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Cerebral palsy (CP), a common pediatric movement disorder, causes the most severe 
physical disability in children. Early diagnosis in high-risk infants is critical for early inter-
vention and possible early recovery. In recent years, multivariate analytic and machine 
learning (ML) approaches have been increasingly used in CP research. This paper aims 
to identify such multivariate studies and provide an overview of this relatively young field. 
Studies reviewed in this paper have demonstrated that multivariate analytic methods 
are useful in identification of risk factors, detection of CP, movement assessment for 
CP prediction, and outcome assessment, and ML approaches have made it possible to 
automatically identify movement impairments in high-risk infants. In addition, outcome 
predictors for surgical treatments have been identified by multivariate outcome studies. 
To make the multivariate and ML approaches useful in clinical settings, further research 
with large samples is needed to verify and improve these multivariate methods in risk 
factor identification, CP detection, movement assessment, and outcome evaluation or 
prediction. As multivariate analysis, ML and data processing technologies advance in 
the era of Big Data of this century, it is expected that multivariate analysis and ML will 
play a bigger role in improving the diagnosis and treatment of CP to reduce mortality and 
morbidity rates, and enhance patient care for children with CP.
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inTRODUCTiOn

Cerebral palsy (CP) is the most common movement disorder in children (1) and causes the most 
severe physical disability in neurodevelopmental disorders (2). Among children with CP, around 
33% of them can not walk, 25% can not talk, 25% have epilepsy, 50% have an intellectual disability, 
and most of them are in pain (3). Spastic CP is the most common subtype of this disorder, often 
shown as muscle stiffness that causes movement difficulties in a hand, arm, foot, or leg on one or 
both sides of the body, affecting the majority (>85%) of children with CP (4). Other subtypes of CP 
include dyskinetic (athetoid or dystonic) CP, ataxic CP (e.g., with tremors), and mixed CP.

Currently, there is no cure for CP, but medications (such as baclofen and botulinum toxin), 
supportive treatments (such as physical therapy), and surgical procedures [such as orthopedic 
surgery and selective dorsal rhizotomy (SDR)] can help patients alleviate symptoms and improve 
motor skills (5). The signs and symptoms of CP usually appear in the early months of life, but 
the average age for diagnosis of CP is around 2  years (2). Therefore, early identification and 
intervention is crucial for patients with CP because infants have higher potential for recovery 
from neural lesions than adults (1, 2). Neuroimaging, motor assessment (such as general move-
ment assessment), and neurological examinations can help identify high-risk infants, monitor 
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neurodevelopment, and detect or predict CP. Neuroimaging 
such as magnetic resonance imaging (MRI) and cranial ultra-
sound are useful to detect structural changes [intraventricular 
hemorrhage, periventricular leukomalacia (PVL), etc.] in the 
newborn brain, monitor lesion progression, and assess treat-
ment effects, although compared with MRI, cranial ultrasound 
is less sensitive to lesions in the gray matter or malformations. 
Severe CP (caused by severe brain lesions such as PVL) can be 
identified by MRI or cranial ultrasound as soon as the lesions 
become recognizable on imaging after birth. However, 12–14% 
of children with CP have negative MRI scans due to subtle 
lesions in the brain (6). Thus, an integrated approach (imaging, 
motor assessment and neurological examinations) is needed to 
predict mild or moderate CP.

To predict CP in infants, Prechtl has described a general 
movement assessment method as a clinical assessment approach 
to identify CP motor impairments in infants by evaluating their 
spontaneous general movements (7). In particular, two atypical 
motor development features [(1) the presence of cramped-
synchronized general movements at a preterm or term age 
and (2) the absence of small smooth movements or fidgety 
movements at 3–5 months] have been defined (8–10), which 
can identify CP in high-risk infants reliably (11). However, 
only well-trained physicians can perform such assessment, 
and general movement assessment based on visual observation 
by physicians is often influenced by subjective impressions 
and observer fatigue. Therefore, there is growing interest in 
developing multivariate and machine learning (ML)-based 
movement assessment tools for a more objective and quanti-
tative motor assessment to detect movement impairments in 
high-risk infants (12, 13).

Multivariate analysis is a statistical analytical approach that 
simultaneously evaluates multiple variables, which compared 
with univariate analysis, may have more advantages (e.g., free 
from restrictions of various assumptions in univariate analysis) 
in identifying the associations between multiple data variables 
(e.g., variables associated with CP outcomes), grouping data into 
different groups or subgroups (e.g., different CP subtypes), and 
developing new diagnostic tests (e.g., differentiate CP subtypes 
with key feature variables). Multivariate analysis includes sta-
tistical methods such as principal components analysis (PCA), 
canonical variate analysis, independent components analysis, and 
multivariate regression. ML (or statistical learning) is a group of 
multivariate analytic methods that first identify the most signifi-
cant data features or patterns that can best separate the data into 
different classes in the training dataset, and then apply these data 
features or patterns to the test dataset for data classification or 
prediction. ML has been increasingly applied to the biomedi-
cal field (14, 15), and examples of ML methods include linear 
discriminate analysis (16), support vector machine (SVM) (17), 
artificial neural networks (ANN) (18), random forest (19), and 
cluster analysis (20).

With growing interests, multivariate analysis has been increas-
ingly employed in CP research in recent years, and research 
with multivariate analyses in CP is in infancy (14). To provide 
an overview of this relatively young field, PubMed search was 
performed with keywords “multivariate analysis cerebral palsy 

pediatric,” “machine learning cerebral palsy,” or “multivariate 
analysis cerebral palsy imaging.” The search yielded 126 articles. 
Articles were excluded if their subjects were not pediatric or 
the statistical methods used were not multivariate or the article 
was published before year 1990. This paper assessed the studies 
that used multivariate analysis in CP research and found that 
multivariate studies in CP are mainly in four categories: (1) risk 
factor identification; (2) detection of CP and identification of CP 
abnormalities; (3) movement assessment for CP prediction; and 
(4) outcome evaluation.

MULTivARiATe AnALYSiS in RiSK 
FACTOR iDenTiFiCATiOn

Early work on CP risk factor identification started from birth 
certificates. In a large population-based cohort study, data from 
birth certificates for 192 children with CP in four counties in 
California were compared with 155,636 healthy children in the 
same regions and the study found that low birth weight and (early 
or late) gestational age at birth were associated with high preva-
lence of CP, but early prenatal care and delivery at a hospital (for 
low birth weight neonates) were not associated prevalence of CP 
(21). Using multivariate analysis on clinical data of 113 CP infants 
(identified from 1,105 infants), Pinto-Martin et al. found that in 
low birth weight infants, cranial ultrasound imaging abnormali-
ties such as parenchymal echodensities/lucencies (or ventricular 
enlargement) and germinal matrix/intraventricular hemorrhage 
were strong risk factors for disabling CP, but factors such as birth 
weight, gestational age, and Apgar score were not associated with 
it (22). In addition, a multicenter, large sample study (across eight 
European study centers, n = 585) revealed that there was a high 
rate of infection in mothers of CP children during their preg-
nancy and major CP abnormalities on structural MRI included 
white-matter damage due to immaturity (e.g., PVL) (42.5%), 
lesions in the basal ganglia (12.8%), cortical or subcortical lesions 
(9.4%), and malformation (9.1%) (23). A number of studies that 
identified CP risk factors have performed both univariate and 
multivariate analyses (24–26) where the risk factors identified by 
multivariate analyses were a subset of those identified by univari-
ate analyses (24, 25), and the results of multivariate analyses were 
more rigorous and valid.

