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ABSTRACT

The cell nucleus can be thought of as a complex, dynamic, living material, which functions to organize and protect the genome and
coordinate gene expression. These functions are achieved via intricate mechanical and biochemical interactions among its myriad
components, including the nuclear lamina, nuclear bodies, and the chromatin itself. While the biophysical organization of the nuclear lamina
and chromatin have been thoroughly studied, the concept that liquid–liquid phase separation and related phase transitions play a role in
establishing nuclear structure has emerged only recently. Phase transitions are likely to be intimately coupled to the mechanobiology of
structural elements in the nucleus, but their interplay with one another is still not understood. Here, we review recent developments on the
role of phase separation and mechanics in nuclear organization and discuss the functional implications in cell physiology and disease states.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0083286

I. INTRODUCTION

The nucleus is a large membrane-bound organelle that organizes
the genetic material of the cell, serving to maintain genomic integrity
while also orchestrating gene expression. In order to coordinate these
activities, the nucleus is composed of multiple functionally and spa-
tially distinct structures which together impact its collective material
properties. The biological macromolecules that makeup these struc-
tures dictate their mechanics, which has been well-studied in the con-
text of the lamina, the structural scaffold supporting the nuclear
envelope, and chromatin, the material into which DNA and associated
proteins are packaged (Fig. 1). The lamina is structurally composed of
a meshwork of intermediate filaments of type A lamins (lamin A and
C) and type B lamins (lamin B1 and B2/B3), as well as membrane-
associated proteins, which support the inner nuclear membrane and
tether chromatin to the nuclear periphery.1 Interphase chromatin is a
heterogeneously compacted polymer crosslinked by transiently bind-
ing proteins2 that constitutes a large volume fraction of the nucleus.
The nucleus exhibits bulk viscoelasticity, which is modulated by the
structure of both the lamina and the chromatin, and can vary depend-
ing on cell fate.3–7 These advances have been foundational to our
understanding of the functional role of nuclear mechanics, but they
have largely ignored the mechanical impact on and interplay with a

third primary constituent of the nucleus: the membraneless nuclear
condensates.

Nuclear condensates have been observed for many decades and
well over a century in the case of nucleoli and Cajal bodies.8,9

However, until recently, our understanding of these structures was
largely qualitative and descriptive. A detailed catalog of the molecular
players for some of these structures has now been uncovered, together
with information about their interactions and functional importance.
Still, we lacked a predictive framework for understanding how these
myriad interactions give rise to emergent collective organization—the
coherent structures that are clearly more than the sum of their parts.

Liquid–liquid phase separation (LLPS) has recently been appreci-
ated as an important organizing principle for the cell, resulting in the
formation of membraneless biomolecular condensates that function as
organizational hubs, sequestration centers, or reaction crucibles.10

Within the nucleus, numerous diverse aspects of gene expression
appear to be facilitated by a litany of these condensates (Fig. 1). These
include nucleoli,11 promyelocytic leukemia (PML) bodies,12 nuclear
speckles,13 and Cajal bodies14 as well as repressive heterochromatin
foci15,16 and the enigmatic superenhancer.17–19

The concept that phase transitions underlie the self-organization
of non-living matter is at the core of engineering and the physical
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sciences, rooted in statistical thermodynamics. This provides a well-
established quantitative and conceptual framework, which is being
productively adapted to describe various aspects of cytoplasmic and
nuclear condensate organization. The role of phase transitions in cell
biology has been described in detail in several excellent reviews.10,20,21

Here, we focus on recent progress toward understanding the mechani-
cal interplay between phase separated nuclear condensates with other
nuclear structures. First, we provide a broad overview of the principles
underlying the assembly of nuclear structures, considering relevant
theoretical concepts and then using this framework to contextualize
recent experimental advances. We then consider future work required
for a unified model of nuclear organization and finally discuss evi-
dence for the biological control and mechanochemical feedback on
condensates.

