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1, Daniel

Antunes Maciel VillelaID
2*

1 National School of Public Health (ENSP), FIOCRUZ, Rio de Janeiro, Brazil, 2 Program of Scientific

Computing (PROCC), FIOCRUZ, Rio de Janeiro, Brazil

* daniel.villela@fiocruz.br

Abstract

Background

Yellow fever is endemic in Africa and the Americas, occurring in urban or sylvatic environ-

ments. The infection presents varying symptoms, with high case-fatality among severe

cases. In 2016, Brazil had sylvatic yellow fever outbreaks with more than 11 thousand

cases, predominantly affecting the country’s Southeast region. The state of Minas Gerais

accounted for 30% of cases, even after the vaccine had been included in the immunization

calendar for at least 30 years.

Methodology and principal findings

We applied parameters described in the literature from yellow fever disease into a compart-

mental model of vector-borne diseases, using namely generation time intervals, vital host

and vector parameters, and force of infection, using macroregions as the spatial unit and

epidemiological weeks as the time interval. The model permits obtaining the reproduction

number, which we analyzed from reported cases of yellow fever from 2016 to 2018 in resi-

dents of the state of Minas Gerais, Brazil. Minas Gerais recorded two outbreak periods,

starting in EW 51/2016 and EW 51/2017. Of all the reported cases (3,304), 57% were men

30 to 59 years of age. Approximately 27% of cases (905) were confirmed, and 22% (202) of

these individuals died. The estimated effective reproduction number varied from 2.7 (95%

CI: 2.0–3.6) to 7.2 (95% CI: 4.4–10.9], found in the Oeste and Nordeste regions, respec-

tively. Vaccination coverage in children under one year of age showed heterogeneity among

the municipalities comprising the macroregions.

Conclusion

The outbreaks in multiple parts of the state and the estimated Re values raise concern since

the state population was partially vaccinated. Heterogeneity in vaccination coverage may

have been associated with the occurrence of outbreaks in the first period, while the
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subsequent intense vaccination campaign may have determined lower Re values in the sec-

ond period.

Author summary

Yellow fever attracts important research interest since it is an avoidable disease and is still

recurrent in Brazil. Although the country has an important public policy that integrates

production, distribution, and routine application of the yellow fever vaccine, the disease is

still included on the list of endemic infectious diseases in some regions. Surprisingly,

regions that were not previously part of risk areas for yellow fever were heavily affected by

the outbreak from 2016 to 2018 in the country. Understanding the outbreak’s occurrence

and intensity in the state of Minas Gerais based on the effective reproduction number, the

focus of this article, is just part of the larger goal of defining with greater certainty the risk

areas for yellow fever and proposing measures to control the spread of the disease.

Introduction

Yellow fever (YF) is an endemic infectious disease in Africa, Central America, and South

America. In the Region of the Americas, the disease has mainly two transmission cycles, and

even a third one in Africa, which depend on the environment of vector and hosts. In the

urban cycle, the important vectors are mosquitoes from genus Aedes. Mosquitoes from gen-

era Sabethes and Haemagogus are common in the sylvatic cycle in South America [1,2]. In

this cycle, nonhuman primates (NHPs) are responsible for maintaining the disease in the

environment functioning as the main reservoir [3]. The third cycle called the savannah cycle,

existing in Africa, involves Ae. simpsoni, a species that makes the connection between urban

and wild cycles [4]. The disease is endemic in Brazil, with sylvatic cases reported recurrently

[5]. Thanks to efforts since the 1930s to control the vector in the urban cycle, Brazil has

reported no cases of urban yellow fever since 1942 [6]. The country has also established Areas

with Recommendation for Vaccination (AWRV) against yellow fever, given the risk of cases

of the sylvatic form, which includes Amazonia, the Central-West, and some states and

municipalities in the Southeast region. The recommended coverage target is 100% of the pop-

ulation up to one year of age. According to the vaccination schedule of July 2016, an initial

dose should be applied at nine months of age, followed by booster doses every ten years. The

guideline also includes persons outside this age bracket residing in endemic areas and travel-

ers who intend to visit those areas [7]. The vaccine provides lasting immunity, such that

given the shortage of doses in 2017, Brazil started adopting a single dose based on the recom-

mendation by the World Health Organization. In 2019, the National Immunization Program

reviewed the single-dose guideline for children under one year and adopted a booster at four

years of age, while maintaining the single dose for other age brackets. A new guideline in

2020 expanded the vaccine’s recommendation to all Brazilian municipalities. Since 1998, the

municipalities in the state of Minas Gerais have supplied and applied the vaccine according

to the Vaccination Calendar of the National Immunization Program (PNI) [8,9]. Besides rou-

tine application, the state of Minas Gerais was the target of at least two major vaccination

campaigns, in 1999 and 2010, aimed at containing the increasing number of cases reported in

the respective periods. Despite these efforts, from 2016 to 2018, Brazil reported at least 11

thousand cases of yellow fever and 900 deaths, and the state of Minas Gerais had about 30%
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of all the cases [10,11]. That was the largest YF outbreak in the last 80 years, which surprised

health authorities and raised questions on the epidemic process involved. For example, the

intense mobility of asymptomatic infected individuals could favor the spread of transmission

to peri-urban and urban areas [12].