Studies that applied multivariate analysis to CP risk fac-
tor identification are summarized in Table  1 (22, 24–31). 
Multivariate logistic regression has often been used to identify 
risk factors for CP (22, 26, 29–31). Some of the risk factors 
identified by multivariate analytic studies include: premature 
birth, low birth weight, severe birth asphyxia, preterm rupture 
of membrane, abnormal cranial ultrasound, or structural MRI 
imaging findings (e.g., parenchymal echodensities/lucencies, or 
ventricular enlargement), intraventricular hemorrhage, PVL, 
neonatal sepsis, hypoxia-ischemic encephalopathy, hypoglyce-
mia, neonatal jaundice, etc. (22–31). These risk factors are useful 
to understand the causes of CP, identify high-risk infants, and aid 
in the diagnosis of CP.

Further, the risk factors for CP revealed by the multivariate 
studies are useful to prevent CP. Several CP risk factors such 
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TAbLe 1 | Summary of studies with multivariate analyses in identification of risk factors and detection of CP.

Study Subject sample Data Methods Main findings Other findings

Pinto-Martin  
et al. (22)

113 children with 
CP

Clinical data (birth weight, 
gestational age, length 
of hospital stay, gender, 
race, plurality, presence 
of labor, Apgar score, 
motor function, cranial US 
findings, etc.)

Multivariate logistic 
regression to assess 
risk factors for CP

Risk factors for disabling CP: PEL/VE 
or ventricular enlargement on cranial 
US, germinal matrix/intraventricular 
hemorrhage, mechanical ventilation; 
risk factors for non-disabling CP: 
PEL/VE

Cranial US abnormalities 
are strong risk factors for 
disabling CP in low birth 
weight infants; non-risk 
factors for disabling CP: 
birth weight, gestational 
age, length of hospital 
stay, gender, race, plurality, 
presence of labor, Apgar 
score

Allan et al. (24) 36 pts with CP (in 
381 infants)

Clinical data (birth weight, 
bronchopulmonary 
dysplasia, abnormal 
cranial US findings, 
treatment, etc.)

Univariate and 
multivariate analysis to 
identify antecedents 
of CP

Predictors of CP: bronchopulmonary 
dysplasia and an abnormal cranial 
US scan (showing grade 3 to 4 
intraventricular hemorrhage, PVL, or 
ventriculomegaly)

PVL and ventriculomegaly 
associated with high 
CP detection rates; 
chorioamnionitis and 
treatment with surfactant 
significant in univariate 
analysis

Kim et al. (25) 35 pts with CP Clinical data (age, weight, 
neonatal sepsis, neonatal 
seizure, etc.)

Univariate and 
multivariate analysis 
to identify risk factors 
for CP

Risk factors for CP and delayed 
development: neonatal sepsis

Han et al. (27) 21 children with CP Clinical data (birth 
characteristics, disease 
at birth, neonatal cerebral 
ultrasound findings, etc.)

Multivariate analysis 
used to identify risk 
factors for CP

Risk factors for CP: existence of 
PVL, preterm labor, preterm rupture 
of membrane, severe birth asphyxia, 
neonatal sepsis, and respiratory 
distress syndrome

Existence of PVL is the 
strongest risk factor for CP

Zhong et al. (28) 308 children with 
CP

Data from a cross-
sectional survey (birth 
characteristics, disease 
during the first month of 
life, etc.)

Multivariate analysis 
used to identify risk 
factors for CP

Risk factors for CP: delivery at home, 
low Apgar score, illness during the 
first month of life, maternal cold 
with fever in early gestation, low 
protein intake during pregnancy, low 
education level of mother

Golomb et al. (26) 76 children with 
CP after perinatal 
stroke

Clinical data (perinatal 
history, motor function, 
frequency of CP, degree 
of disability, etc.)

Univariate and 
multivariate analysis 
(with logistic regression) 
to assess risk factors for 
CP in perinatal stroke

68% pts with perinatal stroke had CP; 
risk factors for CP: delayed stroke 
and male gender; In pts with neonatal 
stroke, risk factors for triplegia or 
quadriplegia: bilateral infarcts

In pts with unilateral middle 
cerebral artery infarcts, risk 
factors for CP: delayed 
stroke and large-branch 
infarction

Miamoto et al. (29) 60 pts with CP vs. 
60 healthy controls

Data from questionnaires 
and clinical exams 
(TMD symptoms, 
bio-psychosocial 
characteristics, etc.)

Multivariate logistic 
regression to determine 
risk factors for TMD 
symptoms

Risk factors for TMD symptoms: 
presence of CP, male gender, severity 
of the malocclusion, mouth breathing, 
and mixed dentition

13.3% pts vs. 1.7% controls 
had TMD symptoms

Abdullahi et al. (30) 111 pts with CP vs. 
222 controls

Clinical data (maternal 
sociodemographic 
characteristics and 
neonatal expected 
predictors)

Univariate and 
multivariate (logistic 
regression) analyses 
used to identify factors 
associated with CP

Predictors of CP: maternal fever, 
previous neonatal death, and poor 
sucking

Factors not associated with 
CP: maternal age, parity, 
birth weight, and sex

Yu et al. (31) 203 preterm infants 
with CP, vs. 220 
preterm infants 
without CP or 
other neurological 
disorders

Data of diseases of 
premature infants, the 
treatments in neonatal 
period, etc.

Multivariate logistic 
analysis used to identify 
risk factors associated 
with CP

Risk factors for CP: occurrence of 
PVL, HIE, hypoglycemia, or neonatal 
jaundice

Continuous positive airway 
pressure may lower the risk 
of CP

Golomb et al. (32) 76 children with 
CP after perinatal 
stroke

Clinical data (perinatal 
history, motor function, 
frequency of CP, degree 
of disability, etc.)

Univariate and 
multivariate analysis 
(with logistic regression) 
to assess association of 
CP with other disabilities

72% pts with perinatal stroke had at 
least another disability; risk factors for 
epilepsy: neonatal presentation and 
history of cesarean-section delivery

Risk factors for severe 
cognitive impairments or 
epilepsy: perinatal stroke 
with neonatal presentation
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Study Subject sample Data Methods Main findings Other findings

Griffiths et al. (33) 20 pts with spastic 
CP; 20 with 
dyskinetic CP

Injury severity scores at 
different brain regions 
on magnetic resonance 
imaging (T2)

Variables indicated 
by univariate analysis 
fed to multivariate 
logistic regression to 
identify predictors to 
differentiate spastic and 
dyskinetic CP

Spastic CP pts had more severe 
damage to white matter near the 
paracentral lobule; dyskinetic CP pts 
had more injury to the STN: hypoxic-
ischemic injury to the STN at birth 
associated with dyskinetic CP

Non-predictors of 
dyskinesia: injuries to the 
putamen, caudate, and 
globus pallidus

Yoshida et al. (34) 34 pts with CP vs. 
21 healthy subjects

Parameters (number 
of fibers, tract-based 
FA, and FA) for CST 
and posterior thalamic 
radiation tracts from 
diffusion tensor imaging 
(DTI) and motor level data

Univariate and 
multivariate (regression) 
analysis used to identify 
variables correlated to 
gross motor function

Number of fibers and ROI-based 
FA values of both tracts were lower 
in pts than controls; motor-sensory 
parameters were negatively correlated 
with GMFCS level

Coppola et al. (35) Group 1: 40 pts 
with CP and mental 
retardation; group 
2: 47 pts with CP, 
mental retardation 
and epilepsy; 
group 3: 26 pts 
with epilepsy

Clinical data (age, 
BMI, BMD z-score 
from dual-energy X-ray 
absorptiometry scan, etc.)

