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Abstract. Small-cell lung cancer (Sclc) is a type of lung 
cancer with early metastasis, and high recurrence and 
mortality rates. The molecular mechanism is still unclear and 
further research is required. The aim of the present study was 
to examine the pathogenesis and potential molecular markers 
of Sclc by comparing the differential expression of mrna 
and microrna (mirna) between Sclc tissue and normal 
lung tissue. a transcriptome sequencing dataset (GSe6044) 
and a non-coding rna sequence dataset (GSe19945) were 
downloaded from the Gene expression omnibus (Geo) data-
base. in total, 451 differentially expressed genes (deGs) and 
134 differentially expressed miRNAs (DEMs) were identified 
using the r limma software package and the Geo2r tool of the 
GEO, respectively. The Gene Ontology function was signifi-
cantly enriched for 28 terms, and the Kyoto encyclopedia of 
Genes and Genomes database had 19 enrichment pathways, 
mainly related to ‘cell cycle’, ‘dna replication’ and ‘oocyte 
meiosis mismatch repair’. The protein-protein interaction 
network was constructed using cytoscape software to identify 
the molecular mechanisms of key signaling pathways and 
cellular activities in Sclc. The 1,402 mirna-gene pairs 
encompassed 602 target genes of the deMs using mirnaWalk, 
which is a bioinformatics platform that predicts deM target 
genes and mirna-gene pairs. There were 19 overlapping 
genes regulated by 32 mirnas between target genes of the 
deMs and deGs. Bioinformatics analysis may help to better 
understand the role of deGs, deMs and mirna-gene pairs 
in cell proliferation and signal transduction. The related hub 

genes may be used as biomarkers for the diagnosis and prog-
nosis of Sclc, and as potential drug targets.

Introduction

lung cancer is characterized by malignant neoplasms in the 
lung, with high morbidity and mortality rates worldwide (1). 
as a neuroendocrine tumor, small-cell lung cancer (Sclc) has 
the characteristics of strong invasiveness, and high recurrence 
and mortality rates, accounting for ~13.6% of lung cancer (2). 
In the last few decades, there has been no significant improve-
ment in the survival rate of patients with Sclc, and patients 
with SCLC have no obvious benefit from the current molecular 
targeted drugs (3). Sclc resistance to conventional treatment 
and its high recurrence rate are primarily due to its markedly 
high mutation rate and genomic instability (4). a previous 
study revealed that TP53 and rB transcriptional corepressor 1 
(rB1) were the most frequently mutated genes in Sclc, with 
mutation frequencies of ~85 and 57%, respectively (5). High 
prevalence of mutations in tumor suppressor genes TP53 and 
rB1, alterations in chromosome 3p, has been revealed to be 
significantly correlated with a poor outcome (6). Mutations 
leading to dysregulated expression levels of a number of genes, 
including PiK3ca, PTen, rPTor independent companion 
or MTor complex 2 and mTor in the Pi3K/aKT/mTor 
pathway promote the cell cycle, inhibit apoptosis and facili-
tate early metastasis in SCLC (7). Gene amplifications of the 
MYC family, SOX2 and fibroblast growth factor receptor 1 
were identified in patients with SCLC (8). Enhancer of zeste 2 
polycomb repressive complex 2 subunit (eZH2) overexpres-
sion was associated with a higher degree of methylation of the 
eZH2 promoter, which had a considerable impact on Sclc 
cell viability (9).

Micrornas (mirnas/mirs) are endogenous, highly 
conserved small rnas, 20-24 nucleotides in length, which 
specifically bind to target mRNA to inhibit post‑ transcriptional 
gene expression. Mature mirnas, in the mirnP riboprotein 
complex, are complementary to the 3'untranslated region of the 
target gene to cleave or transfect the target gene mrna (10,11), 
and a single mirna typically regulates dozens of genes. 
According to a previous study, ~50% of the identified miRNAs 
are located on the genome at a tumor-associated fragile site, 
and are associated with tumor cell proliferation, differentiation 
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and apoptosis (12). Therefore, mirnas that are secreted by 
tumors can be used as biomarkers for different stages and 
different tumor types. The expression level of mir-25 in 
SCLC was revealed to be significantly upregulated and act as 
an oncogenic regulator by regulating cyclin e2 (13). mir-126 
downregulation promoted overexpression of vascular endo-
thelial growth factor a in lung cancer cell, thereby regulating 
angiogenesis (14). mir-17-92 and mir-1519-c directly interact 
with hypoxia-inducible factor 1-α, affecting tumor angiogen-
esis (15). in the present study, bioinformatics tools were used to 
analyze the SCLC expression profile chips in a public gene chip 
database, which provided a theoretical basis for the biological 
functions of related genes and their molecular mechanisms that 
were involved in the occurrence and development of Sclc.