Studies on YF transmission cycles and the characteristics of its natural history provide an

important framework in the international scientific literature. Still, the disease remains a cur-

rent target of discussions and studies, especially due to urban yellow fever’s impact in Africa

and the fear of re-urbanization of the disease in the Americas [5,12]. Many gaps still prompt

researchers to understand the YF dynamics, despite the current knowledge about yellow fever’s

pathophysiology, ecology, and epidemiology. For example, there is a known inverse relation-

ship between the extrinsic incubation period (EIP) and outdoor temperature, decreasing the

time needed for vectors to become infectious at temperatures above 25˚C [13–15]. The EIP is

estimated forHg. Janthinomys within 20 to 24 days at an average temperature of 25˚C [16,17].

Experiments showed that the variation of ambient temperature between 25˚C and 35˚C, simi-

lar to field conditions, enables transmission to the extent that it reduces the extrinsic incuba-

tion period (EIP) to 12 days [18] Such effect applies to both Aedes aegypti, the main vector of

urban yellow fever, andHg. Janthinomys, the vector most found in the epidemic from 2016 to

2018 in the state of Minas Gerais [19]. Higher rainfall and higher air humidity directly influ-

ence the increase in the reported YF cases by promoting an adequate environment for the evo-

lutionary cycle of the vectors [13]. In addition to these factors, the diversity and abundance of

species of vertebrate hosts species is another factor directly associated with the occurrence of

yellow fever [20,21]. Considering the aspects that favor the maintenance of the disease cycle

and the spread of the virus in Brazil, the states in the Southeast Region proved to be highly vul-

nerable to the occurrence of wild YF cases in a spatial analysis based on multicriteria [22].

Kaul et al. pointed out the state of Minas Gerais as prone to the occurrence of the disease, iden-

tifying it as the only state with records of cases for more than one cycle within the interval of

156 months (2001–2013) [23]. Studies employing molecular epidemiology helped elucidate the

virus’ phylogenetics. Two main genotypes have been identified in Brazil (South America I and

South America II), with South America I as the most predominant genotype in the country.

Based on South America’s genotype I, five lineages were associated with outbreaks in Brazil,

1A, 1B, 1C, 1D, and more recently 1E. A sub-lineage of lineage 1E, identified in samples from

humans and primates during the outbreak from 2016 to 2018, was considered responsible for

the outbreak in that period [24–26].

Other studies have used mathematical modeling to understand the spread of diseases

[27,28]. Given the complexity of transmissible diseases, mathematical models allow simulating

situations and conditions that can occur in diverse scenarios, potentially contributing to the

elaboration of prevention and control measures [28]. From the perspective of mathematical

modeling, an old concept has been an important target of discussion and research, namely the

basic reproduction number (R0). Basic reproduction number is defined as the number of sec-

ondary cases originating from a primary case in a totally susceptible population [27–31]. For

diseases in which part of the population is immune, the effective reproduction number (Re) is

used, with a similar definition to that of R0, but without assuming the population’s total sus-

ceptibility as a requirement for its calculation, thus allowing its estimation when part of the

population is considered immune [32].

The knowledge established thus far clarifies and reinforces the spatial and temporal

distribution of yellow fever. Minas Gerais is a large and populous state (586,528 km2, over 21

million inhabitants) with diverse environmental and sociodemographic elements relevant to

YF transmission. It borders endemic regions in the north-west, and states previously free from

yellow fever in the east. Our study aims to understand the spatial variation of the effective
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reproduction number of yellow fever to explain the epidemic recorded in the state of Minas

Gerais from 2016 to 2018, considering the preexisting vaccination coverage.

Material and methods

Type of study

A combination of a cross-sectional and ecological approach, based on the YF cases reported to

the Ministry of Health from 2016 to 2018.

Data

We selected reported cases of yellow fever in residents of the state of Minas Gerais from all age

brackets. The data from the Information System on Diseases of Notification (SINAN) were

made available by the Ministry of Health per request. The SINAN database receives data on

suspected or confirmed cases of diseases with compulsory notification at the municipal, state,

and national levels. The records include information on individuals (date of birth, age, sex,

schooling, and place of residence), clinical and laboratory aspects of the disease (symptoms,

date of onset, test results), and information on the surveillance process (probable place of

infection, occurrence of epizootics, notification date, date of data entry in the system), among

other information.

