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Background: Accurate segmentation of rib fractures represents a pivotal procedure within surgical 
interventions. This meticulous process not only mitigates the likelihood of postoperative complications but 
also facilitates expedited patient recuperation. However, rib fractures in computed tomography (CT) images 
exhibit an uneven morphology and are not fixed in position, posing difficulties in segmenting fractures. 
This study aims to enhance the accuracy of elongated rib fracture segmentation, ultimately improving the 
efficiency of clinical diagnosis.
Methods: In this study, we propose multi-stream and multi-scale fusion network based on efficient 
attention UXNet (M2SUXNet). It aims to enhance the segmentation accuracy of elongated rib fractures 
through multi-scale fusion attention enhancement. Firstly, we propose the multi-stream and multi-scale 
fusion (M2SF) module in the feature extraction stage. The module is designed with two parallel paths. Each 
path analyzes the image content using a different feature level. Then, the module effectively distinguishes 
the more critical feature information in the channel according to the feature weight ratio. The M2SF 
module integrates information from different scales to obtain comprehensive information on global and 
local features, achieving a more diverse feature representation. Secondly, the efficient attention (EA) module 
combines different channel information of input features to integrate channel and spatial features of different 
channels. The module better combines the context information, establishes the dependency between the 
space and the channel, enhances the focusing ability of the network on the fractures of different shapes, and 
improves the segmentation accuracy. Thirdly, the joint loss function of BCE with Logits Loss and Dice Loss 
is used to solve the sample imbalance problem. 
Results: We verified the effectiveness of the proposed model on the public RibFrac dataset. The 
experimental results demonstrated that the model achieved a Dice coefficient of 75.34%, a joint intersection 
over union (IoU) of 60.44%, and a precision of 93.79%. 
Conclusions: The proposed model for rib fracture segmentation has higher accuracy and feasibility than 
other existing models. Besides, the M2SUXNet can effectively improve the segmentation performance of 
elongated rib fractures.
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Introduction

Rib fracture accounts for 40–80% of all chest injuries and 
increases annually (1). Such fractures can lead to a range 
of complications (2). Computed tomography (CT) images 
can display the fracture area more thoroughly and carefully, 
which meets the requirements of clinical rib fracture 
diagnosis (3). Therefore, CT has become one of the most 
used methods for diagnosing fracture injury. A previous 
study showed that a certain proportion of fractures are often 
missed in imaging diagnostic evaluation, resulting in poor 
prognosis (4). Segmenting rib targets can be challenging 
due to their different sizes, unfixed positions, and irregular 
shapes. Consequently, rib fracture segmentation in CT 
images is still complex. Therefore, realizing accurate 
computer-aided diagnosis technology for rib fractures is of 
paramount significance for clinical treatment.

Convolutional neural network is one of the traditional 
image segmentation algorithms. Fully convolutional 
network (FCN) is a breakthrough application of deep 
learning (DL) in image semantic segmentation (5). It 
extracts image features by entire convolution operation 
and generates a semantically segmented image of the 
original size by up sampling. Similar to FCN, U-Net (6)  
ultimately adopts a convolutional neural network for 
semantic segmentation. Its structure consists of a symmetric 
encoder and decoder. U-Net effectively connects the 
encoder and decoder features by simultaneously using 
skip connection paths between the encoding and decoding 
segments, reducing the loss of feature information. Due to 
its performance, U-Net has become the dominant medical 
image segmentation method. Many researchers have 
developed and extended the U-Net structure. U-Net++ (7)  
effectively optimizes the feature map and improves the 
precision and accuracy of segmentation tasks by introducing 
dense skip connection paths based on U-Net. By adding 
a soft attention mechanism to the skip connection,  
AttUNet (8) can stop the network from reusing features 
from irrelevant regions and make it pay more attention to 
the essential features of specific local areas. ResU-Net (9) 
and DenseU-Net (10) replace the convolutional block of 
U-Net with ResNet and DenseNet, respectively, which 
strengthens the ability of the network to extract features and 
improves the convergence speed of the model. nnUnet (11) 
is a base robust and adaptable network framework. It obtains 
good segmentation results through simple preprocessing 
methods and reduces the complexity of the data preparation 
stage. UXNet (12) employs three-dimensional (3D) depth 

convolutions for volume segmentation tasks, which utilizes 
LK-sized depth convolutions as a generic feature extraction 
backbone and introduces pointwise depth convolutions to 
scale the extracted representations efficiently with fewer 
parameters.

Meanwhile, with the progress of artificial intelligence, 
many architectures inspired by U-Net have been 
proposed in medical image processing. Rehman et al. (13)  
and Lin et al. (14) respectively improved the model 
based on U-Net to achieve brain tumor segmentation. 
Zhou et al. (15) developed a novel M-DDC architecture 
based on a joint U-Net segmentation network and a 
deep convolutional network to implement MRI-based 
classification of demyelinating diseases. Ryu et al. (16) built 
Seg-Net based on U-Net and improved the accuracy of 
model segmentation by allowing accurate retinal vessel 
segmentation to be fused with dense multi-scale features. 