Materials and methods

Microarray data. Gene chip data were screened using the Gene 
expression omnibus (Geo; http://www.ncbi.nlm.nih.gov/geo) 
database, a public genomic database containing the entire 
gene expression data, chips and microarrays. Human Sclc 
sample gene expression profile public datasets GSe19945 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi) and 
GSe6044 (16) were downloaded from Geo. The GSe19945 
dataset, which is a mirna dataset, contains 43 samples by 
surgical resection, including 35 Sclc samples and eight 
normal lung tissue samples. The expression of mirna was 
detected using the agilent Human 0.6K mirna Microarray 
G4471a platform. The mrna GSe6044 dataset, which was 
analyzed using the GPl201 [HG-Focus] affymetrix Human 
HG-Focus Target array platform, contained 14 samples by 
surgical resection, including nine Sclc samples and five 
normal lung tissue samples.

Differentially expressed genes (DEGs) and differentially 
expressed miRNAs (DEMs). The raw data of GSe6044 in the 
CEL file was effectively processed using the Affy package 
pair in r, using correction, normalization and log2 conver-
sion (17). The deGs in Sclc tissue compared with normal 
lung tissue were determined using limma package (18). deGs 
were screened with a false discovery rate (Fdr) corrected 
P<0.05 and |log fold-change (Fc)|>1. The deMs in Sclc 
tissue compared with normal lung tissue were confirmed using 
the Geo2r application from Geo. The false Fdr corrected 
P<0.05 and | log Fc|>1 were used as the screening thresholds.

Functional enrichment analysis of DEGs. daVid 
(https://david.ncifcrf.gov/), a widely used web-based genomic 
functional annotation tool, was used for data annotation 
analysis (19). in the present study, deGs were subjected to 
molecular function and pathway studies by Gene ontology 
(Go) analysis and Kyoto encyclopedia of Genes and Genomes 
(KeGG) pathway analysis.

Construction of protein‑protein interaction (PPI) networks 
and module research. The PPi network of the deGs was 
constructed using cytoscape software (version 3.6.0; www. 
cytoscape.org) to identify the molecular mechanisms of key 
signaling pathways and cellular activities in Sclc. an interac-
tion score >0.4 was considered to identify the significant PPIs. 

using the network analyzer plug-in of cytoscape software, 
the association between the genes was analyzed, according 
to network topology characteristics such as the clustering 
coefficient of the network, distribution of node degree and 
shortest path (20). Subsequently, molecular complex detection 
(MCODE) was used to confirm the hub genes. The screening 
thresholds were ‘degree cutoff=2’, ‘node score cutoff=0.2’, 
‘k-core=2’ and ‘max·depth=100’.

miRNA target prediction. mirnaWalk is a bioinformatics 
platform for predicting deM target genes and mirna-gene 
pairs. in the present study, the targets of the deMs were 
predicted using eight databases: mirWalk (21), miranda (22), 
rna22 (https://cm.jefferson.edu), mirdB (23), TargetScan 
(http://www.targetscan.org), mirMap (https://mirmap.ezlab.
org), mirnaMap (http://mirnamap.mbc.nctu.edu.tw) and 
PiTa (https://genie.weizmann.ac.il). The screening criterion 
was that the mirna target exists in the eight databases 
concurrently. The Venny 2.1 online Tool (http://bioinfogp.cnb.
csic.es) was used to find overlapping genes between DEGs and 
predictive genes of deMs. The mirna-gene negative regula-
tory network was depicted and visualized using cytoscape 
software.