Population data were obtained from IBGE (Brazilian Institute of Geography and Statistics).

The state of Minas Gerais has 853 municipalities grouped in 13 macroregions according to the

Regionalized Master Plan (PDR-2014), established for organization of services under the Uni-

fied Health System (SUS). Minas Gerais population was 19.6 million people in the last official

census in 2010. Cases were aggregated according to this division in macroregions according to

the patients’ place of residence.

The dates entered in the SINAN database are classified according to the preestablished epi-

demiological calendar for the entire country, normally consisting of 52 epidemiological weeks.

This standardization of dates allowed the selected cases to be grouped according to the epide-

miological week at the onset of symptoms, from epidemiological weeks 49/2016 to 52/2018.

Cases were grouped by epidemiological week and year of onset of symptoms, with no distinc-

tion between confirmed and probable cases. The data on vaccination coverage are available

from the DATASUS site (the Ministry of Health’s data website).

Macroregions without outbreaks were excluded from the calculation of Re. Data were ana-

lyzed using R software, version 4.0.3.

Parameters

The model includes entomological parameters and natural history of the disease, namely expo-

nential growth rate of reported cases (Λ), extrinsic incubation period (τe), intrinsic incubation

period (τi) and mosquito survival time (1/μm). The biology of YF vectors depends on environ-

mental characteristics. Temperature, for example, is determinant for the parameters of mos-

quito survival time and extrinsic incubation period used in this equation. Thus, we chose to

consider the values of the parameters, whenever available in the references consulted, whose

temperature of the experiments was in line with the average temperature (25˚C) recorded at

the end of 2016 and beginning of 2017, in Minas Gerais (National Institute of Meteorology

https://portal.inmet.gov.br/dadoshistoricos data).
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Effective reproduction number

The analysis of the effective reproduction number was chosen since yellow fever was endemic

in Minas Gerais, which integrates the Area with Recommendation for Vaccination. It was,

thus, expected that a large share of the resident population in the state had established some

immunity from natural infection or vaccination. The effective reproduction number is thus

most recommended, with the advantage of potentially assessing control measures, normally

based on the identification of outbreaks [38].

Calculation of the reproduction number requires a model that considers the transmission

dynamics of the disease and its specific characteristics. Due to the similarities between dengue

and yellow fever, whose vectors belong to the same family (Culicidae), the approach here lever-

ages the modeling approach by Villela et al. [39] to calculate the basic reproduction number of

Zika in the city of Rio de Janeiro in 2015. This approach was based on a model by Pinho et al.
[40] to describe dengue epidemics in the city of Salvador, Bahia, Brazil, in the years 1995/1996

and 2002. The model considers vector-borne disease transmission and contains vector and

human components. There are four mosquito compartments: the mosquito’s aquatic phase

and the adult phase subdivided into susceptible, exposed, and infectious. The human portion

of the model has compartmental subdivisions susceptible, exposed, infected, and recovered.

The model permits to derive the effective reproduction number Re under an assumption of

exponential growth of infected cases. According to Zhao et al. [41], Re = R0 (Sh/Nh) (Sm/Nm),

where R0 is the basic reproduction number and factors Sh/Nh and Sm/Nm indicate the ratios

between the number of susceptible individuals and total individuals for humans (h) and mos-

quitoes (m). In the study by Villela et al. [36], Zika was emergent in Rio de Janejro and the

whole population was susceptible, permitting to find the basic reproduction number. Here, the

number of humans susceptible to YF virus is hard to estimate, since the virus was already cir-

culating in Minas Gerais and population was partly vaccinated. However, during the exponen-

tial period of outbreaks, the number of vaccinated individuals is not expected to change

significantly and most of vaccinated individuals were immunized prior to the outbreaks.

Given this difference between the Zika (or dengue) outbreaks and YF outbreaks, the number

Sh excludes vaccinated individuals and the equation below implicitly evaluates the effective

reproduction number, given an estimation of the growth rate Λ and the other parameters

listed in Table 1:

Re ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Eq 1 is based on the force of infection according to the increase in cases at the start of the epi-

demic. The growth rate (Λ) was obtained via log linear regression for each macroregion during

the exponential growth period, first chosen by inspection and subsequently evaluated with dif-

ferent intervals of weeks in order to obtain the curve with highest R2 (Table A in S2 Text).

Considering that a very long period of time could determine a false period of exponential

growth, misleading the estimation of the reproduction number, only intervals of 3 to 7 weeks

were considered. Given the variability in the other parameters, a Gaussian distribution with

the intervals from literature data (Table 1) setting intervals of 2.5% and 97.5% percentiles was

applied to each parameter to compose a sample of N = 1000 sets of parameters. The samples

were applied in Eq 1 to obtain a resulting sample of estimations of the reproduction numbers.