Applying the DL image segmentation algorithm to the 
auxiliary diagnosis system for rib fractures can improve 
the accuracy and efficiency of rib fracture diagnosis. 
Currently, fracture diagnosis systems are classified into two 
categories (17). The first category of traditional fracture 
diagnosis models (18) usually relies on manual feature 
extraction. It uses rule-driven image analysis methods 
to diagnose suspected fracture regions. This approach 
combines a doctor’s experience with manual intervention. 
In contrast, the second type of model based on DL 
can automatically learn features from data. It performs 
fracture diagnosis more efficiently and with less or even no 
manual intervention. This approach significantly improves 
the automation level and accuracy of diagnosis. Most 
available studies have focused on rib fracture detection 
in CT images (19-22), and only a few have explored rib 
fracture segmentation. Cao et al. (23) proposed a shape 
perception method based on DL. By utilizing contrastive 
learning, numerous unlabeled CT images were utilized for 
training the model, resulting in the accurate detection and 
segmentation of rib fractures. Jin et al. (24) proposed the 
FracNet model for rib fracture diagnosis and formulated 
the detection task as a 3D segmentation task for the first 
time. This method introduced sliding window sampling 
to generate region samples from CT images, reducing 
the model’s computational complexity in non-rib regions. 
The above methods have different contributions to rib 
fracture segmentation. Jin et al. and Gao et al. (25) showed 
that accurate segmentation of slender rib fractures is 
more difficult than that of circular fractures. The shape 
of slender rib fractures is often complex, and feature 
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information needs to be obtained from different scales. 
However, current research on rib fracture segmentation 
uses the same scale to normalize all fractures, ignoring local 
details. The multi-scale feature fusion strategy considers 
the context information of the image while better handling 
the local details. Therefore, we propose a novel method 
based on a multi-scale feature fusion strategy to accurately 
segment rib fractures while considering the fine details and 
characteristics of the fracture.

This paper proposes a new solution called M2SUXNet, 
which addresses the difficulty of segmenting rib fractures in 
CT images through a multi-scale segmentation framework. 
First, we propose a multi-stream and multi-scale fusion 
(M2SF) module. The M2SF module integrates feature 
information from different scales after feature extraction. 
At the same time, the module can effectively integrate the 
information of different scales to obtain comprehensive 
information on global and local features. Inspired by the 
attention mechanism (26-28), this paper proposes an 
efficient attention (EA) module. The EA module combines 
different parts of input features to integrate and weigh 
features in other channels and spatial locations. It improves 
the ability of the model to distinguish between forms of 
rib fractures and suppress noise by adaptively adjusting the 
channel relationship in the input feature map. The dual 
attention mechanism allows the model to fully obtain feature 
information from different scales and enhance attention to 
subtle details. Unlike other UNet variants, M2SUXNet uses 
the ConvNet module to tune the hierarchical transformer 
for robust voxel segmentation. In addition, M2SUXNet can 
fuse multi-scale image information to achieve more diverse 
feature representation and fuse channel features and spatial 
features of different channels.

In summary, our main contributions are as follows:
(I) This paper provides an innovative multi-stream 

and multi-scale fusion network architecture for rib 
fracture segmentation in CT images.

(II) We propose a multi-scale attention structure in 
the encoder stage to fuse multi-scale features and 
obtain delicate global and local detail information.

(III) In the decoder stage, we propose an EA module to 
acquire the features of different receptive fields and 
communicate the complete context information. 

(IV) The proposed M2SUXNet can effectively improve 
the segmentation performance of elongated rib 
fractures.

The remainder of the paper is organized as follows: 
In Section 2, the framework structure of the proposed 

model is comprehensively explained. Section 3 describes 
the experimental setup and evaluation methodology, and 
analyzes the results of the experiment. Section 4 discusses 
some related issues. Finally, Section 5 summarizes the 
conclusions.

Methods

In this section, we first introduce the M2SUXNet 
architecture for rib fracture segmentation. Then, the basic 
structure and function of M2SF module and EA module 
are introduced in detail. Finally, the data set used in the 
experiment, implementation details, and evaluation metrics 
are introduced. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Overview of the model

Compared with two-dimensional (2D) images, 3D images 
are more complex and require higher computing resources. 
At the same time, rib fractures in CT images have the 
characteristics of unfixed positions and different shapes. 
Compared with traditional convolution, deep convolution 
extracts more complex feature representations through 
multi-level convolution and pooling, reduces the number 
of parameters, and improves efficiency and generalization 
ability. Point convolution reduces the number of parameters 
and calculations by reducing the channel dimension, 
enhances the expression ability of the model, and 
improves the quality of feature representation and model 
performance. Based on the above factors, we designed the 
M2SUXNet network architecture based on 3DUXNet. 
M2SUXNet aims to obtain feature information of different 
scales from 3D chest CT images and enhances the model’s 
attention to tiny details of images through the dual 
attention mechanism. The specific structure of M2SUXNet 
is shown in Figure 1.

UXNet Block

In order to perform feature extraction efficiently with fewer 
parameters, 3DUXNet is used as the baseline network and 
the original UXNet Block is maintained in the proposed 
model M2SUXNet. Figure 2 illustrates the UXNet Block 
structure. The UXNet Block comprises four stages, each with 
two large kernel (LK) convolutional blocks (i.e., L=8 total 
layers). Each block has a depthwise convolutional scaling 
(DCS) layer followed by a depthwise weighted convolution 
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(DWC) layer. The DCS layer helps to scale the feature map 
dimension (up to 4 times the input channel size) without 
increasing the model parameters. It minimizes redundancy in 
the volumetric context learned across channels. In order to 
exchange information between channels, we use a standard 
convolutional block with a kernel size of 2×2×2 and a stride 
of 2. The same process continues in phases 2, 3, and 4. 

Such hierarchical representations are extracted in each stage 
in a multiscale setting and are further used to learn dense 
volumetric segmentation. The outputs of layers l and l+1 are 
defined as follows.

