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Background: The aim of the study was to validate the diagnostic role of circulating tumor
DNA (ctDNA) in genetics aberration on the basis of next-generation sequencing (NGS) in
pediatric acute myeloid leukemia (AML).

Methods: Bone marrow (BM) and peripheral blood (PB) were collected from 20 AML
children at the time of initial diagnosis, and a ctDNA sample was isolated from PB.
Detection of mutation was performed on ctDNA, BM, and peripheral blood mononuclear
cell (PBMC) by NGS based on a 185-gene panel.

Results: Among 185 genes sequenced by the NGS platform, a total of 82 abnormal
genes were identified in 20 patients. Among them, 61 genes (74.39%) were detected in
ctDNA, PBMC, and BM samples, while 11 (13.41%) genes were found only in ctDNA and
4 (4.88%) were detected only in the BM sample, and 2 (2.44%) were detected only in
PBMC. A total of 239 mutations were detected in three samples, while 209 in ctDNA, 180
in bone marrow, and 184 in PBMC. One hundred sixty-four mutations in ctDNA were
shared by matched BM samples, and the median variant allelic frequency (VAF) of these
mutations was 41.34% (range, 0.55% to 99.96%) and 44.36% (range, 0.56% to 99.98%)
in bone marrow and ctDNA. It was found that 65.79% (75/114) of mutations with clinical
significance were detected in three samples, with 9 mutations detected both in ctDNA and
BM, and 2 mutations detected both in PBMC and BM. The consistency of mutations with
clinical significance between ctDNA and BM was 77.06% (84/109). Among the 84
July 2021 | Volume 11 | Article 6664701

https://www.frontiersin.org/articles/10.3389/fonc.2021.666470/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.666470/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.666470/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.666470/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.666470/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:xfzhu@ihcams.ac.cn
https://doi.org/10.3389/fonc.2021.666470
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.666470
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.666470&domain=pdf&date_stamp=2021-07-29


Ruan et al. ctDNA in Pediatric AML

Frontiers in Oncology | www.frontiersin.org
mutations with clinical significance detected in both sources, the concordance of VAF
assessment by both methods was high (R2 = 0.895).

Conclusion: This study demonstrates that ctDNA was a reliable sample in pediatric AML
and can be used for mutation detection. Consistency analysis showed that ctDNA can
mirror the genomic information from BM. In addition, a subset of mutations was
exclusively detected in ctDNA. These data support the fact that monitoring ctDNA with
next-generation sequencing-based assays can provide more information about gene
mutations to guide precision treatment in pediatric AML.
Keywords: acute myeloid leukemia, targeted next-generation sequencing, circulating tumor DNA, mutation
(genetics), pediatric
INTRODUCTION

Acute myeloid leukemia (AML), which accounts for 25% of
childhood acute leukemia, is a rapidly progressing hematopoietic
malignancy characterized by the differentiation block and
aberrant proliferation of leukemic blasts (1). In pediatric AML
patients, the achieved 5-year overall survival (OS) is 60–70%,
while the event-free survival (EFS) is 50% (2). With the
development of molecular biology technology, the molecular
landscape of pediatric AML becomes clearer (3, 4). Mutations
in FLT3, TP53, NPM1, CEBPA, RUNX1, and ASXL1, which are
common in AML children, have received more and more
attention. And the clinical significance of new mutations, such
as STAG2, RAD21, SRSF2, and U2AF1, have been gradually
clarified. These diverse genomic molecular markers reflect the
heterogeneity of AML, and accurate molecular profiling in AML
is important for risk stratification and selection of targeted
therapies (5).

Circulating tumor DNA (ctDNA), which is contained in
circulating-free cell DNA (cfDNA) and released by necrosis or
apoptosis tumor cell, allows for noninvasive peripheral blood
sampling of cancer-associated mutations (6–9). When compared
with other samples, ctDNA is more like a genomic library of
different tumor cells and can mirror the heterogeneity of AML;
moreover, ctDNA has a relatively short half-life, which may
better reflect the latest status of the disease (10–12).

Nowadays, noninvasive detection of mutations by ctDNA was
widely used in various solid tumors, but its role in hematological
malignancies is still not clear. The current “gold standard” for
molecular testing in pediatric AML is from bone marrow (BM)
aspirate DNA. However, BM aspiration is an invasive procedure,
which severely limited its application in clinical research. To
date, there are very limited studies on the potential role of
ctDNA, as a relatively non-invasive source, in monitoring
leukemia-associated mutations and providing prognostic
information in patients with hematologic malignancies (13,
14). Furthermore, it is still unknown whether ctDNA can fully
supplant BM assessment for molecular profi l ing in
pediatric AML.