II. NUCLEAR ORGANIZATION AND MECHANICS

The mechanical properties of the nucleus are functionally rele-
vant both to protect the genome from external mechanical insult and
to coordinate the internal interactions necessary for various processes,
including transcription and DNA repair. The majority of the interior
of the nucleus is composed of chromatin. Electron microscopy studies
suggest that chromatin forms a disordered chain of 5–24nm in diame-
ter that fills the nucleus with a strikingly high volume fraction during
interphase,22 ranging from 15% to 65% dependent on local compac-
tion. Spatial genomic mapping techniques including Hi-C23 have dem-
onstrated three-dimensional folding patterns of the linear chromatin
polymer. However, these studies do not address the bulk material
properties of the nucleus, which emerge from this underlying struc-
tural organization. In particular, much remains unclear about the rela-
tionship between higher-order biomolecular organization within the

nucleus and bulk properties such as viscoelasticity, which is thought to
be critical for biological functions including differentiation and mecha-
nosensation. For example, nuclei of cells grown in stiffer environments
take on stiffer rheological properties,7 which are associated with differ-
ential gene expression profiles.24 Moreover, the presence of highly vis-
cous, mesoscopic condensates should impact both the local and global
mechanical properties of the nucleus. However, these properties can
only be elucidated by performing dynamic measurements in living
cells (Fig. 2). In general, viscoelasticity can be measured by a suite of
techniques and approaches known as (micro)rheology, which has
active and passive flavors.25–27

Passive microrheology is performed by tracking the trajectories
of tracer particles embedded within the material of interest [Fig. 2(a)].
The fluctuating motion of the particle trajectories are then analyzed by
calculating the mean squared displacement (MSD), which often exhib-
its power law scaling with time lag s and exponent a: hx2i ¼ 2dDsa,
where d is the dimensionality of the system and D is the diffusion coef-
ficient [Fig. 2(b)]. An exponent of a ¼ 1 is termed diffusive and is con-
sistent with particles performing a random walk through a purely
viscous liquid medium. For such a simple liquid in equilibrium, the
diffusion coefficient can be used to extract the fluid viscosity g,
through a form of the fluctuation–dissipation relation known as the
Stokes–Einstein equation g ¼ kT

6pDR, where kT is the thermal energy
scale given by the product of Boltzmann’s constant k and the absolute
temperature T , and R is the particle radius;28 more viscous fluids
exhibit less dynamic Brownian motion (smaller D). Particles that
move according to an exponent a < 1 are termed subdiffusive, which
is generally an indication of viscoelasticity, while those with a > 1 are
described as superdiffusive, which is associated with active, driven
motion.

FIG. 1. The nucleus is host to a wide array of liquid-like nuclear condensates, e.g., nucleoli, PML bodies, nuclear speckles, and Cajal bodies, which form by phase separation,
and is also largely filled with chromatin, which is highly structured and exhibits dynamic micrometer-scale correlations. Chromatin is a viscoelastic material with heterogeneous
pore sizes and structure throughout the nuclear environment, and liquid-like condensates deform the chromatin matrix as they grow. These components directly interact in mul-
tiple contexts and elucidating the physical interplay between phase separation and nuclear mechanics is critical for understanding nuclear organization.
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While the underlying conceptual framework of passive micro-
rheology is clear and well-understood, experimentally introducing inert
particles into living cells can be challenging and low throughput. In
some cases, cells can be induced to express genetically encoded tracer
particles, such as genetically encoded multimeric nanoparticles (GEMs),
whose motion can be tracked and analyzed.29,30 Alternatively, experi-
mentalists commonly track the motion of endogenous structures. Often,
however, objects that might be tracked are small and/or too dense, such
as with fluorescently labeled histones. In such cases, rather than calculat-
ing discrete trajectories for each particle, “continuum” image analysis
methods can be used, such as displacement correlation spectroscopy
(DCS),31 or particle image velocimetry (PIV), which extracts locally
averaged displacement fields rather than individual particle trajectories,
expanding the utility of passive microrheological techniques beyond the
scope of discrete beads or organelles.

