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Abstract: Oxaliplatin is a chemotherapeutic agent widely used against colorectal and breast cancers;
however, it can also induce peripheral neuropathy that can rapidly occur even after a single infusion
in up to 80–90% of treated patients. Numerous efforts have been made to understand the underlying
mechanism and find an effective therapeutic agent that could diminish pain without damaging its
anti-tumor effect. However, its mechanism is not yet clearly understood. The serotonergic system,
as part of the descending pain inhibitory system, has been reported to be involved in different
types of pain. The malfunction of serotonin (5-hydroxytryptamine; 5-HT) or its receptors has been
associated with the development and maintenance of pain. However, its role in oxaliplatin-induced
neuropathy has not been clearly elucidated. In this review, 16 in vivo studies focused on the role
of the serotonergic system in oxaliplatin-induced neuropathic pain were analyzed. Five studies
analyzed the involvement of 5-HT, while fourteen studies observed the role of its receptors in
oxaliplatin-induced allodynia. The results show that 5-HT is not involved in the development of
oxaliplatin-induced allodynia, but increasing the activity of the 5-HT1A, 5-HT2A, and 5-HT3 receptors
and decreasing the action of 5-HT2C and 5-HT6 receptors may help inhibit pain.
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1. Introduction

Oxaliplatin is a third-generation platinum-based chemotherapeutic drug widely used
to treat various types of cancer [1–3]. Although it is effective against tumors, it can also
induce side effects, such as mouth soreness, nausea, and vomiting, which may limit its
use [4,5]. Among the various negative effects, the most prevalent is peripheral neuropathy,
which is expressed as cold and mechanical allodynia in the feet and hands [6–8]. Dysesthe-
sia and paresthesia can occur as early as 48 h after infusion [8]. Numerous studies have
been conducted to understand the underlying mechanisms, and although it is yet clearly
understood, malfunction of voltage-gated sodium channels [9] and organic cation trans-
porters [10], mitochondrial dysfunction [11], oxidative stress [12], axonal degeneration [13],
and impairment of the descending pain inhibitory system [14] have been proposed as the
causes of this peripheral neuropathy.

Several groups of chemotherapy substances can cause peripheral neuropathy, such as
platinum-based agents, taxanes, and immunomodulatory drugs; however, among them,
platinum-based drugs are reported to cause the highest rate of peripheral neuropathy
(70–100%) compared to other agents (e.g., taxanes and immunomodulatory drugs, 11–87%
and 20–60%, respectively). Among the three platinum-based drugs (oxaliplatin, cisplatin,
and carboplatin), acute neuropathy develops in approximately 65–98% of patients within
hours of oxaliplatin infusion at a dose ranging from 85 to 130 mg/m2, whereas cisplatin is
induced in 92% of patients after cumulative treatment (500–600 mg/m2), and carboplatin is
less toxic, as 13–42% of patients are induced [15–17]. These results showed that oxaliplatin
could acutely induce neuropathic pain with higher rate compared to other platinum-
based drugs.
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For many years, our lab has focused on oxaliplatin-induced neuropathic pain, and
continuous efforts have been made to understand its pathophysiology and to find an
effective treatment that could reduce pain without affecting its anti-tumor effects [18–24].
Among many pathways, the serotonergic system in the central nervous system (CNS),
which is part of the descending pain inhibitory system, has been shown to be deeply
involved in oxaliplatin-induced neuropathic pain [25–29].

Serotonin (5-hydroxytryptamine; 5-HT) is a monoaminergic neurotransmitter synthe-
sized from tryptophan via the sequential actions of tryptophan hydroxylase. In the CNS, it
is produced primarily in the brainstem (rostro ventromedial medulla; RVM) [30], and in
the peripheral nervous system (PNS), the main cellular sources of 5-HT are platelets and
mast cells [31,32].

Synthesized 5-HT can interact with seven different families of 5-HT receptors that
comprise 15 subtypes [30,33]. Among the seven classes, six are G-protein coupled receptors
(5-HT1,2,4-7 receptors), whereas one is a ligand-gated cation channel (5-HT3 receptor) [34].
5-HT and its receptors are widely known to be involved in pain attenuation [35,36], and
enhancing 5-HT [37,38] or modulating the function of its receptor in the spinal cord has
been reported to decrease pain in various animal models [35,39]. Among 5-HT receptor
subtypes, 5-HT1A, 5-HT6 and 5-HT7 receptors are coupled to Gi/o, suggesting an inhibitory
effect [40–43]. In contrast 5-HT2 receptor is coupled to Gq/11, and 5-HT3 receptor is directly
linked to non-selective cationic channels, suggesting an excitatory effect [40,44,45]. How-
ever, their effect in pain is known to vary according to the types of pain and experimental
conditions [35].