 ( )( )1 1ˆ ˆ ˆl l lz DWC LN z z− −= +
 

[1]

 ( )( )ˆ ˆl l lz DCS LN z z= +
 

[2]

 ( )( )1ˆ ˆ ˆl l lz DWC LN z z+ = +
 

[3]

 ( )( )1 1 1ˆ ˆl l lz DCS LN z z+ + += +
 

[4]

Where ,  ˆ lz  and 1ˆ lz +  a re  the  outputs  o f  the  deep 
convolutional layers at layer (l) and layer (l+1), respectively. 

lz  and 1lz +  are the outputs of the depth convolutional scaling 
layers of layer (l) and layer (l+1), respectively. DWC() 
represents the deep convolution operation, which is used to 
apply a convolution kernel on each channel independently. 
DCS() stands for deep convolutional scaling and is used to 
scale the feature representation in the channel dimension. 
LN() stands for layer normalization, which is used to 
stabilize the training process and accelerate convergence.

Feature extraction stage

In the encoder module, a novel M2SF module is proposed, 
which aims to strengthen the focus of the encoder on tiny 
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Figure 2 The basic structure of UXNet Block. DWC, depthwise 
weighted convolution; DCS, depthwise convolutional scaling.

Figure 1 The overall framework of M2SUXNet. M2SF, multi-stream and multi-scale fusion; EA, efficient attention.
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image features while fusing feature information at different 
scales. The encoder module includes Basic Block, M2SF, and 
a downsampling module. In the encoder path, the feature 
information from different scales first passes through the 
feature extraction stage, such as Basic Block. Then, fusion 
and refinement of different scale features are realized by the 
M2SF module. Finally, the fused features were used as the 
encoder module output. 

Basic Block
The Basic Block consists of two convolutional layers: batch 
normalization (BN) and ReLU activation functions. The 
convolutional layer extracts input features, BN accelerates 
training and improves network stability, and the ReLU 
activation function introduces nonlinearity to enhance the 
representation ability of the model. The specific structure is 
shown in Figure 3.

Multi-stream and multi-scale fusion module
The normalization-based attention module (29) uses a 
sparse weight penalty to improve computational efficiency 
and maintain the same performance. Based on this concept, 

this paper suggests the M2SF module with a particular 
structure, as Figure 4 illustrates. The M2SF module uses 
the design of two parallel paths to integrate the feature 
information of different scales. In addition, the module 
can effectively distinguish the more significant feature 
information in the channel. The scale factor in BN reflects 
the size of the change in each channel, indicating its 
significance where the scaling factor is simply the variance 
of BN. The more prosperous the information in the 
channel, the more critical the feature information. Hence, 
the more significant the variance, the more dramatic the 
change in the channel. Conversely, channels with limited 
information provide only one type of information and are 
of limited value. Eqs. [5,6] represent the output features 
obtained at two different scales.

( )( )( )_32 32outF sigmoid W BN Fγ=  [5]

( )( )( )_64 64outF sigmoid W BN Fγ=  [6]

Among them, r reflects the scaling factor of each 
channel, Wγ represents the weight penalty, sigmoid() stands 
for sigmoid activation function, F32 represents the input 
features of scale 32, F64 represents the input features of scale 
64, Fout_32 represents the output features of scale 32, and 
Fout_64 represents the output features of scale 64.

The final output feature of the M2SF module is 
represented in Eq. [7]. 

( )_ 32 _ 64out out outF Trans F F= +
 

[7]

Among them, Trans() represents deconvolution, Fout_32 
represents a feature map of scale 32, Fout_64 represents a 
feature map of scale 64, and Fout represents output features.

By embedding the M2SF module into the neural 
network, feature information from different scales can be 
integrated. Using different feature levels to analyze image 
content and improve the model’s attention to relevant 
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Figure 3 The basic structure of Basic Block. Conv, convolutional 
layer; BN, batch normalization; ReLU, rectified linear unit.
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feature information can enhance the model’s ability to pay 
attention to different fracture shapes in rib CT images and 
improve segmentation accuracy.

Feature integration truncation

A new EA module is proposed in the decoder module, 
which aims to enhance the attention of the network to 
the tiny details of the fracture. The EA module effectively 
captures channel interaction information from low- and 
high-level features and enables the attention mechanism 
to adjust the two sets of features before fusing them. The 
decoder module includes UP Block, EA module, and 
deconvolution. In the decoder path, the low-level features 
from the encoder module and the high-level features 
from the decoder module are first spatially refined by 
the EA module and then concatenated and fused by the 

convolutional block. Finally, UP Block learns features and 
adapts to attention mechanisms. 

UP Block
The UP Block consists of two convolutional layers, a BN 
layer, a ReLU activation function, and a deconvolution layer. 
The convolutional layers extract the input data features, 
and after BN and ReLU activation, the deconvolution layer 
performs upsampling to recover the spatial dimension of 
the input data. Figure 5 shows the specific structure of UP 
Block.

EA module
This paper proposes an attention enhancement module 
named EA to improve the ability of the network model to 
obtain minute details of rib fractures. The specific structure 
is shown in Figure 6. The module combines different parts 
of input features to integrate and weigh features in other 
channels and spatial locations. It improves the ability of the 
model to distinguish different shapes of rib fractures and 
suppress noise by adapting the channel relationship in the 
input feature map. The EA module consists of two identical 
branches. There are two parts involved in the processing 
of features. One processes the features passed through 
the encoder, and the other processes the features passed 
through the decoder. Taking the forward propagation 
process of a single branch as an example, it is as follows.