Despite the power of these approaches, passive microrheology
generally requires that the material being studied is homogeneous and
in equilibrium, which is often problematic in living cells, due to their
strong heterogeneity and out-of-equilibrium activity. In principle, het-
erogeneity in soft materials can be dealt with using approaches such as
two-point microrheology,32 although it has rarely been successfully

deployed in living systems, in part due to the out-of-equilibrium activ-
ity ubiquitous in cells. For example, in human cells, it has been shown
that chromatin exhibits adenosine triphosphate (ATP)-dependent,
micron-scale dynamic correlations.31 Similarly, chromatin displace-
ment has been shown to be highly heterogeneous, with particle image
velocimetry suggesting that the local viscoelasticity of the nucleus
varies by compartment.33 Despite these confounding aspects of a typi-
cal cell nuclei, the Xenopus laevis oocyte provides a simpler, contrast-
ing example. Mature X. laevis oocytes are �1mm in diameter and
relatively homogeneous, featuring a low chromatin volume fraction.
Analysis of the MSD of beads injected into oocyte nucleoplasm com-
pared with “active” microrheological measurements of beads sedi-
menting through the nucleoplasm under gravity, suggest that this
particular system is not strongly out of equilibrium.34

While the fluctuation–dissipation theorem may only sometimes
hold in cells, precluding the precise determination of material parame-
ters, tracking injected beads or endogenous structures can still shed
light on apparent material state and biological activity impacting trans-
port dynamics within the cytoplasm and nucleus.26 For instance, indi-
vidual genomic loci, such as telomeres,35,36 exhibit strong subdiffusive
motion in multiple systems,37,38 implying the existence of viscoelastic

FIG. 2. Viscoelasticity in the nucleus can be interrogated by a suite of methods known as microrheology. In passive microrheology (left column), tracer particles are tracked
over time (a) and their movement is quantified by calculating a mean squared displacement (b), which typically scales as a power law in the time lag with exponent a. a¼ 1
indicates a purely viscous solution, while subdiffusion, i.e., a <1, which is typical of structures in the nucleus, is indicative of viscoelastic constraints, and a >1 is indicative of
driven, active motion; these behaviors reflect local activity and mechanics, e.g., of chromatin. In active microrheology, a calibrated force is applied to the material and the defor-
mation is used to infer the material’s mechanical properties. For the nucleus, this is typically used to extract bulk mechanics via methods such as micropipette aspiration and
atomic force microscopy (c). Typically, a force-extension curve is calculated, whose slope in the linear or elastic regime corresponds to the spring constant for displacements;
nonlinearity indicates that the material is strain-stiffening or strain-softening (d). These techniques have defined the mechanical contributions of particular biological components
of the nucleus such as the lamina and chromatin.
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constraints on their motion. Interestingly, telomeres recover normal
diffusion following lamin A/C knockdown,35 suggesting that subdiffu-
sion may be due to the mechanical structure of the nucleus.

In addition to suggesting that the chromatin network is highly
viscoelastic, subdiffusive motion of nuclear components has been the
subject of much experimental and theoretical study due to the rele-
vance of the “first passage time” or genomic search problem.39,40

Inside the crowded nucleus, critical processes may be limited by the
time it takes for two loci to diffuse into proximal locations, including
enhancer–promoter interactions41–44 and homology search during
homology-directed repair of DNA double-stranded breaks.39,40,45

In addition, recent work has suggested that chromatin may lie
near a sol–gel transition to facilitate a transition to rapid, liquid-like
dynamics when functionally required46 and that DNA damage may
drive directional motion of chromatin.47,48 The presence of liquid-like
nuclear condensates may facilitate this genomic search, and hence
transcription, by providing an environment with rapid, liquid-like
dynamics, which have been observed coupled to transcription49 or
excluding nonspecific bulk chromatin.50 Together, this evidence may
suggest that condensates play an important role in spatially organizing
chromatin and regulating the viscoelastic properties of the local envi-
ronment of the nucleus, although their role in the maintenance of bulk
material properties remains unclear and a topic for future study.