Therefore, we aim to validate the diagnostic role of ctDNA in
molecular profiles in pediatric AML patients, when compared
2

with hybrid capture-targeted next-generation sequencing of BM,
peripheral blood mononuclear cell (PBMC).
MATERIALS AND METHODS

Patients and Patient Specimens
For this prospective analysis, the source population included 20
children (age < 18 years) with AML at the Division of Pediatric
Blood Diseases Center in Institute of Hematology and Blood
Diseases Hospital, Chinese Academy of Medical Sciences &
Peking Union Medical College. BM and PBMC were collected for
diagnostic purposes from all enrolled patients (excluding Down
syndrome or acute promyelocytic leukemia, secondary AML), while
ctDNA was isolated from the PB samples. The data collected
included information regarding age, sex, peripheral blood white
blood cell counts (WBC), blast percentages in BM and PBMC,
chromosome karyotypes, and gene mutation signatures.

The study design and methods complied with the Declaration
of Helsinki and were approved by the Ethics Committee and
Institutional Review Board of Institute of Hematology and Blood
Diseases Hospital, Chinese Academy of Medical Sciences &
Peking Union Medical College. Informed consent was obtained
from all subjects. The raw sequence data reported in this paper
have been deposited in the Genome Sequence Archive
(Genomics, Proteomics & Bioinformatics 2017) in National
Genomics Data Center (Nucleic Acids Res 2021), China
National Center for Bioinformation/Beijing Institute of
Genomics, Chinese Academy of Sciences, under accession
number HRA000912, which are publicly accessible at https://
ngdc.cncb.ac.cn/gsa-human.
Next-Generation Sequencing and
Mutation Analysis
cfDNAs were extracted by a customized QIAamp Circulating
Nucleic Acid kit (Qiagen GmbH) from 20 patient’s PB samples at
diagnosis, while DNA were extracted by a customized Genomic
DNA kit (Qiagen GmbH) from the patient’s BM and PBMC
samples. Gene library amplification was based on a KAPA Hyper
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Prep Kit. The gene panel from Acornmed Biotechnology was
used to capture the target region. Detailed sequencing
information is provided in Table S1.

Multiplexed libraries were sequenced with Illumina Novaseq
and then analyzed for data including Sequencing mapping,
coverage and quality assessment, Insertion/Deletion detection,
annotation for sequence mutations: Average raw sequencing
depth on target per sample ≥10000x(ctDNA)≥1000x (DNA),
Allele mutation frequency ≥0.5% for single Nucleotide variation
and insertion or deletion, respectively. All reads were filtered by
high Mapping quality (≥30) and Base quality (≥30). The mutant
reads were supported by positive and negative strands. Reads
were aligned to the human genome using the Burrows-Wheeler
Alignment tool (BWA, version 0.7.12). PCR duplicates were
marked by the MarkDuplicates tool in Picard. IndelRealigner
and BaseRecalibrator on Genome Analysis Toolkit (GATK;
version 3.8) were used for the realignment and recalibration of
the BWA alignment results, respectively. Mutect2 was used for
identifying SNV and INDEL. We obtained candidate variations
through background database filtering of normal samples. Pindel
was used for detecting FLT3-ITD. FLT3-ITD quantitative
analysis was performed by in-house tools based on machine
learning development. All the variants were annotated by the
ANNOVAR software using some resources, including 1000G
projects, COSMIC, SIFT, and Polyphen. Our gene panel was
mainly from NCCN guidelines, EMSO guidelines, authoritative
databases, and literature reports of hematologic tumors.
Statistical Analysis
Patient characteristics were summarized using median (range) for
continuous variables and frequencies (percentages) for categorical
variables. The Fisher exact test was used to test the association
between two categorical variables. Concordance of BM and ctDNA
and PBMC results were assessed using Pearson correlation analysis.
P values<0.05 were considered significant. All statistical tests were
performed using SPSS 24.0 (IBM Corporation).
RESULTS