In our previous study [46], spinal mRNA expression of 5-HT1A receptors was down-
regulated 4 days after oxaliplatin injection, when pain behaviors were obvious, and it
was upregulated when cold and mechanical allodynia were alleviated in mice. Moreover,
intrathecal injection of 5-HT1A (NAN-190), 5-HT2A (ketanserin), or 5-HT3 (MDL-72222)
receptor antagonists inhibited the analgesic effect of various treatments, suggesting that tar-
geting the serotonergic system may be an effective method to modulate oxaliplatin-induced
neuropathic pain [25,28].

Furthermore, although no agent has been recommended for prevention in the recently
published guidelines from the American Society of Clinical Oncology (ASCO), duloxetine,
a serotonin-norepinephrine reuptake inhibitor (SNRI), has been recommended for the
treatment of oxaliplatin-induced neuropathic pain [47]. Duloxetine has been reported to be
effective in alleviating allodynia in several clinical trials [48,49], and although duloxetine
is a SNRI, it is known to more potently block 5-HT than norepinephrine (NE) transporter,
showing that 5-HT play an important role in the anti-allodynic effect of duloxetine [50]. In
addition, in different animal models of neuropathic pain, fluoxetine, a selective serotonin
reuptake inhibitors, significantly attenuate the pain, demonstrating the analgesic effect of
5-HT [51]. However, the underlying mechanism of action of serotonergic system is not yet
clearly defined.

Therefore, clarifying the role of 5-HT in oxaliplatin-induced neuropathic pain is
important not only to understand pain but also to develop optimal drugs. However, to
date, no reviews have been published that summarize the involvement of the serotonergic
system in oxaliplatin-induced neuropathic pain. In this review, by analyzing all studies
that observed the involvement of 5-HT and its receptors, we will discuss the role of 5-HT
and its receptors in oxaliplatin-induced peripheral neuropathic pain.

2. Results
2.1. Role of 5-HT in Oxaliplatin-Induced Neuropathic Pain

Five studies investigated the role of monoamine neurotransmitters in oxaliplatin-
induced neuropathic pain (Table 1). Among many neurotransmitters, it is well accepted
that 5-HT is involved in the pain modulation, although 5-HT is known to exert both pain fa-
ciliatory and inhibitory effect depending on the pain states and the type of receptors [32,35].
However, experimental studies reported that direct application of 5-HT into the spinal cord
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generally inhibited nociceptive responses [52]. This may be due to the fact that 5-HT pro-
duce excitatory effect on many inhibitory neurons such as GABA (gamma-Aminobutyric
acid) and glycine present in the spinal dorsal horn [39,53]. In this review, four studies
conducted experiments by depleting 5-HT using PCPA [27–29,54], while one study directly
measured the level of 5-HT in several areas of the brain [55]. PCPA is an irreversible in-
hibitor of tryptophan hydroxylase, which is used to synthesize 5-HT from tryptophan [56].
PCPA pretreatment is generally used to deplete 5-HT and has been reported to reduce
central and peripheral 5-HT [57]. PCPA decreased the levels of 5-HT and its metabolite
5-hydroxyindoleacetic acid to 9.4% and 8.2% of control levels, respectively, in rats, without
affecting the levels of norepinephrine and dopamine [58].

Table 1. Involvement of 5-HT in oxaliplatin-induced neuropathic pain.

Authors Strain Oxaliplatin Treatments Findings

Masuguchi et al.
(2014) [54] SD rat

32 mg/kg,
i.p.,

8 times

Neurotropin
(p.o., 50, 100,
200 NU/kg)

Depletion of 5-HT by PCPA (100 mg/kg, i.p.) did not
affect the development of oxaliplatin-induced cold
hyperalgesia and mechanical allodynia.
Depletion of 5-HT abolished the analgesic effect of
neurotropin (200 NU/kg) against both cold
hyperalgesia and mechanical allodynia.

Lee et al. (2014)
[27] SD rat

6 mg/kg,
i.p.,

single

BVA
(s.c., 0.25 mg/kg)

Depletion of 5-HT by PCPA (150 mg/kg, i.p.) did not
affect the development of oxaliplatin-induced cold
allodynia.
Depletion of 5-HT completely abolished the analgesic
effect of BVA against oxaliplatin-induced cold
allodynia.
Spinal 5-HT level was upregulated after BVA
treatment, whereas PCPA inhibited its increase.