Bulk material properties are more easily measured using active
microrheological approaches, which do not rely on assumptions of
thermodynamic equilibrium, and provide a direct means of interrogat-
ing the bulk material properties of the nucleus and subnuclear struc-
tures; these approaches have been reviewed in depth elsewhere.51

Briefly, these approaches utilize force directly applied to microscopic
materials and measurement of the resulting displacement [Fig. 2(c)].
The calculated force-extension curve, which is analogous to the
stress–strain curve common in materials science, is generally linear
over small displacements, with the fit slope representing a spring con-
stant for the material. For larger displacements, the response is often
non-linear, a behavior termed either strain-stiffening or strain-
softening if the response curve is, respectively, concave up or down
[Fig. 2(d)]. Various active microrheology techniques, utilizing tools
such as magnetic or optical tweezers, atomic force microscopy, or
micropipette aspiration, have been applied successfully to show that
chromatin viscoelasticity is a major determinant of the bulk mechani-
cal properties of the nucleus.3,52–54 However, one crucial pitfall of these
techniques is that they average out spatial heterogeneity and substruc-
ture. In order to assay properties with more granularity, active micro-
rheological methods must be combined with targeted genetic or
pharmacological perturbations. For instance, micromanipulation has
revealed that bulk stiffness of isolated nuclei under small deformations
is determined by chromatin, which is influenced by epigenetic modifi-
cations,4,55 the chemical “tags” the cell uses to alter gene expression. In
contrast, for larger deformations, the response is dominated by the
lamin shell at the nuclear periphery. Genetic knockdown of lamin pro-
teins lowers long-extension regime stiffness, while tuning chromatin
compaction state via epigenetic modifications alters short-extension
regime stiffness.4

Because organization of heterochromatin, the more compacted,
stiffer form of chromatin, is thought to occur in part through LLPS of
proteins and DNA,15,16,56,57 LLPS may have a direct role in determin-
ing bulk nuclear mechanics. Indeed, auxin-induced degradation of a

key heterochromatic organizational protein, HP1a, results in softer
nuclei measured by micromanipulation.58 HP1a is also capable of
mechanically compacting DNA in vitro59 without the presence of
ATP, which may underlie the dependence of bulk nuclear mechanics
on HP1a protein level.58 Finally, large and viscous nuclear condensates
like nucleoli may also contribute to bulk nuclear mechanics measur-
able by active microrheology, potentially through structural reorgani-
zation of heterochromatin and/or more open euchromatin, as
discussed further below. Overall, these passive and active microrheo-
logical tools have provided a foundational framework upon which to
build our understanding of nuclear mechanics and will increasingly be
deployed to elucidate mechanical links to LLPS.

III. PHASE SEPARATION IN NUCLEAR ORGANIZATION

Membraneless nuclear condensates, including the nucleolus, are
formed via phase separation within the chromatin-rich nuclear envi-
ronment.60 In addition to its impact on the bulk mechanics of the
nucleus, the viscoelasticity of chromatin also impacts the formation of
these condensates. Condensates typically form in chromatin-poor
regions,50,61 suggesting that phase separation occurs more readily in
softer environments, as has been observed for in vitro systems.62

While typical equilibrium phase separation would predict that con-
densates would coarsen into a single large body over time, phase-
separated nuclear bodies tend to have characteristic size and number,63

which can be significantly altered in disease.64

It was recently proposed that the cell can regulate number, size,
and location of nuclear condensates by utilizing the general elastic
constraints of the crowded nucleus.65 In this study, chromatin-
excluding engineered condensates were used as microrheological
probes of nuclear mechanics, exhibiting MSDs similar to tracked loci.
Supporting this hypothesis, growth of nucleoli has similarly been
shown to be constrained by the presence of a nuclear actin scaffold in
X. laevis oocytes, sedimenting and coalescing into a single massive
nucleolus after actin disruption.11,34

The kinetic arrest of nuclear condensate coarsening due to visco-
elastic chromatin constraints suggests the possibility that cells may
actively regulate chromatin viscoelasticity to control number and size
of nuclear bodies. Interestingly, growth of synthetic condensates
mechanically creates a chromatin-poor cavity,50,65 demonstrating that
phase separation into protein-rich condensates can directly impact
chromatin structure. A unified model of nuclear organization will
need to consider the interplay between chromatin and phase-
separated bodies, but a deeper understanding of the underlying physics
is needed. Here, we review phase separation models and recent work
done to extend them to the complex intracellular milieu.