The input feature map is split into two parts X1 and X2, 
performing 3×3 convolution operations on each part. Then, 
the feature map X is obtained by integrating the information 
from the different branches by concatenating the output 
feature maps of the two branches together. Next, channel 
shuffling is performed, and the average and maximum 
values of the feature maps are extracted using adaptive 
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layer; BN, batch normalization; ReLU, rectified linear unit; 
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Figure 6 The basic structure of the efficient attention module.
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average pooling and adaptive max pooling to obtain Y1 and 
Y2 respectively. This process is shown in Eqs. [8,9]. Where 
maxp() represents the max pooling operation and avgp() 
represents the average pooling operation.

( )1Y maxp X=
 

[8]

( )2Y avgp X=
 

[9]

In order to introduce a non-linear relationship and enhance 
the discriminative ability to distinguish between different 
elements, we utilize the Sigmoid function as an activation 
function. Each element of the output feature map is mapped to 
a range from 0 to 1. Finally, the output of the Sigmoid function 
is multiplied at the element level with the original feature map 
X1 to obtain the final enhanced feature map Y.

This process is shown in Eq. [10]. Where, mul() 
represents multiplication, sigmoid() represents the sigmoid 
activation function, and concat() represents feature 
concatenation.

( )( )( )1 2 1, ,Y mul sigmoid concat Y Y X=
 

[10]

The final output feature map '
eF  of a single branch is 

formed by concatenating the enhanced feature submap Y 
and the original feature map X2. This process is shown in 
Eq. [11], where concat() represents feature concatenation.

( )2,'
eF concat Y X=

 
[11]

 
The EA module performs the task of integrating and 

weighing input features from various channel locations. It 
enhances the model’s ability to segment different shapes of 
rib fractures and suppress noise by adaptively adjusting the 
channel relationship in the input feature map. 

Loss function

The loss function used for model training consists of 
classification loss BCE With Logits Loss and segmentation 
loss Dice Loss. The formula is as follows:

( ) ( )1 2, ,BCE DiceL L P G L P Gλ λ= +
 

[12]

Where, LBCE denotes BCE With Logits Loss and LDice 
represents Dice Loss. P is the predicted image and G is the 
ground truth. λ1 and λ2 are weight coefficients, λ1 is set as 0.5, 
and λ2 is set as 1.

The joint loss function of BCE With Logits Loss and 
Dice Loss is applied to the rib fracture segmentation task, 
which improves the robustness and generalization ability 
of the model by considering pixel-level and region-level 
information in CT images.

Dataset

The experimental data were obtained from the publicly 
available RibFrac Dataset of the MICCAI 2020 RibFrac 
Challenge. The dataset contains 420 samples from the 
training set, 80 from the validation set, and 160 from the 
test set. The data are 3D rib CT images annotated by 
several radiologists with varying experience in chest CT 
interpretation. An example image of 3D rib CT data is 
shown in Figure 7.

Three views show the results of slicing the data in the 
axial, coronal, and coronal planes. In addition, rib fractures 
of different shapes are shown in Figure 8. Considering that 
unannotated test set samples cannot be used to calculate 
prediction accuracy, 160 samples were removed from this 
experiment. Table 1 shows the specific data set allocation.

Sagittal viewCoronal viewAxial view3D Rib CT data

A B C

Figure 7 Example image of 3D rib CT data. The red marked area represents the presence of rib fractures in this area. (A) Axial view, (B) 
coronal view, and (C) sagittal view.
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Figure 8 Schematic representation of rib fractures of different shapes. These include axial view, coronal view, sagittal view, and 3D 
visualization results of rib fracture.

Implementation details 

The images at two scales, 32×32×32 and 64×64×64, are 
input into the network encoder to obtain the feature 
information of images at different scales fully. Considering 
that in the rib fracture segmentation task, the appearance of 

the case may vary horizontally; for example, the lesion may 
appear on the left or right side. More training samples in 
different directions can be generated by horizontal flipping, 
which improves the generalization ability of the model 
and the ability to identify lesions in different directions 
and enhances the robustness of the model. Therefore, 
we employ horizontal flipping for data augmentation 
during training. For the programming and development 
environment, CUDA-Toolkit 11.7 is utilized. Python 
3.9 is the programming language used, while the fastai is 
employed for the DL framework. In the experiment, we use 
the SGD optimizer to train the network with the batch size 
of 6, the epoch of 650. The learning rate increases linearly 
within the first epoch, from 0.00001 to 0.1, and gradually 
decreases and stabilizes in subsequent training. The specific 
details are shown in Table 2.

Evaluation metrics

This study applied the Dice coefficient (Dice), the joint 
intersection over union (IoU), and Precision to evaluate 
segmentation performance for rib fractures. The specific 
formula is as follows:

2* A B
Dice

A B
∩

=
+

 

[13] 

A B
IoU

A B
∩

=
∪

 
[14]

 
Here, A represents the set of pixels in the binarized 

Table 1 Detailed dataset distribution, number of samples, and 
number of fractures included

Dataset Sample size Number of fractures

Training set 395 3,096

Validation set 50 442

Testing set 55 885

Table 2 Experiment environment and configuration parameters

Parameters Details

Optimizer SGD

Data augmentation Horizontal flipping

CUDA 11.7

Python 3.9

Deep learning framework Fastai

Maximum learning rate 1e−1

Epoch 650

Batch size 6
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image of the prediction result. B represents the set of pixels 
in the binarized image of the true label. |A| denotes the 
number of elements in set A, and |B| denotes the number 
of elements in set B.