Hache et al.
(2014) [55]

C57BL/6J
mouse

28 mg/kg,
i.p.,

4 times

Escitalopram (SSRI,
s.c., 4 mg/kg),

Venlafaxine (SNRI,
s.c., 16 mg/kg),

Indatraline (TRI, s.c.,
3 mg/kg),

NS18283 (TRI, s.c.,
10 mg/kg)

Escitalopram, indatraline, and NS18283 suppressed
mechanical allodynia induced by oxaliplatin.
Venlafaxine, indatraline, and NS18283 showed
significant efficacy in thermal preference test.
Only indatraline increased latency on cold plate test.
Extracellular 5-HT levels at ACC was significantly
upregulated after escitalopram (215.7 ± 16.5% vs.
86.19 ± 7.0%), venlafaxine (283.8 ± 34.2% vs.
110.4 ± 3.4%), indatraline (194.6 ± 14.4% vs.
104.2 ± 8.03%), and NS18283 (196.0 ± 36.9% vs.
84.9 ± 11.6%) administration compared with vehicle
treated group.

Li et al. (2015)
[29] SD rat

6 mg/kg,
i.p.,

single

bvPLA2
(i.p., 0.2 mg/kg)

Depletion of 5-HT by PCPA (150 mg/kg, i.p.) did not
affect the development of oxaliplatin-induced cold
and mechanical allodynia.
Depletion of 5-HT failed to block the analgesic effect
of bvPLA2 against oxaliplatin-induced allodynia.

Li et al. (2019)
[28]

C57BL/6
mouse

6 mg/kg,
i.p.,

single

Venlafaxine (SNRI,
i.p., 10, 40, 60 mg/kg)

Depletion of 5-HT by PCPA (150 mg/kg, i.p.) did not
affect the development of oxaliplatin-induced cold
and mechanical allodynia.
Venlafaxine attenuated oxaliplatin-induced cold and
mechanical allodynia.
Depletion of 5-HT abolished the analgesic effect of
venlafaxine (40 mg/kg) on mechanical but not cold
allodynia.

Abbreviations: 5-HT; serotonin, ACC; anterior cingulate cortex, BVA; bee venom acupuncture, bvPLA2; bee venom phospholipase 2, i.p.;
intraperitoneal, NU/kg; neurotropin units/kg, PCPA; para-chlorophenylalanine, p.o.; per os, s.c.; subcutaneous, SD rats; Sprague Dawley
rats, SNRI; serotonin and norepinephrine reuptake inhibitor, SSRI; selective serotonin reuptake inhibitor, TRI; triple reuptake inhibitor.
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Masuguchi et al. [54] reported that 5-HT depletion did not aggravate or prevent the
development of cold and mechanical allodynia in rats. Three times intraperitoneal injec-
tion of PCPA significantly reduced the 5-HT content by 63% in the spinal cord (L1-L6,
519.1 ± 16.8 ng/g vs. 189.5 ± 22.2 ng/g), but oxaliplatin-induced neuropathic pain re-
mained unaffected. However, depletion of 5-HT reduced the analgesic effect of neurotropin,
as its analgesic effect was abolished after 5-HT depletion. Lee et al. [27] also used PCPA to
deplete 5-HT in rats. PCPA was injected for 3 days and oxaliplatin was administered on
the last day. Their results showed that PCPA depletion did not affect the development of
oxaliplatin-induced cold allodynia. However, PCPA prevented the analgesic effect induced
by subcutaneous injection of 0.25 mg/kg of bee venom acupuncture (BVA) at the GV3
acupuncture point. In their study, BVA administration significantly increased the level of
5-HT in the spinal cord, showing that increased 5-HT concentration resulted in oxaliplatin-
induced pain attenuation. Similar to the results of Lee et al., Li et al. [29] also demonstrated
that 5-HT depletion did not influence the development of cold and mechanical allodynia
in mice. In their study, bee venom-derived phospholipase A2 (bvPLA2), which is one
of the major subcomponents of BVA, demonstrated analgesic effects against both cold
and mechanical allodynia even after PCPA injection, showing that the development and
treatment were not affected by 5-HT. In a study by Li et al. [28], 5-HT depletion did not
prevent or enhance pain development in mice; however, the analgesic effect of venlafaxine,
an SNRI, on mechanical but not cold allodynia, was significantly blocked by pretreatment
with PCPA.