A. Regular solution-based frameworks
for biomolecular phase separation

In recent years, the utilization of phase separation models draw-
ing inspiration from materials science and condensed matter physics
has yielded significant insight into biological organization. In general,
phase separation occurs in a solution with two or more components
when the energetic favorability of particular intermolecular interac-
tions exceeds the entropic cost of demixing, resulting in a transition
from a well-mixed unitary liquid into two physically distinct liquids
[Figs. 3(a) and 3(d)]. The simplest theoretical framework is the regular
solution model, a mean-field approach that describes the free energy
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of mixing Fmix of an ideal solution with species A and B [Fig. 3(a)],
resulting in a phase diagram where demixing depends on temperature,
concentration, and interaction strength (encoded in the interaction
parameter vAB) [Fig. 3(d)]. When Fmix has two local minima, the solu-
tion can undergo phase separation, within the “two phase” region of a
phase diagram. This can also be described using the chemical potential
l, which is defined as the energy required to add an additional mole-
cule of a particular component i to a mixture with concentration /,
i.e., lð/Þ ¼ @F

@Ni
. If two distinct concentrations /a

i and /b
i exist such

that l /a
i

� �
¼ lð/b

i Þ, then phase coexistence is favorable.66 It should
be noted that for a two-phase system, the partition coefficient, defined
as the ratio of dense to dilute concentration, i.e., /b

i =/
a
i is independent

of concentration [single component LLPS, Fig. 3(e)].
Despite the attractive simplicity of the regular solution model, liv-

ing systems exhibit much more complexity than can be fully captured
by this framework. For example, in nearly all biological situations, the
system will be multicomponent, i.e., having N > 2 species. One concep-
tual simple idea is that only some of these components have particular
importance in stabilizing phase coexistence, which have been termed
“scaffolds,” while nonessential components recruited to condensates

have been referred to as “clients.”12 More generally, there is a contin-
uum of relative impact on phase separation, which can be viewed as a
multidimensional phase diagram [Fig. 3(d)]. Indeed, the regular solution
equations are generalizable to higher dimensions [Fig. 3(b)], although
the partition coefficient will no longer necessarily be constant upon
varying the concentration of any single component, and instead scale to
reflect heterotypic stabilization or destabilization of the phase by a par-
ticular component [Fig. 3(e)]. This effect has recently been described for
condensates including the nucleolus, Cajal bodies, and stress granules,67

providing a set of tools to interrogate the composition-dependent
dynamics of multiphase endogenous condensates.

An additional consideration is that large numbers of interacting
components can give rise to many distinct coexisting liquids, which is
referred to generally as a multiphase system68–70 [Fig. 3(b)]. Instances
of multiphase behavior wherein distinct phases are in physical contact
have been observed in several intracellular contexts, including the
nucleolus,71 stress granule/P- bodies,72 Cajal bodies,73 and nuclear
speckles.74,75 Precise quantitative links to theory are limited, but one
approach considers n components, whose pairwise interactions are
described by a symmetric n� n matrix vij; where phase coexistence

FIG. 3. The thermodynamics of phase separation are traditionally understood using models of increasing complexity, building from a simple two-component “regular solution”
colloidal system (a), to a multicomponent/multiphase system (b), and finally, to a polymeric system (c) containing components of differing lengths. These systems are typically
understood by mapping phase diagrams with two or more components (d), or by calculating partition coefficients (e) in the case of multicomponent systems with intractably
complex phase diagrams. Recent theoretical work has suggested that a local viscoelastic matrix can influence the equilibrium size, shape, and morphology of droplets, as a
function of the ability of the droplet to wet the matrix and the mechanical stiffness of the matrix, quantified as the permeo-elastic number, p, and the elasto-capillary number, h,
respectively (f).
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conditions are expected to be generalized as, i.e., lk
i ¼ lk

j for all
phases i 6¼ j and each component k [Fig. 3(b)]. Such multiphase struc-
tures have been theoretically shown to be a likely stable state.70 Taken
together, these generalizations build toward a single quantitative
framework that enables predictive thermodynamic modeling of multi-
phase and multicomponent coexistence for complex biomolecular
mixtures.