Baseline Characteristics
Twenty patients with newly diagnosed AML were evaluated. The
baseline characteristics of the study cohort are shown in Table 1.
Four patients (20%) had absolute PB blast count<1×109/L, and
one patient had no peripheral blood circulating blasts. ctDNA,
PBMC, and BM targeted sequencing were performed in all 20
patients at diagnosis simultaneously.
Detection of Molecular Profiles
by Three Methods
The molecular profiles of all patients were detected by target-Next-
generation Sequencing (t-NGS) (Acornmed Biotechnology Co.,
Ltd.), which covers the most frequent mutations in 137 genes in
AML patients, via ctDNA, BM, and PBMC samples (Table S1).
Frontiers in Oncology | www.frontiersin.org 3
The sequencing depths of the three samples were all greater than
2000 X, namely 3460X (1837X-4270X) in ctDNA, 2530X (1633X-
2862X) in BM, and 2324X (1208X-3720X) in PBMC.

A total of 82 abnormal genes were identified in 20 included
patients. Among them, 61 genes (74.39%) were detected in
ctDNA, PBMC, and BM samples, while 11 (13.41%) genes
were found only in ctDNA, 4 (4.88%) were detected only in
BM sample, and 2 (2.44%) were detected only in PBMC. There
were 18 genes with mutation frequency ≥10% in this study, and
38.89% (7/18) of them were identified by both methods. Eleven
genes, namely NRAS (8, 10 and 11), KIT (9, 9 and 10), KRAS (6,
5 and 6), ASXL2 (4, 4 and 4), CEBPA (4, 4 and 4), CSF3R (3, 3
and 3), GATA2 (2, 2 and 3), FLT3-ITD (3, 2 and 2), FBXW7 (2, 2
and 2), EP300 (2, 2 and 2), and TET2 (2, 2 and 2), were with
mutation frequency ≥10% of BM, PBMC, and ctDNA
sequencing (Figure 1).

What’s more, a total of 239 mutation forms in 80 abnormal
genes were detected in three samples; among all mutations, there
were 180 in BM, 203 in ctDNA, and 184 in PBMC. Variant allelic
frequencies (VAFs) of 180 mutations in BM were from 0.52% to
99.96% (median 37.97%), including 131 single nucleotide
variations (SNVs) and 49 indels. For each patient, the median
number of mutation is 9 (3-14); specifically, the number of SNVs
was 6.5 (3 to 12) and that of indels was 2.0 (0-12). When
compared with the BM sample, more mutations were found in
ctDNA with VAFs from 0.50% to 99.98% (median 34.49%),
including 150 SNVs and 53 indels. For each patient, the median
number of the mutation was 10 (3 to 20), and 7.0 (3 to 20) SNVs
and 3.0 (0 to 11) indels were identified. A total of 184 mutations
were detected in PBMC with VAFs from 0.51% to 100.00%
(median 34.72%), including 140 SNVs and 44 indels. For each
patient, the number of mutations ranged from 3 to 20 (median:
8.5), and the median number of SNVs was 6.5 (3 to 12) and that
of indels was 2.0 (0 to 8).
TABLE 1 | Baseline characteristics of the study population.

Characteristic Median [range] or n (%)

Sex
Male 7 (35)
Female 13 (65)

Age, years 11 (1-15)
White blood cells, ×109/L 25.82 (1.54-182.5)
Peripheral blood blasts, ×109/L 12.41 (0-124.1)
Peripheral blood blasts, % 36 (0-98.0)
Bone marrow blasts, % 66.5 (21.0-90.0)
Cytogenetics
t (8;21) 6 (30)
inv (16) 1 (5)
t (6;11) 1 (5)
+8 2 (10)
-7 1 (5)
Complex karyotype 1 (5)
Normal karyotype 8 (40)

FAB type
M1 2 (10)
M2 8 (40)
M4 6 (30)
M5 3 (15)
M7 1 (5)
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Concordance of Mutation Detection in
ctDNA and BM
A total of 219 mutations were identified in BM and ctDNA, while
164 mutations (74.88%) were detected both in ctDNA and BM
(Figure 2), including 121 SNVs (75.63%) and 43 indels (72.88%).
Five patients (UPN3, UPN7, UPN14, UPN15, and UPN16) were
with the same mutation sites according to BM and ctDNA
sequencing (Figure S1). The median absolute blast count in
PB of these patients was 19.33 ×10 9/L (0.89 to 43.80 ×10 9/L),
which was higher than other patients. There was only one patient
(UPN6) with more mutation sites detected in BM than ctDNA
(Figure S1), and the absolute blast count in PB was 1.23 ×10 9/L.
There were 11 patients with more mutation sites detected in
ctDNA than BM (Figure S1); the median absolute blast count of PB
in these patients was 11.51 ×10 9/L, which was similar to others.
Frontiers in Oncology | www.frontiersin.org 4
Although the number of mutations was similar in three patients
(UPN9, UPN10, and UPN13) on the basis of BM and ctDNA, all
sites of mutation were completely different (Figure S1). For each
patient, 8 (2 to 14) mutations were detected in both samples, with
high concordance of the number of mutation assessment by both
methods (R2 = 0.816, P <0.0001; Figure 3).