Mean values, standard deviation and uncertainty intervals, 95% confidence intervals, are

obtained from these samples. We also applied other methods such exponential growth (EG)

[42] and maximum likelihood (ML) [43] to estimate the reproduction number, using overall

PLOS NEGLECTED TROPICAL DISEASES Modeling of yellow fever outbreaks in a partially vaccinated population

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010741 September 15, 2022 5 / 17

https://doi.org/10.1371/journal.pntd.0010741


parameters such as mean generation time and standard deviation. The generation time was

considered by summing the intrinsic incubation period of 6 days [1,3] and the average extrin-

sic incubation period of 12 days [17], totaling 18 days. The transmission times are much

shorter than the incubation periods [33]. As the unit of time used was epidemiological week,

the total period was divided by 7 days. Thus, the mean generation time was 2.6 weeks, and the

standard deviation was 0.5.

Vaccination exploratory analysis

The data of vaccination coverage were taken from the DATASUS website. The proportion of

vaccinated children in municipalities were categorized into:< 60%, 60–94%, and> 95%. In

order to evaluate spatially the macroregions according to vaccination coverage, we also calcu-

lated the mean and standard deviation of vaccination coverage per macroregions. The coeffi-

cients of variation in the macroregions are obtained from the ratio between the standard

deviations to the means of observed coverages within the macro-regions.

Statistical analyses were carried out with R software platform version 4.0.3 (2020-10-10)

and the implementation in package R0 [44] was used for methods EG [42] and ML [43].

Ethical considerations

This study used secondary, anonymized data, thus exempting the study’s submission to a

research ethics committee.

Results

A total of 3,304 YF cases were reported in the state of Minas Gerais from 2016 to 2018. Of the

3,304 reported cases, 72% were males and 56.6% were 30 to 59 years of age (Table 2). The Cen-

tro health region included 27% of all reported cases, followed by the Leste and Nordeste

Table 1. Parameters of the natural history of yellow fever, their definitions and range of values used in the analysis.

Parameters Definition Estimate (days) Reference

IIP Intrinsic incubation period 4–7 Biggerstaff et al, 2010 [33]

3–6 Monath, TP, 2001 [1]

6 (mean) Vasconcelos, 2002 [3]

Interval used 3 to 7 days

EIP Extrinsic incubation period (Aedes) 4–18 (12) Sellards, AW, 1935 [34]

10–16 Monath, TP, 2001 [35]

12–16 Biggerstaff et al, 2010 [33]

12 Bauer & Hudson, 1928 [13]

Interval used 4 to 12 days

1/ μm Survival of Aedes mosquito 7–10 Bellan SE, 2010 [14]

3.16–7.48 Maciel-Freitas et al, 2008 [36]

Interval used 3 to 10 days

EIP Extrinsic incubation period (Haemagogus) 13–15 Bates and Roca-Garcia,1945 [17]

12 (25 to 35˚C)

Interval used 12 to 15 days

1/ μm Survival of Haemagogus mosquito 13.8 to 18.3 Bates, M, 1946 [16]

7.4 to 20 Mondet, 1997 [37]

Interval used 7.4 to 18.3 days

Λ Exponential growth rate of cases Estimated log-linear regression

https://doi.org/10.1371/journal.pntd.0010741.t001
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regions, with similar percentages (15.9%). Of all the reported cases, 905 were confirmed by

both the laboratory criteria and the clinical-epidemiological criteria. Among the confirmed

cases, 202 died. Of the 1,109 individuals with information on prior vaccination, 112 had con-

firmed yellow fever, and 15 died. Case-fatality was 22%, when considering all the confirmed

cases, and 13%, with only cases with a vaccination history.

We identified two YF outbreaks from 2016 to 2018, as evidenced in the time series of cases

(Fig 1). The first wave began in December 2016 and reached its peak in January 2017, present-

ing the widest epidemic curve with the notification of up to 400 cases in one week, totaling

1,554 cases in the period (EW-50/2016 –EW-20/2017). The first cases were reported in the

macroregions Nordeste and Leste (EW-50/2016), followed by Leste do Sul (EW-51/2016) and

less intensely in the Centro health region, starting in EW-1/2017 (Fig 1). The second wave

began in December 2017, reached its peak in January 2018, and showed a lower amplitude

compared to the first wave (Fig 1). Despite the second wave’s lower intensity, its duration was

longer, having extended from EW-47/2017 to EW-22/2018 and totaling 1,601 reported cases.

Table 2. Likely and confirmed cases of yellow fever according to selected variables, Minas Gerais, Brazil, 2016 to

2018.