Multivariate analysis 
used to identify factors 
on BMD

Lower BMD in 42.5% pts in group 1, 
70.2% in group 2, 11.5% in group 3

In pts with CP, mental 
retardation and epilepsy, 
epilepsy is an aggravating 
factor on bone health

Factors on BMD: age, BMI, severe 
mental retardation, epilepsy

Benfer et al. (36) 120 pts with CP Data of OPD measures, 
motor measures, etc.

Univariate and 
multivariate regression 
analysis to determine 
the relationship between 
OPD and motor 
functions

Higher odds of OPD in non-ambulant 
pts than in ambulant pts

85% pts had OPD

Romeo et al. (37) 100 pts with CP 
(32 of them with 
epilepsy) vs. 100 
healthy children

Data from the SDSC, 
GMFCS levels, etc.

Multivariate analysis 
(logistic regression) 
used to identify factors 
associated with SDSC

13% of children with CP had 
abnormal sleep score; factors 
associated with SDSC: behavioral 
problems and epilepsy

Compared with healthy 
controls, sleep disorders are 
more common in children 
with CP 

Adler et al. (38) 18 children with 
unilateral spastic 
CP (9 with mirror 
movement, 9 
without)

Clinical data from 
BANIMM, JTHFT, and 
AHA

Multivariate analysis 
of covariance used 
to determine whether 
mirror movements affect 
daily living

Mirror movements had a negative 
impact on bimanual performance 
(AHA) and on the time needed to 
complete difficult activities

Tao et al. (39) 11 children with 
CP, 8 healthy 
children, 7 healthy 
adults

EMG data from five thigh 
muscles and three lower 
leg muscles

Multivariate empirical 
mode decomposition 
enhanced MMSE 
analysis used to analyze 
EMG data; repeated-
measure ANOVAs for 
group comparison

Compared with the control group, 
CP pts had distinct diversity in MMSE 
curve

Abnormal MMSE curve 
reflected problems in 
individual muscles such as 
motor control impairments, 
loss of muscle couplings, 
and spasticity or paralysis

Ghate et al. (40) 54 pts with CP Clinical data (CP 
type, motor function, 
etc.) and data from 
ophthalmoscopic 
examinations

Multivariate logistic 
regression to identify 
factors associated with 
motor outcomes

70% pts had abnormal optic nerve 
head; disk pallor associated with non-
ambulatory status and quadriplegia; 
large cup associated with age at 
examination

Indicator for poor motor 
outcome: presence of optic 
nerve head pallor

Reid et al. (41) 31 children with 
unilateral CP

Activation maps from 
fMRI (with hand task); 
FA and MD values 
and fiber tracts in the 
thalamocortical and 
corticomotor tracts from 
DTI; clinical scores of 
motor ability

k-means clustering 
used to identify fMRI-
task-specific DTI tracks; 
surface-based approach 
(using surface-meshes) 
compared with 
voxelwise fMRI-DTI 
approach; correlation 
analysis between DTI 
metrics and clinical 
scores performed

DTI metrics and five clinical scores 
of motor function were correlated; 
surface-based approach processed 
more subjects’ data (87%) 
than the voxel-based approach 
(65%), generated more coherent 
tractography

Surface-based approach 
revealed more significant 
correlations between DTI 
metrics and five clinical 
scores
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Tosun et al. (42) 30 pts with CP 
only; 54 pts 
with epilepsy 
only; 38 pts with 
CP + epilepsy; 30 
healthy children

BMD of lumbar vertebrae 
obtained by dual energy 
X-ray absorptiometry; 
clinical data (dietary 
Ca intake, whether 
intellectual disability, 
whether immobility, etc.)

Multivariate regression 
analysis used to 
evaluate the relationship 
between BMD and 
possible risk factors

Low BMD common in pts with CP 
and CP + epilepsy; risk factor of low 
BMD: immobility (not able to walk 
independently)

Low BMD related to the 
severity of CP, but not to 
vitamin D levels or AED 
treatment

AHA, assisting hand assessment; BANIMM, bimanual activities negatively influenced by mirror movements; BMD, bone mineral density; BMI, body mass index; CST, corticospinal 
tract; CP, cerebral palsy; EMG, electromyographic; FA, fractional anisotropy; GMFCS, Gross Motor Function Classification System; HIE, hypoxia-ischemic encephalopathy; JTHFT, 
Jebsen taylor hand function test; MD, mean diffusivity; MMSE, multivariate multi-scale entropy; OPD, oropharyngeal dysphagia; PEL/VE, parenchymal echodensities/lucencies; 
Pts, patients; PVL, periventricular leukomalacia; ROI, region of interest; SDSC, Sleep Disturbance Scale for Children; STN, subthalamic nucleus; surgeon volume, the number of 
procedures performed; TMD, temporomandibular disorders; US, ultrasound.
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as brain injury and infection can be managed and avoided by 
preventing their causative mechanisms, and preventive efforts 
such as rubella vaccination, anti-D vaccination, and preventing 
methylmercury contamination are effective in preventing CP (2). 
In addition, meta-analysis has indicated that CP may be reduced 
by 30% in premature infants (<32 weeks gestation) by providing 
mothers of imminent-labor with magnesium sulfate for neuro-
protection of their babies (43, 44). Further, early interventions 
such as hypothermia have prevented CP in 12.5% of infants with 
neonatal encephalopathy following an acute intrapartum hypoxic 
event (45). Since, currently, there is no cure for CP, CP prevention 
is critical to reduce the prevalence of CP and save children from 
CP and CP-caused life-long disabilities. Multivariate analysis 
may help identify significant risk factors and early interventions 
in order to prevent CP.

Taken together, multivariate analysis is important in identifi-
cation of risk factors for CP and the risk factors identified such as 
premature birth and abnormal (cranial ultrasound or  structural 
MRI) imaging findings are useful not only for CP cause identifica-
tion and diagnosis but also for CP prevention. Further research 
is needed to identify more manageable and avoidable risk factors 
and early interventions (such as neuroprotective drugs or thera-
pies) to prevent CP and reduce CP morbidity rate.