The median VAF of the 164 individual mutations detected by
both assays was 41.34% (range, 0.55% to 99.96%) and 44.36%
(range, 0.56% to 99.98%), and the concordance was high in all
mutations (R2 = 0.945; P<0.0001, Figure 4), both in SNVs (R2 =
0.948; P<0.0001, Figure S2A) and indels (R2 = 0.934; P<0.0001,
Figure S2B). The median VAFs of 16 mutations only detected by
BM was 1.22% (0.52% to 14.63%), while it was 0.93% (0.50% to
21.14%) in 39 mutations tested by ctDNA only, and the VAFs
were <1% in most of these mutations (Figure S3). In view of this,
small subclonal populations with lower VAFs<1% were more
likely to be missed. A total of 37 mutated genes with clinical
significance were detected in all patients, involving 109 mutation
sites (93 in BM and 100 in ctDNA). A total of 84 (77.06%)
FIGURE 2 | The concordance of the number of mutation detected in BM
and ctDNA.
FIGURE 3 | The correlation of the number of mutations in a separate patient
detected in BM and ctDNA.
FIGURE 1 | Frequency of AML-related mutated genes as detected by targeted sequencing of bone marrow (BM), peripheral blood mononuclear cell (PBMC), and
circulating tumor DNA (ctDNA) samples.
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mutations were detected in both samples with high concordance
of VAF assessment (R2 = 0.895, P<0.0001; Figure 5).

Concordance of Mutation Detection in BM
and PBMC
Mutations were detected in PBMC samples of all patients at
diagnosis in comparison to BM. A total of 155 mutations (74.16%)
were found both in PBMC and BM (Figure 6), with high
concordance of VAF assessment (R2 = 0.953, P<0.0001; Figure 7).

Analysis of Mutations With Clinical
Significance Detected in BM, ctDNA,
and PBMC
It was found that 65.79% (75/114) of mutations with clinical
significance were detected in three samples, with 9 mutations
detected both in ctDNA and BM, and 2 mutations detected both
in PBMC and BM (Figure 8). The same mutated genes with
clinical significance were detected in three samples in five
patients (UPN4, UPN7, UPN12, UPN16, UPN20) with high
Frontiers in Oncology | www.frontiersin.org 5
concordance of VAF assessment (Figure S4). In addition to three
sample co-detecting mutations, the remaining mutations were
mostly detected in BM or ctDNA (Figure S5). These results
suggested that PBMC cannot accurately reflect the mutations of
bone marrow.

Comparison of Bone Marrow and ctDNA in
Minimal Residual Disease Assessment in
AML Patients
To assess whether the dynamic change of ctDNA could reflect
the status of MRD in AML patients, we investigated the
concordance between the BM sample and ctDNA statuses of 5
out of 20 ctDNA-positive children at diagnosis (Figure 9). Of
these five patients, one patient experienced relapse on the basis of
the BM sample while four patient were relapse-free during the
following surveillance. Notably, the results of serial plasma
samples showed that four patients under the condition of
FIGURE 5 | The correlation of the VAFs in the same mutation site detected
in BM and ctDNA among the 84 mutations with clinical significance detected
by both assays.
FIGURE 7 | The correlation of the VAFs in the same mutation site detected in
BM and PBMC among the 155 individual mutations detected by both assays.
FIGURE 4 | The correlation of the variant allelic frequencies (VAFs) in the
same mutation site detected in BM and ctDNA among the 164 individual
mutations detected by both assays.
FIGURE 6 | The concordance of the number of mutation detected in BM
and PBMC.
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relapse-free were with complete ctDNA clearance after
chemotherapy and remained negative at the last follow-up. As
for one patient who experienced relapse, ctDNA positivity
regained after a temporary ctDNA clearance by chemotherapy,
and recurrence of these cytogenetic abnormalities in ctDNA was
observed nearly 2 months earlier than BM relapse. These results
showed that ctDNA was basically consistent with the results
from BM samples, and the shifting level of ctDNA may be a
useful tool for MRD monitoring in children with AML.
Frontiers in Oncology | www.frontiersin.org 6
DISCUSSION