Reported Confirmed

Variables N % N %

Sex
Male 2,380 72.0 772 85.3

Female 924 28.0 133 14.7

Age bracket (years)
9 or less 124 3.7 5 0.5

10 to 29 779 23.6 91 10.1

30 to 59 1,870 56.6 621 68.8

60+ 519 15.7 186 20.6

Missing 12 0.4 - -

Vaccine
No 1,491 45.1 580 64.1

Yes 1,109 33.6 112 12.4

Missing 704 21.3 213 23.5

Major health region
Centro 984 29.8 250 28.3

Nordeste 574 17.4 171 18.9

Leste 573 17.3 130 14.8

Leste do Sul 337 10.2 134 14.4

Sudeste 308 9.3 103 11.4

Centro Sul 215 6.5 58 6.4

Sul 137 4.1 35 3.9

Oeste 71 2.1 9 1.0

Jequitinhonha 42 1.3 7 0.8

Norte 31 0.9 2 0.2

Triângulo do Norte 12 0.4 - -

Noroeste 10 0.3 - -

Triângulo do Sul 10 0.3 - -

3,304 905

https://doi.org/10.1371/journal.pntd.0010741.t002
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The health regions most affected by the second wave were Centro, Centro-Sul, Leste do Sul,

Sudeste, and Sul, among which only the Leste do Sul health region presented a recurrence of

cases and characterized a new outbreak (Fig 2).

Case incidence per 100 thousand inhabitants was highest in the Nordeste region (3.12) in

2016/2017, in Jequitinhonha (8.8), Leste do Sul (33.0), Leste (34.1), and Nordeste (64.7)

regions in 2017/2018, and in Centro Sul (26.3), Sudeste (16.7), Leste do Sul (15.3), and Centro

(12.7) in 2018 (Fig 2).

The estimate of the effective reproduction number in the state’s first wave was higher than

the one obtained for the second wave (Table 3). All macroregions reported YF cases. The Nor-

deste and Leste macroregions showed the highest Re values in the first wave (Table 3). Repro-

duction numbers were estimated as high as Re = 7.2 (95% CI: 4.4–10.9) for the Nordeste region

and estimated at 7.3 (95% CI: 5.2–9.8) for the first wave in the state. Reproduction numbers

are larger withHaemagogus parameters than those with parameters of Aedesmosquitoes.

The reproduction numbers estimated using the EG and ML methods are shown in Table A

in S2 Text. These estimations are generally in agreement with values and 95% CI presented in

Table 3, with Sudeste as an exception.

The analysis of YF vaccination coverage in children under one year of age in 2016 showed

relevant heterogeneity among the municipalities comprising the macroregions in the state of

Minas Gerais (Fig 3). In 2016, we found a predominance of areas with vaccination coverage

below 95% and municipalities with even lower coverage, less than 60%, compared to 2010. In

2010, only two of the 853 municipalities in Minas Gerais had a coverage rate of less than 60%,

while in 2016, there were 60 such municipalities. The coefficient of variation in vaccination

coverage showed homogeneity between the macroregions, but greater heterogeneity between

the municipalities in 2016 (Fig 3).

The vaccine coverage data show 55% of municipalities with less than 60% of coverage in the

general population (Fig 4) while in children under 1 year of age it was 6%. The proportion of

Fig 1. Historical series of reported (black line) and confirmed (red line) yellow fever cases, Minas Gerais, Brazil, 2016–2018. (Epidemiological weeks

were transformed into a continuous count with 7-day intervals, totaling 109 weeks).

https://doi.org/10.1371/journal.pntd.0010741.g001
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Fig 2. Yellow fever incidence per 100 thousand inhabitants according to major health region and year of onset of symptoms, Minas Gerais, Brazil,

2016 to 2018. Fig (a) Minas Gerais state map according to macroregions; (b) Incidence of yellow fever per 100,000 inhabitants in 2016, (c) Incidence of

yellow fever per 100,000 inhabitants in 2017; (d) Incidence of yellow fever per 100,000 inhabitants in 2018. Map created with ggplot2 and sf packages (R

platform)—base layer from Instituto Brasileiro de Geografia e Estatı́stica (at https://portaldemapas.ibge.gov.br/portal.php#homepage).

https://doi.org/10.1371/journal.pntd.0010741.g002

Table 3. Effective reproduction number and strength of infection according to major health region and epidemiological week, Minas Gerais, Brazil, 2016 to 2018.

Three- to seven-week periods were selected with increases in cases, normally identified at the start of the outbreak in each of the macroregions. The macroregions in the

bold face presented statistically significant values (p value< 0.05) in the regression that estimated the rate of growth of cases. The macroregions Norte, Jequitinhonha, Tri-

ângulo do Norte, and Triângulo do Sul did not display upward curves, thus preventing calculation of the reproduction number in these regions.