MULTivARiATe AnALYSiS in DeTeCTiOn 
OF CP AnD iDenTiFiCATiOn OF CP 
AbnORMALiTieS

Since the current average age for diagnosis of CP is around 2 years 
and infants have higher potential for neural recovery (1, 2), early 
detection of CP is critical to make early intervention possible. To 
identify CP in high-risk infants, neuroimaging such as cranial 
ultrasound and MRI is important for lesion detection and decid-
ing the timing of the lesion. Studies applied multivariate analytic 
methods to detection of CP and identification of CP abnormali-
ties are summarized in the latter part of Table 1 (32–42). A mul-
ticenter study of very-low birth weight infants (n = 381, survival 
rate = 87%, 36, or 9.4% with CP) indicated that cranial ultrasound 
findings such as grade 3–4 intraventricular hemorrhage and PVL 
were useful in predicting CP; in particular, PVL and ventriculo-
megaly were related to high detection rate (≥30%) for CP (24). 
Further, to differentiate CP subtypes, Griffiths et al. examined the 

T2 MRI images of children with spastic or dyskinetic CP (n = 20 
in each group), and found that patients with spastic CP had more 
severe injury to white matter near the paracentral lobule, while 
patients with dyskinetic CP had more injury to the subthalamic 
nucleus (STN) (33). Multivariate logistic regression further 
identified the associated factors (i.e., lesions in distinctly different 
anatomical locations) for differentiation of spastic and dyskinetic 
CP (33).

When brain injuries in patients with CP are subtle, advanced 
imaging such as diffusion tensor imaging (DTI) and diffusion-
weighted imaging is useful to detect CP injuries with subtle 
abnormalities. DTI metrics such as mean diffusion (MD) and 
fractional anisotropy (FA) are often used to identify injuries in 
white matter tracts. The value of DTI in identifying degenerative 
changes in patients with spastic CP due to periventricular white 
matter injury has been demonstrated by an early study, which 
reported that children with spastic hemiparetic CP (caused 
by periventricular white matter injury) had reduced DTI fiber 
count on the ipsilateral (the same side as the lesion) side of the 
corticospinal tract (CST), corticobulbar tract (CBT), and supe-
rior thalamic radiation, and had MD and FA changes reflected 
neurodegeneration of the motor and sensory pathways (n = 5) 
(46). Further DTI studies found that white matter damage in the 
posterior thalamic radiation pathways was more severe than that 
in the CSTs in children with CP (n = 28) (47), and DTI abnor-
malities in several white matter tracts such as posterior thalamic 
radiation pathways or superior regions of the thalamocortical and 
corticomotor tracts correlated with motor function measured 
by, e.g., Gross Motor Function Classification System (GMFCS) 
level (n = 28–34) (34, 41, 47). A review paper summarized the 
results of 22 DTI studies in CP and reported common findings 
of decrease FA (or increased MD) in the corticomotor and 
sensorimotor pathways, which correlated with clinical measures 
(48). Some research findings suggested that the CP injury in the 
somatosensory circuits might be more severe than that in the 
motor circuits, which may contribute more to motor impairment 
in CP (49). Further research is needed to unfold the mechanisms 
underlie sensorimotor impairment in CP and to improve detec-
tion of CP through neuroimaging.

Apart from neuroimaging, the abnormalities of CP have 
been identified via multivariate analysis using patients’ clinical 
data (perinatal history, CP type, CP frequency, motor function, 
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degree of disability, etc.) and data from other sources such as 
electromyography (EMG) and bone mineral density (BMD) 
(32, 35–40, 42). For example, multivariate analyses have indi-
cated that 85% of CP patients have oropharyngeal dysphagia 
(36), 13% have sleep disturbance (37), 70% have abnormal 
optic nerve head (40), and 50% have low BMD (42). Factors 
associated with these CP abnormalities have also been identi-
fied (35, 37, 39).

In addition, since neonatal encephalopathy can cause CP, 
detection of neonatal encephalopathy helps detect potential 
CP.  Structural brain connectivity networks of infants with 
neonatal encephalopathy have been examined using diffusion 
tractography extracted from DTI images, and ML methods such 
as SVM have been applied to structural connectivity features to 
detect neonatal encephalopathy (50). Moreover, since epilepsy 
and seizure disorders are common in children with CP, electro-
encephalography (EEG) is used to detect co-occurring seizures 
in high-risk infants or children. ML approaches such as SVM 
and ANN have been applied to EEG features to identify ictal 
and interictal spikes and achieved high detection rate for sei-
zures (51). Further, multivariate analysis has found that children 
with CP after perinatal or neonatal stroke are more likely to 
have severe disability, cognitive impairment or epilepsy than CP 
children after delayed stroke (32).

Taken together, multivariate analytic studies in CP detection 
have identified imaging markers such as intraventricular hemor-
rhage and PVL on cranial ultrasound (24), injury to white matter 
near the paracentral lobule or to the STN on T2 MRI images (33), 
and injury in the CSTs and the posterior thalamic radiation path-
ways on DTI images (34, 41, 46, 47), which are useful in detecting 
CP and differentiating CP subtypes. Multivariate analyses have 
also identified CP abnormalities and their associated factors from 
non-imaging data (32, 35–40, 42). Further research is needed to 
identify biomarkers at the early stages of the disease to improve 
the diagnosis of CP, reduce diagnosis delay, and allow early iden-
tification and intervention for CP.

ML in MOveMenT ASSeSSMenT FOR  
CP PReDiCTiOn

Studies reported applications of ML in movement assessment 
for CP prediction are summarized in Table  2 (52–61). Early 
identification of motor impairments in high-risk infants ena-
bles early detection of CP. The two atypical movement features 
(related to the cramped-synchronized general movements 
and the absence of fidgety movements) in general movement 
assessment are strong predictors for CP diagnosis (8–10). 
Based on these key motor impairment features, their move-
ment characteristics and associated movement variables have 
been identified to detect movement impairments in high-risk 
infants (53–55, 57–59). ML approaches have made it possible 
to analyze recorded movement data and identify motor impair-
ments automatically.

As a pioneer study, Meinecke et al. analyzed the 3D move-
ment data of infants (n = 22, seven with CP) from video record-
ings, extracted an optimal combination of movement features 
with cluster analysis, and identified CP motor impairments 

with quadratic discriminant analysis (overall detection rate: 
73%) (52). Further, the characteristics of fidgety movements 
and associated movement measurements have been identified 
to distinguish infants with movement impairments from those 
without (53, 54, 58). For example, extracting motion features 
related to fidgety movements (such as motion distance and rela-
tive frequency) from video recordings with an optical flow-based 
method, Stahl et al. examined the motion patterns of 82 infants 
(15 with CP), applied SVM classifier to detection of CP move-
ment impairments, and achieved a good classification accuracy 
(93.7  ±  2.1% with features of relative frequency; sensitivity: 
85.3 ± 2.8%; specificity: 95.5 ± 2.5%) (58).