Results

DEGs and DEMs. The data was successfully normalized 
to ensure the accuracy of the data. in the GSe6044 dataset, 
451 DEGs were identified in the SCLC samples compared 
with the normal lung tissue samples, of which 205 were 
downregulated and 246 were upregulated. in total, 20 deGs 
with the lowest P-value are presented in Table i. compared 
with normal lung tissue specimens, 134 deMs were detected 
in Sclc specimens, of which 86 were downregulated and 
49 were upregulated. The 20 deMs with the lowest P-value 
are presented in Table ii.

GO analysis of DEGs. The biological classification of the DEGs 
was analyzed utilizing the functional enrichment analysis of 
the daVid website. The Go functional enrichment resulted in 
a total of 421 deGs mapped to 403 Go terms. With the Fdr 
corrected P<0.05 as the significant enrichment criterion, 28 
significant enriched functional clusters were screened (Fig. 1). 
In total, 46.43% (13) GO terms were significantly enriched in 
cellular components, mainly involving nuclear components, 
including ‘nucleus’, ‘nucleoplasm’, ‘spindle’, ‘chromosome’ and 
‘kinetochore’. enrichment of 11 Go terms, such as ‘G1/S transi-
tion of mitotic cell cycle’, ‘cell division’, ‘mitotic nuclear division’, 
‘dna replication’, ‘mitotic sister chromatid segregation’, ‘sister 
chromatid cohesion’, ‘positive regulation of cell proliferation’ and 
‘dna replication initiation’, belonged to biological processes. a 
total of four molecular functions were enriched, mainly involving 
binding-related terms, such as ‘protein binding’, ‘calcium-depen-
dent protein binding’ and ‘damaged dna binding’.

Pathway analysis of DEGs. The present study used the daVid 
online tool to perform KeGG enrichment analysis on 451 
deGs. a total of 227 deGs were mapped into the KeGG 
database, and P<0.05 was used as an enrichment screening 
standard. in total, 19 enriched functional clusters of the deGs 
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Table Ⅱ. Top 20 DEMs between SCLC tissues compared with 
normal lung tissues.

mirnas adjusted P-value log Fc

hsa-mir-96 1.31x10-12 3.82
hsa-mir-126 1.67x10-12 -3.77
hsa-mir-183 7.50x10-12 4.58
hsa-mir-182 2.27x10-11 3.72
hsa-mir-638 3.72x10-11 -2.93
hsa-mir-1 9.33x10-11 -4.64
hsa-mir-130b 1.85x10-10 4.21
hsa-mir-451 3.25x10-9 -4.22
hsa-mir-144 5.12x10-9 -4.61
hsa-mir-145 6.85x10-9 -3.88
hsa-mir-26a 7.48x10-9 -1.82
hsa-mir-486-5p 2.16x10-8 -4.04
hsa-mir-301b 2.16x10-8 3.91
hsa-mir-26b 2.18x10-8 -1.92
hsa-mir-338-3p 2.66x10-8 -3.79
hsa-mir-140-3p 3.19x10-8 -2.40
hsa-mir-140-5p 3.25x10-8 -1.99
hsa-mir-18a 3.25x10-8 3.35
hsa-mir-498 4.75x10-8 -2.22
hsa-mir-7 4.75x10-8 5.08

deMs, differentially expressed mirnas; Sclc, small cell lung 
cancer; Fc, fold-change.

Table Ⅰ. Top 20 DEGs between SCLC tissues compared with 
normal lung tissues.

Gene name adjusted P-value log Fc

FaBP6 1.77x10-4 -1.78
il17rB 1.77x10-4 1.49
acaa2 1.77x10-4 2.12
cdKn2a 1.77x10-4 2.33
MarcKSl1 2.36x10-4 2.10
TMSB15 2.36x10-4 4.6
GSTa1 3.14x10-4 -4.26
cYP4B1 3.14x10-4 -3.34
TSPan8 3.14x10-4 -2.94
ceS1 3.14x10-4 -2.51
PdliM4 3.14x10-4 -1.41
cYP2J2 3.14x10-4 -1.13
Hdac2 3.14x10-4 1.39
id4 3.14x10-4 1.99
SoX4 3.14x10-4 2.24
McM6 3.14x10-4 2.32
ToP2a 3.14x10-4 2.75
TYMS 3.14x10-4 2.88
MeST 3.14x10-4 3.78
ucHl1 3.37x10-4 3.08

deGs, differentially expressed genes; Sclc, small cell lung cancer; 
Fc, fold-change.