B. Models of increasing complexity describe phase
separation in vivo

While the regular solution framework is conceptually powerful, it
only considers the interactions of coarse-grained and similar-sized
components in the context of “mean field” interactions. However,
intracellular phase separation involves polymeric biological macromo-
lecules which have complex properties in their own right. Indeed, a
growing body of experimental and theoretical work highlights the rich
way in which biomolecular sequence patterning (i.e., protein, RNA,
DNA) gives rise to multivalent interaction elements that can exhibit
rich phase behavior.76–79 However, there are many key unanswered
questions about how biopolymer sequences and interactions impact
phase separation, in particular, the role of the local mechanical envi-
ronment, which itself emerges from the interactions and patterning of
the cell’s myriad polymeric components.

Consider first the simplest way in which the polymeric nature of
biomolecular components impacts phase separation. In the case of a
polymeric component in solution undergoing phase separation, the
very different size between the polymer and solvent necessitates
another extension of the regular solution model known as
Flory–Huggins theory;80,81 in this context, the entropy of mixing is
mitigated by limited conformations achievable for a polymer, and for
a particular component is multiplied by a factor of 1

L for a polymer
containing L monomers [Fig. 3(c)]. The length-dependent modifica-
tion of the Flory–Huggins free energy provides insight into the assem-
bly of multivalent RNA-dependent condensates such as nucleoli as
well as the role of oligomerization domains in driving phase separa-
tion. Future work will elucidate how these components, in the context
of ribosome assembly, may be actively modified inside a phase-
separated condensate.82

Paralleling the co-condensation of RNA-binding proteins with
large RNAs, there is also strong evidence that multivalency associated
with DNA plays a central role in phase separation. For example, it has
recently been suggested that repetitive sequence motifs in telomeric
DNA result in the condensation of Shelterin protein complex compo-
nents at the repetitive ends of chromosomes, known as telomeres, to
preserve genome stability.36,83 Similar repetitive DNA motifs could
also underlie transcription factor condensation at enhancers.84

Moreover, clusters of methylated nucleosomes in heterochromatic
regions act as binding platforms for dimers of the phase-separating
protein Heterochromatin Protein 1a (HP1a),85 which underlies the
structure of heterochromatic domain formation.15,16 DNA- or RNA-
scaffolded phase separation may also be critical for localizing enzy-
matic modifications like transcriptional repression: phase separation
of the polycomb complex PRC1 onto H3K27me3 epigenetic marks is
capable of writing H2AK119Ub marks, which are required for repres-
sion,86 suggesting an active role for phase separation in the regulation
of heterochromatic enzymes.56 Finally, histones have been shown to

phase separate in the presence of DNA in vitro, suggesting a broad
role for phase separation in chromatin organization.87

While there has been significant experimental evidence for
phase separation associated with DNA scaffolds, theoretical work
has been lacking. Building from decades of work in polymer physics,
traditionally applied to synthetic polymers,88 Flory–Huggins theory
has previously been applied in the context of DNA compaction by
DNA-binding proteins.89 Consistent with fundamental polymer
physics, DNA can be considered a scaffold component of a phase
separating system,90 despite some distinctions made in the literature
between “liquid–liquid” and “polymer–polymer” phase separation.91

However, the mesoscale stability of these domains is generally poorly
understood, as the dynamics of coarsening and nucleation will tend
to be suppressed by the presence of a less dynamic scaffold.

Future work will examine the ability of phase-separated droplets
to compact and confer rigidity to DNA in living cells, the role of non-
equilibrium activity (e.g., epigenetic readers and writers), and how the
properties of the condensates themselves are regulated.

C. Nuclear mechanics and the dynamics
of phase-separated condensates

As discussed above, the typical prediction for the most energeti-
cally favorable state of a condensate is a single large body, but conden-
sates typically form in numerous locations at once, and mechanical
constraints within the nucleus can provide kinetic barriers to slow the
subsequent coarsening process. Addressing the question of where and
when multiple droplets initially form, and the potential for the com-
plex intracellular environment to similarly impact this process,
requires a quantitative description of the earliest stages of phase
separation.