In computer-aided diagnosis technology, high Dice/
IoU accuracy ensures precise segmentation of fracture 
regions. This enhances the accuracy of fracture diagnosis 
and aids doctors in formulating more effective surgery and 
rehabilitation plans. Low Dice/IoU can lead to false or 
missed fracture detection. This affects diagnostic decisions 
and treatment outcomes, especially in cases of multiple or 
complex fractures. It can directly impact patients’ clinical 
prognosis and the quality of care.

TPPrecision
TP FP

=
+  [15] 

Here, TP represents the number of samples correctly 
predicted as positive class and FP represents the number 
of samples incorrectly predicted as positive class. Precision 
measures the proportion of regions predicted by the model 
as existing fractures. High Precision indicates that the 
model effectively reduces false positives in cases where 
normal areas are misclassified as fractures.

Results

Main result 

Studies have shown that it is harder to segment elongated 
rib fractures accurately. To verify the effectiveness of 
the model M2SUXNet, we first report the predicted 
segmentation illustration of the proposed M2SUXNet for 
circular and elongated shapes in the test set (Figure 9). 
Our proposed model can effectively solve the problem of 
low segmentation accuracy in elongated rib fractures. By 
adopting a multi-scale fusion approach and adding the dual 
attention mechanisms, our model significantly improves the 
segmentation of elongated shape rib fractures.

Ablation experiment

To investigate the contribution of different components of 
M2SUXNet to improve rib fracture segmentation accuracy, 
we selected different network architectures for experiments 
on public datasets. Firstly, the performance of the joint 
loss function of Dice Loss and BCE Loss was verified. The 
joint Loss function of Dice Loss and BCE Loss was also 
compared with the joint loss function of Dice Loss, Dice 

Loss and Focal Loss. M2SUXNet is used as a benchmark, as 
shown in Figure 1. Table 3 compares loss functions. 

Compared with the joint loss function of Dice Loss, 
Dice Loss and Focal Loss, the joint loss function of Dice 
Loss and BCE Loss achieved better training results, mainly 
because of their complementarity in segmentation tasks. 
Dice Loss performed well when coping with small targets 
and sample imbalance. In contrast, BCE Loss provided 
stable gradient signals early in training and accelerated 
model convergence through pixel-by-pixel loss calculation. 
Combining these two loss functions can improve 
segmentation accuracy and enhance training stability. In 
contrast, the joint loss of Dice and Focal Loss does not 
work well because their functions partially overlap. Focal 
Loss deals with class imbalance and focuses on hard-to-
classify samples. However, Dice Loss solved the imbalance 
problem in segmentation tasks well, resulting in the limited 
contribution of Focal Loss. In addition, the Focal Loss may 
cause large gradient fluctuations early in training. This 
affects the model’s convergence stability and leads to poorer 
segmentation results than a joint scheme of Dice and BCE 
Loss.

Secondly, the effectiveness of the multi-stream and 
multi-scale feature fusion strategy was verified. To fully 
demonstrate the contribution of the proposed module, we 
fused three classical attention mechanisms in the feature 
extraction stage of the model: convolutional block attention 
module (CBAM) module, SE module (30), and efficient 
channel attention (ECA) module (31), respectively. U 
represents the UXNet network with a joint loss function. 
We used U as a benchmark to assess network architectures 
and compare fusion versions of M2SF and EA. Here, “U+32” 
means that only 32×32×32 scale images are input into the 
network, “U+64” implies that only  64×64×64 scale images 
are input into the network, “U+32+64” indicates that 
the two different scales are combined by deconvolution, 
“U+32+64+CA” means adding CA module to U while 
fusing two different scales by deconvolution, “U+32+64+SE” 
means adding SE module to U while fusing two different 
scales by deconvolution, “U+32+64+ECA” means adding 
ECA module to U while fusing two different scales by 
deconvolution, and “U+M2SF” signifies that the M2SF 
structure is added to U.

The experimental results in Table 4 show that the multi-
scale fusion method significantly outperforms the single-
scale method in the rib fracture segmentation task. In 
particular, the “U+M2SF” structure achieves the best 
segmentation performance in the feature extraction stage 
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Figure 9 Visualization of M2SUXNet segmentation results for circular and elongated bar rib fractures in the test set. The true label is shown 
in red, and the prediction of the model is shown in green.

Table 3 Comparing the segmentation performance of different loss 
functions on the test set

Loss function Dice IoU

Dice Loss 74.82% 59.77%

Dice Loss + Focal Loss 73.85% 58.54%

Dice Loss + BCE Loss (Ours) 75.34% 60.44%

Dice, Dice similarity coefficient; IoU, intersection over union; 
Dice Loss, Dice Similarity Coefficient Loss; Focal Loss, Focal 
Cross-Entropy Loss; BCE Loss, Binary Cross-Entropy Loss.

of the model by introducing the M2SF module. This result 
indicates that different fracture morphologies (such as 
circular and elongated fractures) have different requirements 
for multi-scale features. The M2SF module better captures 
the delicate features of these complex morphologies 
through multi-scale feature fusion, thereby improving 
the accuracy of segmentation. In contrast, although SE, 
CBAM, and ECA modules can improve the efficiency of 
feature extraction through the attention mechanism, they 
need to be improved in dealing with the complexity of 
fracture morphology. The SE module is weighted only for 
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channels. The CBAM module combines channel and spatial 
attention. Although it enhances basic features, it cannot 
adequately handle complex fracture details. Meanwhile, the 
ECA module focuses on channel attention, which improves 
the efficiency of feature utilization but insufficiently 
captures subtle spatial features. The M2SF module uses 
normalization and channel attention weighting to assess the 
importance of each feature, capturing relationships across 
different scales. This is especially effective for difficult-to-
segment fractures, such as elongated fractures. Therefore, 
the strategy of multi-scale fusion significantly improves the 
accuracy of segmentation, especially in the case of complex 
and diverse morphologies of rib fractures.