Figure 1. Go analysis of deGs in the GSe6044 dataset. Go, Gene ontology; deGs, differentially expressed genes.
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were obtained (Fig. 2), including ‘cell cycle’ (26 genes), ‘path-
ways in cancer’ (22 genes), ‘oocyte meiosis’ (13 genes), ‘dna 
replication’ (11 genes), ‘p53 signaling pathway’, ‘chemical carci-
nogenesis’, ‘drug metabolism-cytochrome p450’ and ‘mismatch 
repair’.

Construction of PPI networks. The visual PPi network of 
451 deGs was constructed using cytoscape software. The 
isolated nodes and partially loosely connected gene nodes 

were removed, and the remaining deGs together constituted a 
complex multi-center interaction network map to examine the 
association between deGs, which contained 425 nodes and 
3,770 edges. among the 425 nodes, 10 deGs with the highest 
degree of nodes were screened based on the cytoscape soft-
ware analysis results (Fig. 3). The results were as follows: dna 
topoisomerase ii α (ToP2a), proliferating cell nuclear antigen 
(Pcna), cdK1, cyclin B1 (ccnB1), replication factor c 
subunit 4 (RFC4), cyclin A2 (CCNA2), flap structure‑specific 

Figure 2. KeGG analysis of deGs in the GSe6044 dataset. KeGG, Kyoto encyclopedia of Genes and Genomes; deGs, differentially expressed genes.

Figure 3. Top 20 hub genes in Sclc. Sclc, small cell lung cancer.
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endonuclease 1 (Fen1), aurora kinase a (aurKa), minichro-
mosome maintenance complex component 2 (McM2) and 
cdK2. The key modules were obtained using Mcode, with 
95 hub genes with a genomic degree ≥5. The two key modules 
with the highest degree were screened, and the functional 
and pathway enrichment of genes in these two modules was 

analyzed using daVid online tools (Fig. 4a and B). Module 
1 contained 62 nodes and 1,753 edges, mainly involved in ‘cell 
cycle’, ‘dna replication’ and ‘οocyte meiosis’. Module 2 was 
comprised of 19 nodes and 59 edges, which were associated 
with ‘complement and coagulation cascades’, ‘chemokine 
signaling pathway’ and ‘pyrimidine metabolism’ (Table iii).

Figure 4. Top 2 modules from the protein-protein interaction network analysis. (a) Module 1 and (B) module 2.

Table Ⅲ. KEGG analysis of module 1 and module 2.

category Term P-value count Genes

Module 1 hsa04110: cell cycle 2.48x10-21 18 cdc7, cdc6, cdK1, TTK, cdc20, eSPl1, 
    PTTG1, McM2, McM3, cdK2, McM6,
    ccnB1, Mad2l1, ccnB2, BuB1, Pcna,
    BuB1B, ccna2
 hsa03030: dna replication 6.53x10-16 11 rFc5, PriM1, rFc3, rFc4, Pole2, Pcna, 
    McM2, McM3, rnaSeH2a, Fen1, McM6
 hsa04114: oocyte meiosis 1.04x10-10 11 ccnB1, cdK1, Mad2l1, ccnB2, BuB1, 
    FBXo5, aurKa, cdc20, eSPl1, PTTG1,
    cdK2
 hsa04914: Progesterone-mediated oocyte 4.16x10-6 7 ccnB1, cdK1, Mad2l1, ccnB2, BuB1, 
 maturation   ccna2, cdK2
 hsa03420: nucleotide excision repair 8.58x10-5 5 rFc5, rFc3, rFc4, Pole2, Pcna
 hsa03430: Mismatch repair 1.99x10-4 4 rFc5, rFc3, rFc4, Pcna
 hsa04115: p53 signaling pathway 3.43x10-4 5 ccnB1, cdK1, ccnB2, rrM2, cdK2
 hsa00240: Pyrimidine metabolism 1.62x10-3 5 PriM1, TYMS, Pole2, rrM2, rrM1
 hsa03410: Base excision repair 1.20x10-2 3 Pole2, Pcna, Fen1
Module 2 hsa04610: complement and coagulation 6.19x10-4 5 a2M, c3, SerPina1, cFd, ProS1
 cascades   
 hsa04062: chemokine signaling pathway 4.55x10-3 4 cXcl1, cXcr4, GnB1, ccl19
 hsa00240: Pyrimidine metabolism 1.50x10-2 3 nMe5, cTPS1, enTPd3