In general, droplets first form by one of two mechanisms: nucle-
ation followed by growth or spinodal decomposition. Because the lat-
ter generally requires a quench into high concentrations deep within
the two-phase region [Fig. 3(d)], in the context of biomolecular phase
separation it has only been reported in engineered systems90 and
in vitro.92,93 If the system exists in the binodal region closer to the
phase boundary, droplets will form by a process known as nucleation
and growth. In this case, the system is metastable, and droplet forma-
tion must overcome an energetic barrier associated with surface ten-
sion, c, and chemical potential, Dl, occurring at a rate related to the
magnitude of the energy barrier according to classical nucleation the-
ory.94 Since the destabilizing surface tension scales with surface area,
but the stabilizing thermodynamic drive to phase separate (i.e., chemi-
cal potential) scales with volume, phase separation is only favorable
above a characteristic size known as the critical nucleation radius. The
nucleation barrier can be further lowered by the presence of favorably
interacting surfaces or nucleation sites in cases where droplet conden-
sation occurs at defined nuclear locations.95 Indeed, some nuclear bod-
ies are formed at specific genomic loci or structures; e.g., nucleoli form
at rDNA,96 DNA damage foci form at PARylated regions,97 and tran-
scriptional condensates form at active enhancer-promoter pairs.19

While there is growing interest in the biophysics of condensate nucle-
ation,95,98,99 the application of concepts from classical nucleation the-
ory to intracellular phase transitions is still in its infancy.

Just as other aspects of condensate phase behavior are compli-
cated by a diversity of biological components, intracellular mechanics
likely plays a significant role in the energetics and dynamics of droplet
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formation, particularly in the nucleus. In order to grow a large droplet
within an elastic matrix, energy is required to deform the matrix,
resulting in an additional energetic cost to phase separation. As a
result, there will generally be an elevated saturation concentration, a
reduced nucleation rate, and, depending on the properties of the
matrix, a thermodynamically preferred droplet size. This phenomenon
has only recently gained attention in soft matter physics,62,100 and con-
nections to biology are still emerging.

In the context of nuclear biophysics, it remains challenging to
probe and perturb chromatin mechanics in living cells, although early
experimental evidence has begun to link such mechanical parameters
to biomolecular phase separation in the nucleus. For example, droplets
formed using engineered optogenetic systems preferentially nucleate
in areas of low chromatin density and exclude bulk chromatin;50 this
chromatin exclusion is also seen in various endogenous condensates
such as the nucleolus and nuclear speckles. These observations suggest
that the structural heterogeneity of the nucleus plays a role in the spa-
tiotemporal regulation of the formation of membraneless organelles.
This intuition was further supported both theoretically101 and in a syn-
thetic experimental system:100 if the matrix is heterogeneous, growth
of droplets in less stiff regions is energetically favored.

Following the initial phase of nucleation and growth, the evolu-
tion of the size distribution of droplets is driven by the minimization
of total droplet surface area. This occurs by one of two mechanisms:
Brownian motion driven coalescence, wherein mesoscopic droplets
diffuse, collide and merge,102 or by Ostwald ripening, wherein mole-
cules diffuse from small droplets to large droplets due to a surface-
proximal concentration gradient specified by the Gibbs–Thomson
relation.103 In the presence of a locally stiff matrix, however, this
behavior can be suppressed or inverted because displacement of the
matrix incurs an energetic penalty. This has been observed in molecu-
lar dynamics simulations of a heterogeneously linked chromatin poly-
mer, suggesting that the local environment of the nucleus may enable
the specific localization of condensates.104 This paradigm, however,
only applies for condensates whose constituents demix with their
mechanical environment, localizing to chromatin-poor regions.

In reality, the interplay of nuclear condensates and the chromatin
is more nuanced. Emerging theoretical work has more systematically
considered the possible interactions between droplets and an elastic
meshwork beyond simple exclusion, generating a putative state dia-
gram in the coordinates of the elasto-capillary number, h; and the
permeo-elastic number, p [Fig. 3(f)]. The elasto-capillary number com-
pares the elastic and surface energy and is defined as h ¼ 3c

rmG
, where c

is the surface tension, rm is the matrix pore size, and G is the shear
modulus of the network. The permeo-elastic number, which compares
the permeation and deformation energies of the matrix, is defined as
p ¼ rP