To verify the model’s segmentation performance on 
accurate data, we visualized the predicted segmentation 
map of the model. As shown from the visualization results 
in Figure 10, the segmentation performance of the “U+32” 
structure in circular and elongated rib fractures is not 
ideal. The main reason is that the scale of the input image 
is too small, so the model cannot capture enough feature 
information. The small scale limits the ability of the model 
to extract the details of the fracture region, especially when 
dealing with complex or subtle fractures. It is difficult 
for the model to distinguish the fracture region from the 
background accurately. In addition, the single small-scale 

input gives the model insufficient expression at the feature 
level, which weakens the overall understanding of the 
fracture shape, thus affecting the segmentation accuracy. 
The model with the M2SF module achieved the best results 
for circular and elongated fractures. This indicates that the 
multi-scale feature fusion mechanism in the M2SF module 
offers significant advantages during feature extraction. The 
M2SF module adjusts feature representation by weighting 
each channel based on importance. This enables it to fully 
capture the detailed features of rib fractures, particularly in 
complex shapes such as elongated fractures.

In contrast, although the model integrated with the SE 
module performs well on segmenting circular fractures, it 
performs relatively poorly on elongated fractures. The SE 
module mainly enhances features by channel weighting 
but needs to adequately capture the local detail changes in 
fracture shape. Therefore, the SE module has limitations in 
handling complex and morphologically variable elongated 
fractures, and it performs worse than the M2SF module. It 
can be seen from the figure that although the “U+M2SF” 
structure performs well in the overall segmentation effect, 
it still has shortcomings in regards to detail. Therefore, 
we will make further improvements in the model’s feature 
integration stage to enhance the model’s ability to capture 
subtle features.

Finally, this paper verifies the effectiveness of the 
proposed EA module. We fused three classical attention 
mechanisms in the feature integration stage of the model: 
CBAM module, SE module, and ECA module. Here, 
“U+M2SF” signifies that the M2SF structure is added 
to U, “U+M2SF+CA” indicates fusing M2SF structure 
and CA structure to U, “U+M2SF+SE” indicates fusing 
M2SF structure and SE structure to U, “U+M2SF+ECA” 
indicates fusing M2SF structure and ECA structure to U, 
and “U+M2SF+EA” indicates fusing M2SF structure and EA 
structure to U. 

Table 5 summarizes the performance comparison of 
several structures. From the segmentation accuracy of 
each structure in the table, “U+M2SF+EA” has the best 
result, with its Dice value reaching 75.34% and its IoU 
value reaching 60.44%. The proposed EA module achieves 
effective feature enhancement and fusion in the feature 
integration stage by combining branch convolution and 
channel attention mechanisms. In contrast, when ECA and 
CBAM modules are introduced, the segmentation accuracy 
of the model decreases. This may be because the channel 
attention mechanism introduced by the ECA module is too 
global. The design of the ECA module is based on channel 

Table 4 Comparing the segmentation performance of different 
architectures on the test set

Model Dice IoU

U+32 69.58% 53.35%

U+64 70.76% 54.75%

U+32+64 71.52% 55.67%

U+32+64+CBAM 69.12% 52.81%

U+32+64+SE 71.94% 56.18%

U+32+64+ECA 69.48% 53.23%

U+32+64+M2SF 73.08% 57.58%

U, the UXNet network with a joint loss function; U+32, 32×32×32 
scales image inputs; U+64, 64×64×64 scales image inputs; 
U+32+64, two different scales are combined by deconvolution; 
U+32+64+CBAM, adding CBAM module to U while fusing two 
different scales by deconvolution; U+32+64+SE, adding SE 
module to U while fusing two different scales by deconvolution; 
U+32+64+ECA, adding ECA module to U while fusing two 
different scales by deconvolution; U+M2SF, the M2SF structure 
is added to U. Dice, Dice similarity coefficient; IoU, intersection 
over union.
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Figure 10 Visualization of the ablation experiment. (A) segmentation renderings of different models for circular rib fractures, (B) segmentation 
renderings of different models for elongated shape rib fractures. The true label is shown in red, and the prediction of the model is shown in green. 
U, the UXNet network with a joint loss function; U+M2SF, the M2SF structure is added to U; U+32, 32×32×32 scales image inputs; U+64, 64×64×64 
scales image inputs; U+32+64, two different scales are combined by deconvolution; U+32+64+ECA, adding ECA module to U while fusing two 
different scales by deconvolution; U+32+64+SE, adding SE module to U while fusing two different scales by deconvolution; U+32+64+CBAM, 
adding CBAM module to U while fusing two different scales by deconvolution.
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attention to global information, which needs to pay more 
attention to detailed features. The CBAM module combines 
channel attention and spatial attention, attempting to adjust 
the information distribution of the feature map through 
many aspects. However, this combination method may 
lead to excessive adjustment of the feature map, especially 
when dealing with complex fracture shapes. The local 
information of the feature may be overly smoothed or 
adjusted, and then the accurate recognition of the target 
structure is affected. ECA and CBAM modules may not 
effectively enhance feature expression and detail capture. 
Their added complexity could negatively impact the model’s 
performance.