Apart from video recordings, other movement recording 
systems such as accelerometers and electromagnetic movement 
tracking system have been employed for movement assessment 
and CP prediction. Heinze et al. examined the general move-
ments of a group of newborns and infants (n = 23, 4 with CP) 
with accelerometers, selected optimal (combined) movement 
features with genetic algorithm, classified CP motor impair-
ments with a decision tree-based classifier, and obtained overall 
detection rates of 88–92% (55). To distinguish the gait patterns 
between patients with CP (n = 4), patients with multiple sclerosis 
(n = 4), and healthy controls (n = 12), Alaqtash et al. extracted 
gait features from 3D ground reaction force data, compared the 
gait patterns of the three groups, and applied nearest-neighbor 
classifier and ANN to gait feature classification, which led to 
overall classification accuracies of 85% (ANN, with a com-
bination of gait features) and 95% (after optimizing the gait 
features to an optimal set of six gait features) (56). Moreover, 
using electromagnetic movement tracking recordings, Karch 
et al. studied the general movements from 63 infants (10 with 
CP), extracted movement features such as joint centers, and 
computed stereotype scores with dynamic time warping, yield-
ing a high CP classification accuracy with stereotype score of 
upper lime movement (sensitivity: 90%; specificity: 96%) (57). 
For a review on movement recognition techniques in general 
movement assessment for CP prediction in high-risk infants, 
see Ref. (12).

In addition, multivariate and ML approaches have been used 
in the assessment of physical therapy, and the effect of orthotic 
devices such as ankle foot orthosis on CP patients (55, 56). To 
evaluate the quality of exercises in CP physical therapy, Parmar 
and Morris (n = 5) applied four classifiers (SVM, neural networks, 
AdaBoosted decision tree, and dynamic time warping) to move-
ment feature (joint and angle data in time or frequency domain) 
classification to identify correct or wrong exercise, and found that 
among the four classifiers, AdaBoosted decision tree performed 
the best with high classification accuracies (94.68% for joint data; 
90.3% for angle data) (56).

However, these machine-learning-based movement assess-
ment studies are at the early stage of research. For example, the 
subjects in the study of Alaqtash et al. (56) were healthy subjects 
(n  =  5), the movement data of wrong exercises (with errors) 
were simulated data, thus, the results were preliminary. Further 
research is needed to apply machine-learning methods to real 
movement data of patients with CP. In addition, the sample 
sizes of patients with CP in these machine-learning-based 
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TAbLe 2 | Summary of studies with multivariate analytic and machine learning approaches in movement assessment and outcome evaluation in CP.

Study Subject sample Data Methods Main findings Other findings

Meinecke  
et al. (52)

22 infants (7 at risk 
of CP, 15 healthy)

53 parameters extracted 
from recorded 3D movement 
data

Cluster analysis based on 
Euclidian distances and 
quadratic discriminant analysis 
used to find the best combined 
parameters and separate at 
risk infants from healthy ones

Overall detection rate (using 
an optimal combination of 8 
parameters): 73% (sensitivity: 1.00; 
specificity: 0.70)

Berge et al. 
(53)

14 infants with 
CP (who had four 
types of fidgety 
movements)

Motion features (1D, 2D, and 
Wigner-Ville time-frequency 
virtue/feature) extracted 
from video recordings of 
movements

Periodicity (fidgety 
movements characterized by 
periodic patterns); principal 
components analysis (PCA) 
for data reduction; Pattern 
recognition (compare 
movement patterns in video 
with known visual patterns of 
fidgety movements)

ENIGMA (a software tool) can 
assess general movements and 
detect fidgety movements in CP 
pts

Adde et al. 
(54)

30 high-risk preterm 
and term infants 
(13 developed CP 
in 5 years vs. 17 
non-CP)

Movement variables (e.g., 
quantity of motion, and 
centroid of motion to identify 
fidgety movements) extracted 
from video recordings

Mann–Whitney U test; Logistic 
regression to identify CP 
predictors; ROC analysis 
to assess CP classification 
accuracy

1/13 of pts had fidgety movements; 
predictor of CP: combined variable 
(centroid of motion STD, quantity 
of motion mean, quantity of motion 
STD); prediction accuracy of the 
combined variable: sensitivity: 85%; 
specificity: 88%

Combined variable had 
the highest prediction 
accuracy; ambulatory and 
non-ambulatory function 
was predicted correctly in 
90% pts with CP

Heinze et al. 
(55)

4 infants with CP, 
vs. 19 healthy 
infants

32 features (including velocity 
and acceleration) extracted 
from measurement of 
accelerometers

Optimal parameter 
combinations selected by 
genetic algorithm; a decision 
tree-based classifier used to 
differentiate between pts’ and 
controls’ data

Overall detection rate: 88–92% for 
all measurements

The low-cost movement 
disorder detection system 
based on accelerometers 
is applicable to CP 
diagnosis in newborns

Alaqtash  
et al. (56)

4 pts with spastic 
diplegic CP, vs. 4 
pts with multiple 
sclerosis, vs. 12 
healthy controls

Gait features extracted from 
3D ground reaction force 
data

NNC and ANN used to classify 
gait features into three groups; 
leave-one-out resampling

Classification accuracy (weighted 
average): 85% (using a combination 
of gait features); 95% (using an 
optimal set of six features)

Karch et al. 
(57)

10 infants with 
spastic CP, vs. 53 
non-CP infants

Stereotypy score of limb 
movements extracted from 
electromagnetic movement 
tracking recordings

A multi-segmental chain 
model used to calculate the 
joint centers and joint axes; 
dynamic time warping used to 
compute stereotype scores; 
ROC analysis used to assess 
CP classification accuracy

CP classification accuracy using 
stereotype score of upper lime 
movement: sensitivity: 90%; 
specificity: 96%

Using stereotype score 
of leg movement could 
not distinguish pts from 
controls

Stahl et al. 
(58)

82 infants (15 with 
CP, 67 healthy)

Motion features (such as 
motion distance and relative 
frequency) extracted from 
video movement recordings

Motion features selected to 
identify fidgety movements; 
SVM used to classify pts 
from controls; 10-fold 
cross-validation for classifier 
validation

Classification accuracy: with 
features of relative frequency: 
93.7 ± 2.1%; sensitivity: 
85.3 ± 2.8%; specificity: 
95.5 ± 2.5%

Classification with other 
features (absolute motion 
distance and wavelet 
coefficient) had lower 
accuracy

Kanemaru 
et al. (59)

145 preterm infants 
(16 developed CP 
by 3 years of age, 
vs. 129 normal)

6 movement indices (average 
velocity of limb movement, 
number of movement units, 
kurtosis of acceleration, jerk 
index, etc.) extracted from 
video recordings

Fisher’s exact test and Mann–
Whitney U-test to distinguish 
pts from controls

CP pts had higher jerk index in the 
legs (p < 0.01), average velocity of 
the arms (p < 0.05), and number 
of movement units of the arms 
(p < 0.05) than controls

Jerkiness of spontaneous 
movements in preterm 
infants at term age is 
useful for predicting CP

Wahid et al. 
(60)

51 children with 
diplegic CP vs. 34 
healthy controls

Spatiotemporal gait data 
(physical properties, walking 
speed, etc.)