In this study, we aim to evaluate the potential value of MRD
based on positive ctDNA status in patients with AML, and the
result reported that surveillance of matched serum ctDNA in
residual driver mutation persistence may be regarded as an
independent sample of MRD testing, which was comparable
and with high concordance with sequencing of BM samples for
the diagnosis of gene alterations in the AML children.

AML is a highly heterogeneous disease, and its diagnosis
and treatment require a comprehensive analysis of
morphology, immunology, genetics, and molecular biology.
NGS, as a new molecular biological technology, has the
advantages of high throughput, high sensitivity, and low cost
and is an important means to explore the molecular
pathogenesis of blood tumors and guide clinical diagnosis
and treatment. Previously, detection of gene mutation by BM
was the standard method to identify DNA aberration in AML
patients. However, acquisition of the BM sample is traumatic,
and it is usually difficult to collect specimens in succession for
the close monitoring of MRD, which greatly limits its
application in clinical practices. Moreover, the sensitivity of
MRD monitoring from PB was much lower than that from BM
(15, 16). This is true even under the circumstances of highly
sensitive real-time PCR-based methods targeting leukemia-
related gene alterations.

In 1948, Mandel and Metais firstly advanced the presence of
cfDNA in human blood (17). Subsequently, Koffler et al. (18)
found the higher concentration of cfDNA in the circulation of
patients with cancer when compared with healthy people,
indicating that the presence of the cancer patients may be
simply screened through a test of PB. In 1994, cfDNA was
regarded as an independent sample in distinguishing RAS
mutations in patients with hematological oncology (19, 20).
FIGURE 9 | The clinical courses together with ctDNA statuses of five AML children who received chemotherapy.
FIGURE 8 | The concordance of the number of mutation detected in BM,
ctDNA, and PBMC with clinical significance detected by all assays.
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The recent introduction of NGS-based molecular approaches has
further refined such MRD measurements with regard to broader
applicability. ctDNA was a kind of noninvasive method that
showed its great potential in identifying the gene mutation, and
specifically for patients for whom no conventional genetic
marker for MRD testing was available or conventional MRD
approaches such as flow cytometry or cytogenetics were negative
in AML children in recent years (21–24).

To date, data on the utility of ctDNA from PB in AML
children are relatively sparse; moreover, the results regarding the
diagnostic value in this population were still unspecified. In this
study, it is the first time that ctDNA was used for the detection of
genetics aberration in pediatric AML, and consistent results were
found in this sample when compared with BM and PBMC
samples on the distribution of targeted sites. Moreover, the
absolute blast count in PB did not affect the result of ctDNA in
identifying gene mutations. It was found that ctDNA has good
consistency with BM in the analysis of mutation frequency, and
ctDNA may identify some potential mutations that cannot be
detected by NGS in the BM and PBMC sample.

MRD monitoring has been used as a vital tool for early
prediction of the efficacy of chemotherapy in AML children.
For MRD evaluation, the sample of choice is BM, although
peripheral blood is easy to obtain and lacks immature normal
populations of cells that may interfere with the analysis. ctDNA
has the potential to capture intratumor heterogeneity that may
be missed by BM analysis. In addition, ctDNA has an advantage
of faster turn-around time as well as an acceptable running cost
for serial monitoring of MRD. The current practice for the
assessment of MRD for response assessments relies on BM
sampling, whereas dynamic ctDNA monitoring may be
adequate for reflecting the remission status in some AML
cases. In view of this, these findings potentially introduce the
utility of this noninvasive means at the time of diagnosis.

In summary, our results confirm that ctDNAmay be used as a
complementary method in reflecting the mutation spectrum and
MRD monitoring of AML children, which may be particularly
relevant in the context of subclonal mutations with lower VAF.
However, these findings warranted a larger, prospective study to
investigate the prognostic stratification and MRD monitoring in
pediatric AML.
Frontiers in Oncology | www.frontiersin.org 7
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