
validated in human PBMCs where the regulatory
activity of CD1d+, but not CD24+CD27+

transitional- or IL-10-producing CD24+CD38+ Bregs,
was enhanced following SEA or rIPSE/alpha-1
stimulation.105 S. haematobium-infected Gabonese
children were also found to have increased CD1dhi

IL-10-producing circulatory Bregs, which
significantly reduced following praziquantel
(anti-schistosome) treatment.19,22 These studies
highlight the essential role of schistosome-induced
Bregs in promoting mucosal trafficking, Tregs and
promoting a pro-tolerogenic environment.

EXTRACELLULAR VESICLES

Extracellular vesicles are a diverse family of
membrane-bound EPs secreted by all cell types
and are classified depending on their intracellular
origin, size and cargo.106 The discovery and
characterisation of EV derivatives for therapeutic
development is still in its infancy; however,
helminths have a demonstrated ability to achieve
host–parasite/parasite–parasite communication by
producing EVs.107 As a result of the lack of
consistent protein markers, EV populations are
often defined by size, including small EVs (sEVs)
under 200 nm and medium/large EVs (m/l EVs)
over 200 nm. EVs are produced by all helminth
life cycle stages and enact immunomodulatory
functions on host immune cells through a myriad
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of cargo moieties.108 These include functional and
pathogenic proteins, carbohydrates, lipids,
metabolites and nucleic acids (microRNA, tRNA
mRNA, lncRNA, sncRNA and DNA).109 Because of
their size and high membrane-to-cytoplasm ratio,
a large portion of these EV cargo moieties are
attached to the vesicles’ surface.110

Schistosomula-derived extracellular vesicles

Schistosomes release EVs to regulate multiple
processes specific to each stage of their life cycle,
promoting migration, maturation, immune
evasion and survival.109 There are limited
schistosomula-derived EV studies to date and most
focus on in vitro characterisation and vaccine
development (Table 2). Schistosomula-derived EVs
can be internalised by human CD1a+

monocyte-derived DCs (moDCs) and Chinese
hamster ovarian (CHO) epithelial cells via CD209
(DC-SIGN) as a result of the presence of
several fucosylated glycan ligands on their
surface.30 The gut is home to distinct populations of
tissue-specific moDCs, including tissue-resident
Ly6C+CD11b+CX3CR1+CD64�CD14+MHCII+ moDCs
(lamina propria) and migratory lysozyme-expressing
CD4�CD11c+CD11b+CX3CR1+BST2+MHCII+ moDCs
(lysoDCs) (Peyer’s patches).111–116 Current
understanding of moDCs is their important roles in
orchestrating mucosal inflammation during
inflammation through antigen presentation,
decreased chemokine and cytokine release and
promoting Th1/Th2-cell activation at the expense
of regulatory responses. In contrast, EV uptake by
moDCs via DC-SIGN increased expression of CD80,
CD86 and PD-L1, and production of IL-10 and IL-12,
suggesting EVs may be capable of altering moDCs
to inhibit inflammation and induce Tregs via APC
modulation.31 Finally, vaccination of mice with
schistosomula-derived EVs or Sj/Sm larval EV protein
1 (LEV1) reduced IFN-c-mediated Th2
granulomatous inflammation and increased
IgG1.117,118 These results suggest that
cercarial/schistosomula EVs and their glycan-rich
cargo promote tolerogenic phenotypes in epithelial
cells and moDCs and inhibit Th2 immune responses.

Adult worm-derived extracellular vesicles

The therapeutic potential of adult worm-derived
EVs in allergic disease is underexplored (Table 2).
S. mansoni adult EVs are rapidly internalised
in vitro by naive splenic and human Jurkat

T cells, where they release miRNA cargo,
including miR-10, bantam and miR125. These
miRNAs were also detected in Th cells from gut-
associated lymph nodes (mesenteric lymph node
and Peyer’s patches), suggesting they may play a
restricted role in gastrointestinal immune
modulation. Mechanistically, miR-10 restricted
Th2 differentiation via mitogen-activated protein
kinase kinase kinase 7 (MAP3K7) and decreased
NF-jB expression in all cases.119 Recently, CHO
epithelial cells we shown to internalise worm EVs
via macrophage galactose-type lectin
(MGL/CD301) caused by membrane-bound
GalNAcb1–4GlcNAc (LDN)-containing N-glycans.30

Finally, S. mansoni tetraspanin 2/3 was shown to
be essential for internalisation of worm EVs by
human endothelial and monocytic cells.120

Therefore, adult EV-derived miRNA use cell-
specific mechanisms to modulate host mucosal,
APC and effector T-cell responses and
downregulate inflammatory Th2 immune
responses, making them of great interest to FA
treatment.

Egg-derived extracellular vesicles

Most of the egg-derived EVs characterised thus far
have displayed a noticeable affinity for the liver
and the spleen; however, their biodistribution
within the GIT is yet to be characterised (Table 2).
Interestingly, the hepatic cellular uptake of
S. japonicum EV-derived miR-71b and bantam
(found in adult worm EV) was observed in vitro
using Hepa1-6 (murine liver) cell line as well as in
vivo in infected animals.121 This suggests that
schistosome EVs share some homologous miRNA
cargo across life stages that exhibit immune
cell-specific mechanisms. Further supporting this, a
seminal 2020 study further demonstrated the
anti-fibrotic function of S. japonicum miR-71a,
which biodistributed mainly to the liver, thymus
and spleen. This miRNA specifically inhibited
hepatic stellate cell activity through the
downregulation of semaphorin (Sema) 4D
expression and the suppression of TGF-b/SMAD
and IL-13/STAT6. Additionally, Sja-miR-71a
increased CD3e+CD4+CD25+FoxP3+ and
CD3e+CD4+FoxP3+T-bet+ Tregs in the spleens
and livers of S. japonicum-infected mice while
decreasing Th1/Th2/Th17 effector responses caused
by their expression of Sema4D.122 S. japonicum
Sja-miR-71a-containing EVs were shown to be
internalised by macrophages and neutrophils,
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acting as a peroxisome proliferator-activated
receptor (PPAR)-c agonist to decrease Sema4D and
increase IL-10 production, inhibiting the formation
of macrophage and neutrophil extracellular
traps.123 Whether schistosome egg-derived EVs
and their miRNA cargo enact similar regulatory
processes in the GIT is yet to be elucidated;
however, the above data illustrate the essential
role of egg-derived EVs in promoting tolerance
and controlling inflammatory Th1/Th2/Th17
activation to promote survival. Given the essential
role of gastrointestinal egg migration for survival,
it is likely that egg EVs also enact similar
tolerogenic mechanisms in the GIT, making them
relevant to FA.

CONCLUSIONS

Although schistosome infections and their E/S
products appear to confer protection against
allergic diseases, the risks associated with the live
parasite make their therapeutic exploitation
complicated and costly. The different mucosal
immune environments in the vasculature versus
the GIT make it essential to characterise
schistosome-mediated tolerance in the gut,
requiring a deeper understanding of localised
regulatory immune reactions to migrating eggs.
However, when considering the vast number of
soluble compounds excreted/secreted by parasites
throughout their life stages as described in this
review, schistosomes certainly present an untapped
source of highly potent immunomodulatory
molecules. There is a considerable list of
compounds already identified that, based on their
proposed mechanism of action, are worth
evaluating in models of allergic diseases.
Schistosomes appear to have a strong
immunomodulatory effect on B cells, and the
capacity to induce Bregs as well as Tregs, which are
essential for restoring natural tolerance to FA.
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