In addition, to visually verify the segmentation effect 
of the model on the rib fracture region, we visualized the 
segmentation effect of the model, as shown in Figure 11. 
It can be seen that “U+M2SF+ECA”, “U+M2SF+SE”, 
and “U+M2SF+CBAM” perform well in dealing with 
circular fractures but have some shortcomings in 
segmenting elongated bar fractures, which is caused by 
the relatively limited expressive power and fusion strategy 
of these modules in the feature integration stage. The 
“U+M2SF+EA” structure performs best in the segmentation 
task for circular and elongated fractures. This indicates 
that the EA module has better adaptability to fractures of 
different shapes and sizes while effectively capturing subtle 
features in the feature integration stage.

Comparative experiment

To demonstrate the effectiveness of the proposed rib 

fracture segmentation model M2SUXNet, we selected 
seven state-of-the-art semantic segmentation models 
in comparison experiments, including 3DUNet, 3D 
Attention UNet, 3DUXNet, Unetr (32), SwinUnetr (33), 
nnFormer (34), and FracNet. In addition, we use the same 
hyperparameter configuration and post-processing strategy 
as M2SUXNet in the training phase.

Table 6 displays the segmentation results of various 
models on the public dataset for the fracture lesion region. 
Traditional 3DUNet and 3D Attention UNet use a 
symmetric encoder-decoder structure. Although they can 
extract deep features, they struggle with capturing detailed 
information in complex objects. 3DUNet relies only on a 
simple up–down sampling structure and weakly understands 
the complex shape of fractures, which explains its low Dice 
(70.71%) and IoU (54.69%). M2SUXNet may enhance the 
capture of fracture details at different scales by introducing 
the M2SF module. For the task of fracture segmentation, the 
model not only needs to capture global context information 
to identify the overall structure of the rib but also needs to 
be able to focus on local details to locate the fracture area 
accurately. This is improved in 3D Attention UNet, which 
better handles the weight allocation of features between 
regions by introducing an attention mechanism. However, 
due to the lack of multi-scale information capture, its 
Dice and IoU performance still needs improvement to 
M2SUXNet. In contrast, SwinUnetr and nnFormer 
introduced the Transformer architecture, which is good 
at global information modeling and performs well when 
processing large-scale medical images. SwinUnetr deals with 
local attention using a sliding window and can understand 
the global context in fracture segmentation. Dice reaches 
74.18%, but its capture of local feature details is not as good 
as M2SUXNet, resulting in insufficient segmentation of 
the level of detail. nnFormer further improves the feature 
modelling ability by the Transformer encoder, reaching 
Dice 72.87%. However, compared with M2SUXNet, 
its comprehensive processing of local details and global 
context still needs to be improved in fracture shape. The 
advantage of M2SUXNet is that through an effective multi-
scale structure, it can capture the details of the fracture area 
and establish cross-level information association between 
different scales. This structure makes fracture segmentation 
more accurate, and the segmentation Dice can reach 
75.34%, and the IoU is 60.44%, significantly better than 
the segmentation performance of other models. 

In addition, we evaluated the precision of each model. 
Among them, 3DUNet, AttUNet, and FracNet have lower 

Table 5 Comparing the segmentation performance of different 
architectures on the test set

Model Dice IoU

U+M2SF 73.08% 57.58%

U+M2SF+CBAM 72.47% 56.83%

U+M2SF+SE 73.84% 58.53%

U+M2SF+ECA 70.68% 54.66%

U+M2SF+EA 75.34% 60.44%

U+M2SF, the M2SF structure is added to U; U+M2SF+CBAM, 
fusing M2SF structure and CBAM structure to U; U+M2SF+SE, 
fusing M2SF structure and SE structure to U; U+M2SF+ECA, 
fusing M2SF structure and ECA structure to U; U+M2SF+EA, 
fusing M2SF structure and EA structure to U. Dice, Dice similarity 
coefficient; IoU, intersection over union.
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Figure 11 Visualization of the ablation experiment. (A) Segmentation renderings of different models for circular rib fractures, (B) 
segmentation renderings of different models for elongated shape rib fractures. The true label is shown in red, and the prediction of 
the model is shown in green. U+M2SF, the M2SF structure is added to U; U+M2SF+EA, fusing M2SF structure and EA structure to 
U; U+M2SF+SE, fusing M2SF structure and SE structure to U; U+M2SF+CBAM, fusing M2SF structure and CBAM structure to U; 
U+M2SF+ECA, fusing M2SF structure and ECA structure to U. 

precision, possibly related to their simpler model structure 
and limited feature extraction ability. M2SUXNet has the 
best performance, with a precision of 93.79%. This result 
may be attributed to its advanced multi-scale and multi-
stream fusion design, which enables it to capture the details 
of the fracture region better and reduce false positives.

To evaluate the performance of the models in the case 

of fractures with different morphologies, we visualized 
the segmentation effects of each model. It can be seen 
from Figure 12 that SwinUnetr performs prominently for 
circular fractures because it introduces a sliding window 
mechanism, which can effectively capture the global and 
local information of the image to segment the circular 
fracture area accurately. However, SwinUnetr is slightly 
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inadequate when dealing with elongated fractures. This may 
be because fractures with elongated shapes depend more 
on the efficient extraction of local features and information 
fusion across scales. In contrast, M2SUXNet performs well 
on the circular and elongated fractures segmentation task. 
Although nnFormer and 3DUXNet perform well in global 
information modelling, they are deficient in capturing 
local features, resulting in poor performance in handling 
elongated fractures.