Multiple regression 
normalization and standard 
dimensionless equations used 
for data normalization; multiple 
regression normalization to 
identify the effects of AFO on 
gait in pts

Multiple regression normalization 
revealed difference in more 
spatiotemporal parameters in pts 
who walked with and without an 
AFO; after multiple regression 
normalization, most spatiotemporal 
parameters in pts with AFO 
became closer to those of controls

Multiple regression 
normalization may be 
useful in evaluating CP 
gait and gait classification
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Study Subject sample Data Methods Main findings Other findings

Parmar and 
Morris (61)

5 healthy subjects 
(who did exercises 
correctly, and also 
mimic the errors/
mistakes in exercise 
made by CP pts)

Features (joint positions, 
angles) in the time domain 
(also transformed to the 
frequency domain) extracted 
from 78 training samples 
and 47 testing samples of 
physical exercises video 
recording

4 classifiers (SVM, NN, 
AdaBoosted decision tree, 
and DTW) used to distinguish 
good and erroneous exercises 
(in five sample exercises such 
as Blast-Off exercise in CP 
physical therapy)

Classification accuracy: 94.68% 
for AdaBoosted tree on joint data 
(in time domain); 90.89% for 
SVM on joint data (in frequency 
domain); 90.65% for SVM on joint 
data (in time domain); 90.3% for 
AdaBoosted tree on angle data (in 
time domain)

Classification accuracy: 
90.13% for single-layer 
NN on joint data (in 
time domain); 87.63% 
for SVM on angle data 
(in frequency domain); 
74.03% for DTW on angle 
data (in time domain)

Hemming 
et al. (62)

4,007 children with 
CP

Data from five CP registers 
(birth characteristics, severity 
of CP, level of impairment, 
socioeconomic status, etc.)

Kaplan–Meier survival 
estimates performed; 
Multivariate proportional 
hazards model fitted for 
survival analysis

Death rate: ~8%; rate of children 
who survived to 20 years of age: 
85–94%; predictors of CP survival: 
The number and severity of 
impairment

Birth weight and 
socioeconomic status 
might have impact on 
survival in certain register 
regions

Kim et al. (63) 174 children with 
spastic CP who 
underwent SDR

Clinical data (age at surgery, 
types of CP, history of 
prematurity, motor function, 
history of seizures, etc.)

Univariate and multivariate 
logistic regression used to 
identify factors associated with 
surgical outcome

6.3% pts had a poor outcome; 
predictor of outcome: type of CP 
(diplegia, quadriplegia)

Preoperative diagnosis 
was a strong predictor; 
intellectual delay was 
significant only in 
univariate analysis

Golan et al. 
(64)

98 pts with spastic 
CP who underwent 
SDR

Data from hospital charts 
and radiographic spinal 
studies (preoperative and 
postoperative)

Univariate and multivariate 
regression analyses used to 
identify risk factors for spinal 
deformity

Risk factors for spinal deformity: 
CP severity; ambulatory function; 
age at surgery; gender

Factors associated 
with a lower rate of 
hyperlordosis: younger 
age at surgery and male 
gender

Majnemer 
et al. (65)

95 children with CP Data from Child Health 
Questionnaire and Pediatric 
QOL Inventory (by pts and 
parents), and measurements 
(impairments, activity 
limitations, etc.)

Multivariate analysis used to 
identify determinants of QOL

Indicators of physical well-being: 
motor and other activity limitations; 
predictors of social-emotional 
adaptation: family functioning, 
behavioral difficulties, and 
motivation

47% pts had mild motor 
impairment

White-Koning 
et al. (66)

500 children with 
CP (in 7 countries in 
Europe)

Data from the Kidscreen 
questionnaire (by pts and 
parents)

Multivariate analysis used to 
identify factors associated the 
differences in parents’ and pts’ 
reports

Factors associated with the 
differences in parents’ and pts’ 
reports: high levels of stress in 
parenting (negative influence), self-
reported severe child pain

Pts’ self-reports higher 
than parents’ in 8 domains, 
lower in the finances 
domain, and similar in the 
emotions domain

Long et al. 
(67)

71 pts with CP 
vs. 77 non-CP; all 
subjects underwent 
orthopedic surgery

Demographic, surgical, and 
medical data (intraoperative 
opioid dosing, postoperative 
ICU admission, postoperative 
oxygen desaturation, etc.)

Multivariate regression 
analysis used to determine 
intraoperative opioid dosing 
associated outcomes and 
other variables

CP pts received less intraoperative 
opioid than non-CP pts; predictors 
of postoperative ICU admission and 
postoperative oxygen desaturation: 
intraoperative opioid dosing

CP associated with 
decreased opioid dosing

Smits et al. 
(68)

116 pts with CP 3-year longitudinal data 
(motor function, intellectual 
capacity, etc.)

Univariate and multivariate 
analyses to investigate 
associations between the 
course of capabilities (e.g., in 
mobility) and CP-, child-, and 
family characteristics

Predictors of self-care: a model 
including level of gross motor 
function and intellectual capacity; 
predictors of mobility: a model 
only including level of gross motor 
function; predictors of social 
function: a model including level 
of bimanual function and paternal 
educational level

Greater increase in 
capabilities for higher level 
of functioning, except for 
level of paternal education

Sponseller 
et al. (69)

204 pts with CP 
who underwent 
spinal fusion 
surgery (at 7 
institutions)

Clinical data of patient, 
laboratory, and surgical 
characteristics

Univariate and multivariate 
regression analysis to identify 
factors associated with 
infection development

6.4% patients developed deep 
wound infection; factors associated 
with deep wound infection: 
presence of a gastrostomy/
gastrojejunostomy tube

He et al. (70) 61 pts with spastic 
CP

Serial R- and S-baclofen 
plasma concentrations

Mixed-effects population 
model and a 2-compartment 
model used for population 
pharmacokinetics analysis 
of oral baclofen; a final 
multivariable model used to 
describe oral baclofen profiles

Mean population estimate of 
apparent clearance/F: 0.273 L/h/
kg with 33.4% IIV; apparent volume 
of distribution (Vss/F): 1.16 L/kg 
with 43.9% IIV; average baclofen 
terminal half-life: 4.5 h

Determinants of apparent 
clearance: body weight, 
a possible genetic factor, 
and age
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Kato et al. 
(71)

31 pts with CP and 
cervical myelopathy; 
30 with CSM, all pts 
underwent posterior 
decompression 
surgery

Measurements of pedicle and 
placement of pedicle screws 
from CT scans

Multivariate analysis used to 
evaluate factors associated 
with the breach of cervical 
pedicle screws

23% CP pts and 7% CSM pts had 
pedicle sclerosis; pedicle sclerosis 
associated with a higher risk of 
breach

Kruijsen-
Terpstra et al. 
(72)

92 pts (2 years old) 
with CP

Longitudinal data (type of 
CP, GMFCS level, intellectual 
capacity, whether epilepsy, 
etc.)

Multivariate analysis used 
to identify determinants of 
development of self-care and 
mobility activities

Determinants of development of 
self-care activities: GMFCS and 
intellectual capacity; determinant of 
development of mobility activities: 
GMFCS

Self-care and mobility 
activity changes were 
less favorable in pts with 
severe CP

Shore et al. 
(73)

320 children with 
CP who underwent 
VDRO for treatment 
of hip displacement

Clinical data (Age, sex, 
GMFCS, preoperative 
radiography, use of botulinum 
toxin, surgical performance, 
surgeon volume, etc.)