P<0.05 was used as an enrichment screening standard. ‘count’ corresponds to the number of enriched genes in each term. KeGG, Kyoto 
encyclopedia of Genes and Genomes.
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miRNA‑gene regulatory network. The mirnaWalk 
platform identified 1,402 mirna-gene regulatory pairs 
containing 602 target genes of the deMs (Fig. 5). There were 
19 overlapping genes between target genes of the deMs and 
deGs. as presented in Fig. 6a, a total of 19 overlapping genes 
[lamin B1 (LMNB1), SOX11, fibroblast growth factor 9 (FGF9), 
Kruppel like factor 5 (KlF5), polypyrimidine tract binding 
protein 2 (PTBP2), collagen type iV α 1 chain (col4a1), 
nucleolar protein 4 (nol4), cadherin eGF laG seven-pass 
G-type receptor 3 (celSr3), HlF transcription factor 
(HlF), Par bZiP family member, kinesin family member 11 
(KiF11), cysteine and glycine rich protein 2 (cSrP2), 
cdP-diacylglycerol synthase 1 (cdS1), aldehyde dehydroge-
nase 1 family member a1 (aldH1a1), iSl liM homebox 1 
(iSl1), rad21 cohesin complex component (rad21), SoX4, 
erythrocyte membrane protein band 4.1 like 4B (ePB41l4B), 
fibulin 1 (FBln1) and mutS homolog 2 (MSH2)] were 
regulated by 32 different mirnas. The 19 significantly 
upregulated or downregulated genes and 32 deMs are 
presented in a heat-map (Fig. 7a and B). in addition, three 

target genes (KiF11, MSH2 and rad21) of the 19 overlapping 
genes belonged to the hub genes of GSe6044 and were regu-
lated by five different miRNAs (miR‑101, miR‑21, miR‑92a, 
mir-181a and mir-25; Figs. 6B and 8).

Discussion

Sclc is characterized by high malignancy and early exten-
sive metastasis. The survival time of patients with extensive 
disease is only 8-13 months and the 2-year survival rate is 
~5% (24). Most patients are diagnosed with distant metas-
tasis, which is often accompanied by poor prognosis (25), and 
the pathogenesis of Sclc at the molecular level is not clear. 
Therefore, there is an urgent need to identify more effective 
biomarkers for diagnosis and treatment. Microarray tech-
nology is useful in studying the changes in transcription and 
epigenetics of Sclc genes, which is an effective approach 
for identifying disease biomarkers. in addition, mirnas 
affect the occurrence, metastasis and recurrence of Sclc by 
upregulating or downregulating gene expression levels. in the 

Figure 5. PPi network of mirna-gene pairs. diamonds represent mirnas, and circles represent target genes predicted by mirnas. PPi, protein-protein 
interaction; mirnas, micrornas.
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present study, bioinformatics technology was used to study 
the deGs and deMs of Sclc, and the mirna-gene regula-
tory network was constructed using a software platform to 
examine the molecular pathological mechanisms of Sclc.