State of Minas Gerais and health regions EW� ʌ�� R2 statistic p value Re
��� 95% CI Re

��� 95% CI

Aedes Haemagogus
Minas Gerais

1st wave 51/16–03/17 1.1 0.9586 p < 0.001 5.1 3.7–7.0 7.3 5.2–9.8

2nd wave 51/17–03/18 0.87 0.9854 p < 0.001 4.1 3.3–5.3 5.6 4.6–7.1

Centro 49/17–03/18 0.90 0.9039 p < 0.001 4.3 3.2–5.5 5.9 3.9–8.4

Centro Sul 02/18–05/18 0.83 0.662 0.120 6.9 1.5–20.3 14.5 1.5–54.2

Leste 50/16–03/17 1.01 0.909 0.002 4.7 3.6–6.4 6.6 3.9–10.0

Leste do Sul 01/17–04/17 1.00 0.9438 0.107 6.1 1.6–14.6 10.8 1.8–33.8

Nordeste 50/16–04/17 1.09 0.9163 0.0017 5.0 3.7–6.9 7.2 4.4–10.9

Norte 02/17–07/17 0.35 0.9809 0.062 2.3 1.5–2.6 2.8 1.4–5.1

Oeste 51/17–04/18 0.36 0.854 0.002 2.3 1.7–3.4 2.7 2.1–3.6

Sudeste 52/17–04/18 0.74 0.8619 0.015 3.6 2.3–5.3 4.9 2.4–8.1

Sul 01/18–05/18 0.86 0.7657 0.081 3.7 1.7–8.4 6.6 1.7–15.4

�epidemiological week;

�� growth rate (Λ);

���Effective reproduction number

https://doi.org/10.1371/journal.pntd.0010741.t003
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municipalities with coverage percentage above 95% was 51% in the age group of children

under 1 year of age, while in the general population this proportion was 3%.

Discussion

The estimation of reproduction numbers varied across regions from 2.7 (95% CI: 2.0–3.6) to

7.2 (95% CI, 4.4–10.9). The estimated figures show the intensity of the outbreaks in an area in

which we had a partially vaccinated population. Data from these outbreaks show that cases

were detected and confirmed in a few vaccinated individuals. Only a few municipalities had

vaccine coverage higher than 95% in the general population. After the first cases in the year

2016, an intense YF vaccination campaign was launched, which our results suggest a positive

impact on the number of cases in late 2017 but still did not avoid another wave of cases. The

vaccine coverage had to be higher in several places to increase the local immunization and

reduce the heterogeneity that revealed spots with lower coverage levels among infants. These

results raise concerns, given the availability of a safe, effective, and free vaccine, for at least

thirty years.

Case incidence was highest in the macroregions Nordeste and Leste in early 2017, giving

these regions the highest Re values, with 7.2 (95% CI: 4.4–10.9) and 6.6 (95% CI: 3.9–10.0),

respectively. In 2018, the Central macro-region had the highest Re = 5.9 (95% CI: 3.9–8.4).

Fig 3. Yellow fever vaccination coverage in children under one year of age according to macroregions, Minas Gerais, Brazil, 2010 and 2016. Vaccination

coverage was consulted on the website of the Brazilian Ministry of Health (DATASUS). The data refer to vaccination coverage in children under one year of

age and classified in three categories, less than 60%, 61% to 94%, and 95% or greater. Fig (a) vaccination coverage in children under one year of age in 2010; (b)

vaccination coverage in children under one year of age in 2016; (c) coefficient of variation in vaccination coverage in 2010; (d) coefficient of variation in

vaccination coverage in 2016. Map created with ggplot2 and sf packages (R platform)—base layer from Instituto Brasileiro de Geografia e Estatı́stica (https://

portaldemapas.ibge.gov.br/portal.php#homepage).

https://doi.org/10.1371/journal.pntd.0010741.g003

PLOS NEGLECTED TROPICAL DISEASES Modeling of yellow fever outbreaks in a partially vaccinated population

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010741 September 15, 2022 10 / 17

https://portaldemapas.ibge.gov.br/portal.php#homepage
https://portaldemapas.ibge.gov.br/portal.php#homepage
https://doi.org/10.1371/journal.pntd.0010741.g003
https://doi.org/10.1371/journal.pntd.0010741


These results reinforce the yellow fever spillover from the east side of the state of Minas Gerais

[25,26]. During that period the number of weekly reports reached 400 cases, a value higher

than the accumulated number of cases for a period of one year at least in the last 30 years [12].