Univariate and multivariate 
(Cox regression) analyses 
used to determine effects of 
the data variables on surgical 
success; Kaplan–Meier 
survivorship curve generated

92% success rate for GMFCS 
levels I and II vs. 76% success 
rate for GMFCS level V; predictor 
of surgical success: soft-tissue 
release at VDRO

37% surgical failure; 
predictors of surgical 
revision: younger age at 
surgery, increased GMFCS 
level, and lower annual 
surgical hip volume

Mo et al. (74) 206 children with 
CP who underwent 
surgical scoliosis 
correction

Clinical data (age, motor 
deficits, seizure history, verbal 
communication, mental 
retardation, Hydrocephalus 
severity, etc.)

Univariate and multivariate 
logistic regression used to 
identify factors causing poor 
IONM signals

Predictors of poor IONM 
signals: PVL, hydrocephalus, 
encephalomalacia; predictors of 
no signals: moderate or marked 
hydrocephalus, encephalomalacia

Predictors of no motor 
signal: focal PVL, 
moderate or marked 
hydrocephalus, 
encephalomalacia; 
predictors of no sensory 
signal: moderate 
hydrocephalus

Grecco et al. 
(75)

56 children with 
spastic CP

Clinical and neurophysiologic 
data (age, gross motor 
function, laterality of motor 
impairment, injury location 
and MEP)

Univariate and multivariate 
logistic regression analyses 
used to identify predictors of 
tDCS responses

Predictors of good responses 
to tDCS (and gait training): MEP 
(for 6-min walk test and gait 
speed), and subcortical injury (for 
gait kinematics and gross motor 
function)

The interaction of 
MEP and brain injury 
location predicted the 
responsiveness of tDCS

Minhas et al. 
(76)

1,746 pts who 
underwent 
orthopedic 
procedure (345 pts 
underweight, 952 
pts normal weight, 
209 overweight, 
240 obese)

Clinical data (whether 
seizure, whether asthma, 
whether use steroid, surgical 
procedure, etc.)

Multivariate logistic regressions 
performed to evaluate the 
effect of BMI on complications

Risk factors for total and medical 
complications in spine, hip, and 
lower extremity procedures: 
underweight class

Weight was not 
associated with 
complications in tendon 
procedures; overweight 
and obesity not 
associated with increased 
risk for complications

Galarraga 
et al. (77)

115 children with 
CP who underwent 
(hip, ankle, foot, 
etc.) surgery

Preoperative data (36 
physical examination 
variables and gait kinematics) 
and surgery data

PCA data dimension reduction; 
multi-regression analysis used 
to predict postoperative lower 
limb kinematics

Based on the kinematic angle, 
mean prediction errors on test vary 
from 4° (pelvic obliquity and hip 
adduction) to 10° (hip rotation and 
foot progression)

Mean prediction errors are 
smaller than the variability 
of gait parameters

Mann et al. 
(78)

128 pts with CP Physical activity, physical, 
psychosocial and total QOL 
reported by parents, walking 
performance measured by a 
StepWatch device

Multivariate regression used 
to examine the relationship of 
physical activity and walking 
performance to QOL

Physical activity positively 
associated with physical and 
total QOL; walking performance 
positively associated with physical 
QOL

Participation level 
positively associated with 
psychosocial QOL

AFO, ankle foot orthosis; AHA, assisting hand assessment; ANN, artificial neural networks; BMI, body mass index; CP, cerebral palsy; CSM, cervical spondylotic myelopathy; 
DTW, dynamic time warping; EMG, electromyographic; ENIGMA, enhanced interactive general movement assessment; GMFCS, Gross Motor Function Classification System; ICU, 
intensive care unit; IIV, interindividual variability; IONM, intraoperative neuromonitoring; MEP, motor-evoked potential; NN, neural networks; NNC, nearest neighbor classifier; Pts, 
patients; PVL, periventricular leukomalacia; QOL, quality of life; ROC, receiver operating characteristics; SDR, selective dorsal rhizotomy; surgeon volume, the number of procedures 
performed; SVM, support vector machines; tDCS, transcranial direct current stimulation; VDRO, proximal femoral varus derotation osteotomy.
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movement assessment studies are small (n  =  4–15), studies 
with large samples are needed to further verify and improve 
these machine-learning methods. Further, the performance of 
these machine-learning studies or classification systems may 
be improved by optimizing the data processing chains (feature 

extraction, feature selection, classification, and verification). For 
details on optimizing data processing chains to improve clas-
sification performance, see Ref. (79).

Recently, Marschik et  al. proposed an integrated system 
called a fingerprint model that monitors the movement and 
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speech-language development of new-born babies and infants 
at risk and automatically detects neurodevelopmental disorders 
such as CP by multidimensional data analysis and machine-
learning approaches (13). Although it is challenging (in technical 
details), the fingerprint model enables neurological assessment 
of at-risk infants in an objective and quantitative manner and 
facilitates early detection of CP and other neurodevelopmental 
disorders, which may be the future direction of pediatric clinical 
practice.

MULTivARiATe AnALYSiS in CP 
OUTCOMe evALUATiOn

Although there is no cure for CP, currently, treatment effects 
and outcomes in CP patients have been studied extensively. 
Multivariate approaches have been applied to outcome assess-
ment (including survival analysis) in CP, and Table 2 (the latter 
part) provides a summary of these studies (62–78). The majority 
of the outcome studies employed a two-step approach: first, 
univariate analysis is used to identify variables that are associated 
with outcome; second, multivariate analysis is used to further 
examine the variables indicated by the univariate analysis and 
identify outcome predictors. A large sample of children with 
CP (n  =  4,007) in UK were studied, and multivariate survival 
analysis indicated that the death rate was ~8, 85–94% of the 
children survived to age 20 years old, and the best predictors of 
CP survival were the number and severity of impairments (62). 
The multivariate outcome studies in CP fall into three categories: 
(1) outcome evaluation of medication and supportive treatments; 
(2) surgical outcome evaluation; and (3) quality of life (QOL) 
evaluation.

Outcome evaluation of Medication and 
Supportive Treatments
The effect of commonly used medication oral baclofen on chil-
dren with CP has been assessed with a multivariate model for the 
population pharmacokinetics analysis (n = 61), and it has been 
found that baclofen dosage based on body weight was appropri-
ate to treat patients (≥2 years old), and determinants of apparent 
clearance in these children included body weight, a possible 
genetic factor, and age (70). Plasticity (shown as increased FA 
in the CSTs on DTI and improved motor function measures) 
induced by combined therapy (botulinum followed by physi-
otherapy) in children with spastic quadriplegia (n = 8) has been 
reported (80), while a later DTI study indicated that the addition 
of botulinum to physiotherapy did not influence the outcome at 
6 months in children with spastic diplegic CP (n = 18) (81). DTI 
has also been used to evaluate the motor function outcomes of 
hemiplegic CP patients after rehabilitation treatment and DTI 
measurements such as the fiber number and FA of bilateral 
CSTs were correlated with functional level of hemiplegia scale 
(82). The quality of exercises in CP physical therapy has been 
evaluated with several classifiers, and AdaBoosted decision tree 
obtained good detection rate of exercise errors (61). In addition, 
multivariate outcome evaluation of therapies such as transcra-
nial direct current stimulation (tDCS) has been performed (75). 