G , where rp is the permeation stress of the network, which can be
thought of as the energy penalty for contact between the filaments of
the network and the droplet phase compared to the dilute phase.105

If the surface tension and permeation stress are both high com-
pared to the cost of deforming the network, i.e., h and p are both large,
and a purely network-excluding condensate forms, similar to the
experimental observations with various synthetic and native endoge-
nous condensates.50 However, if the values of p and h are modest (i.e.,
�1), additional behaviors are possible. If p > h, i.e., the cost of having
large total condensate surface area is not high and condensates
strongly disfavor wetting the network, microdroplets form below the

mesh size of the network. The opposite occurs if the surface tension
dominates over the permeation stress, i.e., h > p, such that conden-
sates partly wet chromatin [Fig. 3(f)]. The extreme of such behavior is
cases where p is negative and the droplet is attracted to the network,
which may be true of heterochromatic droplets, which recruit and
even compact local chromatin56,57,59 if the magnitude of p is large.

As with all models, it is important to recognize the limitations of
this conceptual framework. In particular, a given condensate can
exhibit highly sequence-specific, targeted DNA wetting behavior. For
example, the h > p case may be thought of as representing seeding
onto specific genomic loci, e.g., Pol2 transcriptional condensates106,107

and polycomb condensates,56,57 which has also been reproduced in
engineered systems seeded at specific genomic sites.50,108 However,
intrinsically ordered regions (IDRs) on these same chromatin-
associated proteins could at the same time exclude non-targeted chro-
matin regions, thereby acting as a specific chromatin filter.50 Moreover,
because chromatin compaction is directly related to bulk nuclear
mechanics, p and h should depend on total condensate size/amount, in
a manner that is not accounted for by this model [Fig. 3(f)].
Nonetheless, these two dimensionless parameters provide a convenient
framework that allows us to begin understanding how different behav-
iors observed for elastically constrained condensates can be understood
from fundamental physical parameters.

IV. CONCLUSIONS

Phase separation provides a compelling model for the functional
organization of biomolecules in the nucleus and elsewhere within liv-
ing cells. In recent years, significant progress has been made to move
beyond overly simplified and sometimes only qualitative models and
toward considering the ramifications that the uniquely complex envi-
ronment of the cell has on phase separation. In particular, the mecha-
nochemical complexity of the intracellular environment gives rise to
unexpected behavior and indeed potentially even new physics. This
includes behaviors not predicted by the simplest two-phase liquid (i.e.,
binary Flory–Huggins) model, for example, the presence of many sta-
bly sized aspherical droplets or a composition-dependent saturation
concentration. One particularly intriguing “intracellular complication”
is the viscoelasticity of the cell. While both nuclear bodies and nuclear
mechanics have been separately investigated for decades, the concep-
tual framework of nuclear bodies as phase separated condensates pro-
vides an opening for understanding their interplay with nuclear
mechanics. The effects of the mechanics of the environment on phase-
separated droplets has only recently begun to be appreciated in biol-
ogy. However, much further work is needed, including methods to
measure the physical parameters, such as surface tension, permeation
stress, and elasticity, that theory predicts will govern the condensate
behavior in cells.

A second and equally interesting complication is the role of intra-
cellular non-equilibrium activity. Our current theoretical approaches
linking mechanics with phase separation generally assume thermody-
namic equilibrium. In reality, both condensates and nuclear mechanics
are highly biologically regulated. Major questions remain as to how
cells simultaneously utilize both phenomena: Do cells use condensates
as sensors of mechanical stimuli, e.g., to alter the epigenetic state and
stiffness of the nucleus in response to external forces? Can condensates
also directly alter local nuclear viscoelasticity to respond to changing
mechanical requirements? A wide range of condensates may play such
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roles, on multiple time and length scales, ranging from maintaining
heterochromatin-mediated bulk nuclear mechanics to coordinating
protection and repair in response to DNA damage, suggesting a set of
intricate, multifaceted answers to these questions. We anticipate that
untangling the complex interactions between the maintenance of
nuclear mechanics, the assembly of condensates, and their active regu-
lation and response to external stimuli will drive new insights in both
biology and physics.
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