The reproduction numbers estimated with the parameters of theHaemagogus wild cycle

vector (EIP 22 days and survival time 18.3 days) for macroregions Oeste, Leste, Nordeste e

Norte are similar to the values estimated by the EG [42] and ML [43] methods implemented

by R0 Package (see Fig A to L in S3 Text). The exception was observed for the Centro and

Sudeste macroregions, which presented more discrepant values among the applied methods.

The estimation for the Centro macroregion was Re = 5.9 (95% CI: 3.9–8.4), whereas using

methods EG and ML was 10.9 and 8.9, respectively (see Table A in S3 Text). In the Sudeste

macroregion, the difference was even greater, since the estimation with Equation (Eq 1) was

4.87 (95% CI: 2.4–8.1), but much higher with other methods 20.3 (95% CI: 8.1, 55.7) (EG) and

11.5 (95% CI: 7.5, 16.7) (ML) (see Table A in S3 Text).

We observed two epidemic curves in the period analyzed in the state of Minas Gerais. The

spread of the disease started in the Nordeste health region of the state, which showed the high-

est case incidence, and continued to the health regions located in the south and traversing the

eastern side of the state of Minas Gerais, which borders other states of Southeast Brazil, namely

Espı́rito Santo, Rio de Janeiro, and São Paulo. Given the path of the disease, the state of Minas

Gerais has functioned as a transition zone between Central-West Brazil, where yellow fever

Fig 4. Yellow fever vaccination coverage (2016) in municipality general populations (adult and children). Data from Secretariat of Health of

Minas Gerais, Brazil. Coverage categories refer to vaccination coverage in children under one year of age and classified in three categories, less than

60%, 61% to 94%, and 95% or greater. Map created with ggplot2 and sf packages (R platform)—base layer from Instituto Brasileiro de Geografia e

Estatı́stica (https://portaldemapas.ibge.gov.br/portal.php#homepage).

https://doi.org/10.1371/journal.pntd.0010741.g004
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has been endemic, and the coastal areas of Southeast Brazil for the spread of yellow fever. The

second wave of cases began in December 2017, with an increase in reports in the macroregions

Centro, Oeste, Sudeste, Centro Sul, and Sul in the state of Minas Gerais and case reports in the

states of Espı́rito Santo, Rio de Janeiro, and São Paulo. Phylogenetic analyses of the viruses

found in nonhuman primates and humans that evolved to death after confirmation of yellow

fever concluded that the disease spread from the state of Minas Gerais to densely populated

regions in the states of São Paulo and Rio de Janeiro [45–47]. The epidemic seemed to have fol-

lowed a path related to epizootics and clusters of susceptible individuals living, working or

playing near forested areas.

The epidemiological weeks identified here with increased cases are consistent with the sea-

sonality of yellow fever in Brazil. The spatial and temporal distribution of yellow fever coin-

cides with heavier rainfall and higher temperatures, providing an optimal environment for the

emergence of cases [23]. Such dynamics happen because the increase in temperature drives the

vector’s survival and infectiousness, and its abundance increases with rainfall [20]. In this

study, Childs et al. [20] formulated an environmental risk model for the spread of yellow fever

to find different seasonality among Brazil’s five major geographic regions, finally considering

the Southeast of Brazil as seasonally adequate for the spread of the disease.

The epidemic showed greater intensity and higher values in the number of effective repro-

duction in the first wave, compatible with the greater amplitude of the curve, consistent with

low vaccination coverage and higher exposures to the wild transmission cycle. As transmission

decreased, possibly due to the intense vaccination campaign that started after the confirmation

of the first cases, the strength of the infection decreased, tending to decrease the values of Re in

the second wave. The values of Re found in this study, when considered the vector of the urban

cycle of the disease, varied from 2.4 a 5.0 (Aedes), in agreement with Massad et al., that evalu-

ated reproduction numbers for urban yellow fever in the range of 1.35 to 4.21 for outbreaks in

São Paulo from 1991 to 2000 [48].

Yellow fever is also highly prevalent in African countries as one of the continent’s most rele-

vant public health problems. In 2015, there were more than seven thousand reported cases of

urban yellow fever in Angola. In order to understand the epidemic’s intensity, Zhao et al. [41]

used a SIR model (susceptible-infected-recovered) to analyze the relationship between R0 and

Re. As occurred in the current study, the epidemic in Luanda, Angola, presented two waves. In

the first wave, recorded in January 2016, the estimated effective reproduction number was 4.4

and 5.5. In Luanda’s second wave, five months later, the number Re was 2.0 points lower, also

attributed to the vaccination campaign [41]. Vaccine campaigns reduce the number of suscep-

tible people, reducing the strength of the disease’s infection [27,32,49]. Another study in

Luanda proposed a logistic model to infer the risk of infection with the YF virus and estimated

the reproduction number at 4.8. The authors found that population density was the main pre-

dictor of the risk of disease. The model showed that the spread of the virus was influenced by

urban mobility and the vector’s adaptation to certain districts. Based on the findings, it would

be possible to predict areas with increased risk of yellow fever and to target interventions, for

example, when there are limited stocks of vaccines [50].