Discussion

The uneven shape and unfixed position of rib fractures in 
CT images complicate the diagnostic process. This can 
easily lead to misdiagnosis or missed diagnosis. In addition, 
subtle fractures or multiple fractures further increase the 
segmentation difficulty. In clinical applications, CT’s high-
resolution 3D images reveal the fine structure of the rib, 
including the fracture line and fracture slice. Accurate 
segmentation enables CT to comprehensively assess 
chest injuries (35), including rib fractures and other chest 
structures such as lungs and hearts. This is essential for a 
comprehensive assessment of patient injuries and treatment 
planning. At the same time, accurate rib fracture diagnosis 
and segmentation can help doctors formulate more effective 
treatment plans (36) and improve treatment effects.

The difficulty of rib fracture segmentation lies in the 
fracture regions with complex shapes, such as elongated, 

curved, and even irregular fracture shapes (37). This paper 
introduces multi-stream and multi-scale fusion into the rib 
fracture segmentation task for the first time. Moreover, the 
corresponding information fusion module is designed for 
this architecture to fully use the feature maps’ information 
and fuse and complement the information between 
different feature maps. The multi-stream network can 
better capture the edge information of different scales of 
rib fractures in low-level feature acquisition. In this way, 
the low-level feature information of the edge of different 
scales of rib fractures can be captured. At the same time, 
the high-level semantic feature information of rib fracture 
can be supplemented between different scales through 
the multi-scale information fusion strategy. Studies have 
shown that elongated rib fractures are more difficult to 
segment than circular fractures. When segmenting rib 
fractures, the model effectively discriminates and diagnoses 
various fracture shapes. We verified the effectiveness of 
the proposed model on the public RibFrac dataset. Our 
proposed model can effectively improve the segmentation 
performance of elongated shape rib fractures. 

Despite the limitations of most current rib fracture 
segmentation methods, this study is of great significance 
for dealing with the complexity of rib fractures in CT 
images. The complex morphology and unfixed position of 
rib fracture in CT images make the segmentation task very 
challenging. The proposed method achieves a 75.34% Dice 
coefficient and 60.44% IoU in CT images. It shows higher 
accuracy and feasibility than existing models, especially in 
segmenting elongated fractures. Although Dice/IoU metrics 
can quantify segmentation accuracy, they may not fully 
capture critical details. Therefore, combining other relevant 
factors to ensure accurate clinical judgment in practical 
clinical applications is still necessary. The proposed method 
can provide valuable segmentation performance in practice 
and shows potential in dealing with complex fracture 
morphologies.

This study still has some limitations. The M2SUXNet 
model has many parameters and high video memory 
requirements. Future work will consider designing 
lightweight segmentation networks to reduce parameters 
and computation while maintaining good segmentation 
performance. Secondly, the lack of fixed device fracture 
cases in public datasets may limit the model’s generalization 
ability in complex clinical scenarios. Future studies 
should incorporate more such data further to improve the 
applicability and robustness of the model. 

Table 6 Comparing the segmentation performance of different 
networks on the test set

Method Dice IoU Precision

3DUNet (2015) 70.71% 54.69% 89.69%

AttUNet (2018) 70.03% 53.88% 89.24%

FracNet (2020) 71.52% 55.67% 90.90%

SwinUnetr (2021) 74.18% 58.96% 92.60%

Unetr (2022) 70.68% 54.66% 91.05%

3DUXNet (2023) 71.45% 55.58% 90.68%

nnFormer (2023) 72.87% 57.32% 91.51%

M2SUXNet 75.34% 60.44% 93.79%

AttUNet, Attention 3DUNet; FracNet, 3D Rib Fracture Diagnosis 
Network; Unetr, 3DUNet with Transformers, 3DUNet with Swin 
Transformers; 3DUXNet, U-Net with Large Kernel Convolutions; 
nnFormer, Neural Network Former; Dice, Dice similarity 
coefficient; IoU, intersection over union. 
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Figure 12 Visualization of the comparison experiment. (A) Segmentation renderings of different models for circular rib fractures, (B) 
segmentation renderings of different models for elongated shape rib fractures. The true label is shown in red, and the prediction of the 
model is shown in green. FracNet, 3D Rib Fracture Diagnosis Network; AttUNet, attention 3DUNet; Unetr, 3DUNet with Transformers;  
SwinUnetr, 3DUNet with Swin Transformers; 3DUXNet, UNet with Large Kernel Convolutions; nnFormer, Neural Network Former. 
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Conclusions

This paper proposes the M2SUXNet network to enhance 
rib fracture segmentation accuracy. It particularly targets 
elongated fractures using multi-stream and multi-scale 
fusion mechanisms. Experimental results show that the 
proposed model achieves a Dice value of 75.34%, IoU value 
of 60.44%, and precision of 93.80% on the RibFrac public 
dataset, which are better than the values achieved by existing 
models. M2SUXNet effectively solves the segmentation 
problem of complex fracture morphology in CT images 
and provides a reliable tool for clinical application. Despite 
its promising results, this study still has some limitations. 
Future research will focus on designing lightweight models 
and introducing diverse data to improve the applicability 
and robustness of the model.
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