In the present study, 451 DEGs were identified from the 
GSe6044 dataset and subsequent bioinformatics analysis was 

conducted. The results of the KeGG and Go enrichment anal-
ysis of the deGs revealed that the genes enriched in a number 
of signaling pathways, such as ‘p53 signaling pathway’, ‘cell 
cycle’, ‘dna replication’, and ‘oocyte meiosis’ were mostly 
overexpressed, but the expression levels of genes aggregated 
in ‘nucleotide excision repair’, ‘mismatch repair’ and ‘base 

Figure 6. (a) PPi network of 19 target genes, which were regulated by 32 deMs. (B) Three hub genes were regulated by 5 different mirnas. PPi, protein-protein 
interaction; deMs, differentially expressed mirnas; mirnas, micrornas.

Figure 7. (A) Heat map revealing the expression profiles of 32 DEMs. (B) Heat map revealing the expression profiles of 19 DEGs. The colors depict high (red) 
and low (green) level of gene expression. The color alteration from green to black to red represents increasing expression. deGs, differentially expressed genes; 
deMs, differentially expressed mirnas.
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excision repair’ were mostly downregulated. p53 is a tumor 
suppressor gene that is activated during cell stress (including 
hypoxia, carcinogenesis and oxidative stress), inhibiting cell 
cycle progression and activating dna repair mechanisms to 
promote cell survival and maintain genomic integrity (26). 
The aberrant expression of p53 in Sclc leads to the activation 
of related signaling pathways, accompanied by the activation 
of downstream genes, such as p21, MdM2, cKd1 and Pcna, 
which promotes proliferation and inhibits apoptosis of cancer 
cells (5). A significant marker of malignant tumors is the loss of 
control of the normal cell cycle. Tumor cells with a number of 
alterations lead to genomic instability and unscheduled prolif-
eration (27). notably, the loss or overexpression of kinases 
during cell mitosis leads to uncontrolled cell proliferation and 
carcinogenesis (28). abnormal expression or methylation of 
key genes, including 8-oxoguanine dna glycosylase, ercc 
excision repair 3, TFiiH core complex helicase subunit, aGT 
and aTM, in classical dna repair pathways, such as nucleo-
tide excision repair and mismatch repair, will result in loss 
of the ability to repair dna damage caused by exogenous or 
endogenous gene toxicants, leading to tumorigenesis or drug 
resistance (29,30). Furthermore, other enriched functional 
clusters contained complement and coagulation cascades, 
drug metabolism-cytochrome P450, glutathione metabolism 
and chemical carcinogenesis. The significance of complement 
cascade in malignant tumors has not been fully elucidated, 
however some researchers hypothesize that the complement 
cascade and its activation products can secrete growth factors 
required for survival of cancer cells (8,31), and are also 
recruiters and inducers of immunosuppressive cells, which can 
produce reactive oxygen species, reactive nitrogen and other 
immunosuppressive molecules to help cancer cells escape the 
attack of the epidemic system (32). in addition, inhibiting the 
complement cascade and blocking programmed cell death 1 
can delay the progression of lung cancer models (33). in the 
present study, 10 core network nodes were screened from the 
PPi network, which are considered the key genes for the occur-
rence and development of Sclc. For example, ToP2a is one 
of genes with the most nodes, and it is a subfamily of dna 
topoisomerase ii, which controls and changes the topological 
state of dna during transcription. a previous study has shown 

that ToP2a is overexpressed in Sclc (34). The lower the 
differentiation degree of tumors, the higher the expression 
level of ToP2a (35).