Vaccination is essential for the prevention and control of the disease not only in urban envi-

ronments but also in the sylvatic form due to the difficulty of eradicating the sylvatic vectors. A

study showed that vaccination averted 5.1 times the number of deaths (73) and 5.8 times the

number of observed cases (941) in Luanda’s outbreak of December 2015. The reproduction

number varied from 1.0 to 8.5 during the 37 weeks of the Luanda epidemic, with the highest

values initially (5.0 to 8.5) before mass vaccination of the population started [51]. Another

study that assessed the impact of dose sparing for vaccination in Luanda estimated Re between
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5.2 and 7.1, concluding that maintaining high coverage rates was more important than using

full doses [52].

The vaccine coverage in Minas Gerais’ general population is far below the vaccination cov-

erage observed in children younger than one year. In the study by Shearer et al. [53], one of

the scenarios evaluated that 97% of the 853 municipalities would have vaccinated between 60

and 94% of the population. Adults are more exposed to the virus and sylvatic YF vectors, both

at work and in leisure-time activities. More studies are needed to obtain vaccination coverage

in the adult population, especially age-stratified coverages, which could be used to provide a

better assessment of the transmission dynamics in these regions. Lack of vaccination coverage

is likely the main determinant of susceptibility, given the relatively low incidence of yellow

fever in recent decades. The increasing number of unvaccinated individuals in successive birth

cohorts provided the pool of susceptibles that led to the epidemic. Therefore, lack of vaccina-

tion, rather than vaccine failures, which had low frequency, appeared as a more plausible sce-

nario in that epidemic.

The health surveillance system in Brazil has capillarity, standardized standards, and rec-

ommendations that determine the actions to be performed in all health units, public or pri-

vate. The general guidelines include a list of mandatory diseases by the Ministry of Health,

which includes yellow fever. However, underreporting or underdiagnosing the disease is still

possible, especially given the broad spectrum of YF symptoms. A common criterion for

directing case investigation to other diseases is whether a case was prior immunized with the

YF vaccine. Also, asymptomatic infections might happen, with previous estimations of about

55% of infected people without symptoms and 33% with mild form [54]. No significant bias

is expected in the estimation of the effective reproduction number when underreporting is

time-invariant. However, improvements in surveillance are more likely to occur at the very

beginning of the epidemic and to stabilize soon in the first wave. In the second wave, less

underreporting and less variation are expected, as surveillance was already enhanced. In fact,

analysis with only confirmed cases reveals similar estimations of the effective reproduction

number.

A few limitations in the design and methodology might impact the assessment of the

reproduction number. Entomological parameters still carry uncertainties since studies with

parameters of wild vectors are still scarce, given the difficulty of creating Neotropical wild

mosquitoes in the laboratory [46,47]. Also, the base model used in this work refers to the

cycle of dengue transmission, which does not include an intermediate host as occurs in wild

yellow fever. Furthermore, more data and studies on age-stratified vaccination coverage

could help to better understand the current epidemiology of yellow fever. Moreover, the

mathematical framework does not include an explicit compartment for vaccinated individu-

als. However, the estimation is based on short time scales, i.e., during the exponential period

of outbreaks, and realized with a fair assumption that most vaccinated individuals were

immunized prior to the outbreak.

The outbreaks of yellow fever recorded in Brazil from 2016 to 2019 instigated research-

ers and the scientific community to understand the occurrence of many YF cases, severe

cases, and deaths in a state with a large, partially vaccinated population. The results in this

work show the intensity of the outbreaks requiring an even higher coverage of YF vaccina-

tion in the state and the need for studies of YF revaccination. The lessons learned from that

epidemic should be applied to other regions, such as Northeastern states, which did not

have YF outbreaks. Such considerations can also apply to other endemic areas in other

countries. Finally, it remains important to monitor the risk of urban yellow fever outbreaks

constantly.
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Camacho, Daniel Antunes Maciel Villela.

References
1. Monath TP. Yellow fever: an update. Lancet Infect Dis. 2001; 1: 11–20. https://doi.org/10.1016/S1473-

3099(01)00016-0 PMID: 11871403

2. Staples JE. Yellow Fever: 100 Years of Discovery. JAMA. 2008; 300: 960. https://doi.org/10.1001/jama.

300.8.960 PMID: 18728272

3. Vasconcelos PF da C. Febre amarela: reflexões sobre a doença, as perspectivas para o século XXI e o
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