Grecco et  al. investigated the functional outcome of tDCS in 
children with CP (n = 56), and multivariate logistic regression 
analyses identified that the presence of motor evoked potential 
was a predictor for walk test and gait speed, subcortical injury 
was a predictor for gross motor function, and both of them were 
predictors of motor function gain arise from tDCS combined 
with gait training in these patients (75). However, there are few 
outcome studies of medications and supportive treatments in 
CP using multivariate analyses, and multivariate analysis may 
play a bigger role in such outcome evaluation to reveal the true 
therapeutic effects of these treatments and their outcomes in 
CP patients.

Surgical Outcome evaluation
A number of multivariate studies have investigated the out-
comes of surgical procedures in CP (63, 64, 67, 71, 74–77). 
For example, the outcomes of SDR surgery have been studied 
in children with CP and outcome-associated factors have been 
identified (63, 64). Kim et al. examined factors associated with 
poor outcome of SDR surgery in pediatric patients with CP 
(n = 174) using multivariate logistic regression, and found that 
the poor-outcome rate was 6.3%, and the type of CP disability 
(diplegia, quadriplegia, etc.) was the predictor of poor outcome 
after SDR surgery (63). Further, Golan et al. evaluated the risk of 
spinal deformity in children with CP after SDR surgery (n = 98) 
and multivariate regression analysis identified several risk fac-
tors for spinal deformity: CP severity, ambulatory function, age 
at surgery, and gender (64). In addition, Long et al. investigated 
intraoperative opioid dosing and associated outcomes with 
multivariate regression in children with CP (n = 71) who under-
went orthopedic surgery and reported that less intraoperative 
opioid was administered to CP children than non-CP children, 
and intraoperative opioid dosing was the outcome predictor of 
postoperative oxygen desaturation and ICU admission (67). 
Shore et al. examined the surgical outcome of children with CP 
(n =  320) who underwent proximal femoral varus derotation 
osteotomy (VDRO) for treatment of hip displacement, and 
found that success rate was 92% for GMFCS levels I and II vs. 
76% for GMFCS level V, and multivariate analysis indicated that 
soft-tissue release during the VDRO procedure was the predic-
tor of surgical success (73). The surgical outcome predictors 
identified by these studies are useful for outcome prediction for 
individual CP patients.

Complications after CP surgical treatments have also been 
investigated. Using multivariate regression analysis, Sponseller 
et al. studied deep wound infection after spinal fusion surgery 
at seven institutions in pediatric patients with CP (n = 204) 
and found that 6.4% of patients developed deep wound infec-
tion following surgery, and presence of a gastrostomy/gastro-
jejunostomy tube was the factor associated with infection (69). 
In addition, Kato et al. investigated cervical spine in patients 
with athetoid CP who underwent posterior decompression 
surgery (n = 31) and multivariate analysis showed that pedicle 
sclerosis associated with a higher risk of breach of cervical 
pedicle screws (71). Further, Minhas et al. evaluated the effect 
of body mass index class on complications after orthopedic 
surgery in children with CP (n  =  1,746) and multivariate 
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logistic regression analysis revealed that underweight status 
was the risk factor for complications in osteotomies and spine 
surgery (76). The risk factors identified by these studies are 
helpful to avoid the surgical complications and improve surgi-
cal treatments in CP.

In children with CP who underwent surgery, intraoperative 
neuromonitoring (IONM) often fail (failure rate 61%) (74). Mo 
et al. studied IONM in children with CP who underwent surgical 
scoliosis correction (n = 206) and multivariate logistic regression 
analysis revealed that PVL, hydrocephalus, and encephalomala-
cia were the predictors of poor IONM signals, while moderate or 
marked hydrocephalus and encephalomalacia were the predic-
tors of no signals (74). Further, outcome prediction of CP surgical 
procedures has been explored in a recent study. Galarraga et al. 
examined children with CP who underwent (hip, ankle, foot, 
etc.) surgery (n  =  115), and multi-regression analysis revealed 
that preoperative and surgical data could predict postoperative 
kinematics, and mean prediction errors (varying from 4° to 10°) 
were smaller compared with the variability of gait parameters 
(77). These results are encouraging because they indicated that 
the postsurgical kinematics of patients with CP could be pre-
dicted (relatively accurately with small mean prediction errors) 
using presurgical and surgical data, which allows an estimate of 
postsurgical outcome ahead of time.

QOL evaluation
Quality of life in physical ability, intellectual ability, self-care, and 
other aspects of life is an important outcome in CP. Multivariate 
analysis has been frequently used to assess QOL in patients with 
CP (65, 66, 68, 72, 78), and factors associated with physical QOL 
and self-care have been identified. For example, a multivariate 
analysis on QOL data of infants with CP (n  =  92) identified 
GMFCS and intellectual capacity as the associated factors of 
self-care activity development, and GMFCS as the associated 
factors of mobility activities development (72). Further, a recent 
multivariate analysis showed that physical activity was positively 
associated with physical and total QOL in patients with CP 
(n  =  128), and walking performance was positively associated 
with physical QOL (78). The factors identified by these studies 
may improve the QOL of patients with CP.

Taken together, since there is no cure for CP yet, and the death 
rate of CP is high (~8%), there is much to do to improve the 
outcomes of CP, and multivariate analytic approaches may play a 
bigger role in meeting such clinical demands. Surgical outcome 
predictors and risk factors for complications in CP surgical treat-
ments have been identified by a number of multivariate outcome 

studies (63, 64, 67, 69, 71, 73, 76), which are useful not only for 
outcome evaluation and prediction but also for avoiding compli-
cations and improving surgical treatments in CP. However, there 
are few outcome studies for medications and supportive treat-
ments (such as physical therapy) in CP using multivariate analy-
sis. Thus, further research is needed to evaluate the outcomes of 
medications and supportive treatments, and multivariate analysis 
may play a bigger role in such outcome evaluation to reveal the 
true therapeutic effects of these treatments and their outcomes in 
CP patients, and help improve the outcomes of these treatments 
for patients with CP.

SUMMARY

Multivariate analysis has been applied to several areas in CP 
research such as identification of risk factors for CP, detection 
of CP and identification of CP abnormalities, movement assess-
ment for CP prediction, and outcome assessment. The studies 
reviewed in this paper have demonstrated that multivariate 
analytic and ML approaches have made it possible to analyze 
movement recordings and identify CP movement impairments 
automatically. In addition, outcome predictors for surgical treat-
ments have been identified by multivariate outcome studies. To 
make the multivariate analytic and ML approaches useful in 
clinical settings, further research with large samples is needed to 
verify and improve these methods in CP detection, movement 
assessment, and outcome evaluation/prediction. As multivariate 
analysis, ML and data processing technologies advance in the era 
of Big Data, it is expected that multivariate analysis and ML will 
play a bigger role in improving the diagnosis and treatment of CP 
to reduce mortality and morbidity rates, and enhance patient care 
for children with CP.
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