in the present study, microarray analysis revealed that the 
occurrence mechanism of Sclc may be related to the expres-
sion of mirna. Through the analysis of GSe19945 data, 
86 were downregulated and 49 were upregulated, in which 
miR‑1290 was the highest and miR‑1 was the most significantly 
regulated. mir-1290 and mir-1 are abnormally expressed in a 
variety of malignancies; mir-1290 promoted the progression 
of non-small cell lung cancer by inhibiting MT1G (36), but 
there have only been a few studies on their role in Sclc. 
Subsequently, the integration analysis of the mirna-gene 
regulatory pairs and deGs revealed that there are 19 over-
lapping genes regulated by 32 different mirnas. Further 
analysis revealed that three target genes (KiF11, MSH2 and 
rad21) belong to the hub genes of GSe6044 and are regu-
lated by five different miRNAs (miR‑101, miR‑21, miR‑92a, 
mir-181a and mir-25). among them, KiF11 (degree=75), 
MSH2 (degree=61) and rad21 (degree=42) exhibited the 
highest degree, indicating that these three genes may play a 
core role in Sclc. The present study demonstrated that the 
decreased expression of mir-101 may lead to the upregulation 
of KiF11. as a tumor suppressor in malignant tumors, mir-101 
has been revealed to be downregulated in various malignant 
tumors, such as lung, colon and breast cancer (37). a basic 
study revealed that mir-101 could directly inhibit the over-
expression of eZH2 in lung cancer cells, and cooperate with 
paclitaxel to induce apoptosis, and inhibit invasion and cell 
proliferation (38). in addition, a meta-analysis of 2,088 tumor 
patients revealed that the low expression of mir-101 predicted 
poor overall survival and could be used as a predictive indi-
cator for clinicopathological features (39). KiF11, also known 
as eg5, is a homotetramer of Bimc in kinesin family 5, whose 
overexpression leads to spindle defects and genetic instability, 
affecting cell division and proliferation, and is associated with 
tumor invasion, metastasis, recurrence and prognosis (40,41).

in the present study, MSH2 was predicted to be a target 
of mir-21, which was upregulated in Sclc, according to the 
GSe6044 and GSe19945 datasets. The higher the malignant 
degree of tumors, the higher the expression level of mir-21, 

Figure 8. Box‑plot revealing that the expression levels of KIF11, MSH2 and RAD21 are significantly different between SCLC tissues and normal lung tissues in 
the GSe6044 dataset. Sclc, small cell lung cancer; KiF11, kinesin family member 11; MSH2, mutS homolog 2; rad21, rad21 cohesin complex component.
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which is considered a potential marker for Sclc (42,43). mir-21 
interacts with Tlr (Toll-like receptor) family members to 
stimulate TLR‑mediated pro‑inflammatory responses leading 
to tumor growth and metastasis (44). anti-mirna-21-5p 
(aM21), consists of one tertiary amine, one quaternary amine 
and two tertiary lipids, and has been used to intervene in mouse 
lung cancer models. aM21 can prolong survival and slows 
tumor growth in mice with lung cancer (45). as an upstream 
factor, mir-21 can regulate the expression of MSH2. it was 
observed that MSH2 was highly expressed in Sclc, which 
was similar to a study by Fujii et al (46). levallet et al (47) 
studied the expression of MSH2 in 681 cases of early lung 
cancer. The results revealed that high expression of MSH2 had 
poor prognosis and short survival time. The expression level 
of rad21 is regulated by mir-92a, mir-181a and mir-25. 
rad21 not only maintains sister chromatid binding and 
ensures correct replication, but also participates in dna double 
strand break repair and meiotic recombination (48,49). rad21 
is aberrantly expressed in various neoplasms such as breast, 
lung and rectal cancer, and serves a role in tumor development, 
prognosis and treatment (50-52). Similar to previous studies, 
the present results also indicated that mir-92a is overexpressed 
in Sclc. Highly expressed mir-92a enhances drug resistance 
and reduces survival of Sclc, and is thus considered a predic-
tive biomarker for drug resistance and survival prognosis (53). 
mir-181a induces macrophage transformation into an M2 
phenotype, which promotes macrophage-associated tumor 
cell metastasis by targeting KlF6 and c/eBPα (54). mir-25 
has been revealed to be associated with cell proliferation and 
invasiveness in Sclc cell lines (13).

in conclusion, the present study analyzed gene and mirna 
expression between lung cancer tissues and normal lung tissues 
using Sclc transcription sequencing data and non-coding rna 
data from the GEO database, and identified aberrant expression of 
mrnas and mirnas in Sclc. using bioinformatics analysis, 
the signaling pathways of aberrantly expressed gene enrichment 
were identified, and it was demonstrated that hub genes, such as 
KiF11, MSH2 and rad21, are regulated by mirnas. These 
genes are predicted to be biomarkers for the diagnosis, prognosis 
and therapeutic response prediction of Sclc. However, further 
research is required to verify the results.
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