Although Hache et al. [55] did not use PCPA to observe the effect of 5-HT on
oxaliplatin-induced neuropathic pain, but they measured the 5-HT content in the anterior
cingulate cortex (ACC) of mice before and after the administration of various monoamine re-
uptake inhibitors, such as SNRI, serotonin reuptake inhibitor, and triple reuptake inhibitors.
ACC is an area of the brain known to be important for pain-related perception [59,60].
It receives dense 5-HT and norepinephrine innervation, and its descending projections
are reported to be transmitted to RVM neurons [61]. Hache et al. conducted von Frey,
cold plate, and thermal preference plate tests to assess its effect on oxaliplatin-induced
mechanical, cold, and thermal allodynia. In the von Frey hair test, all drugs, except for
venlafaxine, significantly decreased oxaliplatin-induced allodynia. In the cold plate test,
only indatraline significantly increased the latency of the first jump compared to the control.
In the thermal preference test, all drugs, but not escitalopram, were significantly effective.
All four drugs significantly elevated the dose of 5-HT in ACC, but escitalopram and ven-
lafaxine induced more extracellular 5-HT levels than norepinephrine, whereas indatraline
and NS18283 increased norepinephrine levels compared to 5-HT.

2.2. Role of 5-HT Receptors in Oxaliplatin-Induced Neuropathic Pain

In total, 14 studies analyzed the involvement of 5-HT receptors in oxaliplatin-induced
neuropathic pain. Nine studies focused on 5-HT1 [26,27,46,54,62–66], six focused on 5-
HT2 [26,27,54,65,67,68], five on 5-HT3 [25–28,54], and one study focused on 5-HT6 [69]
receptors. Most of the studies focused on the spinal cord, but two studies observed changes
in the brain [67] and skin [63] (Table 2).
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Table 2. The role of 5-HT receptors in oxaliplatin-induced neuropathic pain.

Authors Strain Oxaliplatin Treatments

Findings

Behavioral Changes Mechanisms
(↑: Increase, ↓: Decrease, -: Non Significant)

Andoh et al.
(2013) [62]

C57BL/6NCr
mouse

3 mg/kg,
i.p.,

single

Xaliproden
(Selective 5-HT1A receptor agonist, p.o.,

0.3, 1, 3 mg/kg)

Fail to suppress
mechanical allodynia

Oxaliplatin mRNA of 5-HT1AR
(DRG-, SC↑)

Xaliproden Tibial nerve firing↓

Masuguchi et al.
(2014) [54] SD rat

32 mg/kg,
i.p.,

8 times

Neurotropin
(p.o., 50, 100, 200 NU/kg)

Inhibit cold hyperalgesia
and mechanical

allodynia

5-HT2AR (Ketanserin)
5-HT3R (MDL-72222)

Antagonist (i.t.)
Effect blocked

5-HT1AR (WAY100635)
antagonist (i.t.)

Effect blocked (only cold
allodynia)

Pertussis toxin
(Gi inhibitor, i.t.) Effect blocked

Baptista-de-
Souza et al.
(2014) [67]

SD rat 36 mg/kg, i.p.,
15 times

Fluoxetine
(SSRI and 5-HT2C receptor antagonist,

s.c., 20 mg/kg)

Increase the paw
pressure and licking

latency Decrease
withdrawal threshold

Oxaliplatin

mRNA of 5-HT2CR
(SC and PAG↑,
AMY↓, RVM-)

Protein of 5-HT2CR
(SC and PAG↑,
RVM, AMY-)

Fluoxetine

mRNA of 5-HT2CR
(SC↓, AMY↑,

RVM & PAG-)

Protein of 5-HT2CR
(SC↓, PAG and AMY↑,

RVM-)
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Table 2. Cont.

Authors Strain Oxaliplatin Treatments

Findings

Behavioral Changes Mechanisms
(↑: Increase, ↓: Decrease, -: Non Significant)

Lee et al. (2014)
[27] SD rat

6 mg/kg,
i.p.,

single

BVA
(s.c., 0.25 mg/kg) Inhibit cold allodynia

5-HT1/2R (Methysergide)
5-HT3R (MDL-72222)

antagonist (i.p.)
Effect blocked

5-HT3R (MDL-72222)
antagonist (i.t.) Effect blocked

5-HT1AR (NAN-190),
5-HT2AR (Ketanserin)

antagonists (i.t.)
Failed to block

Kim et al.
(2016) [25] C57BL/6 mouse

6 mg/kg,
i.p.,

single

BVA and Morphine
(s.c., 1 mg/kg and 2 mg/kg,

respectively)

Inhibit cold and
mechanical allodynia

5-HT3R (MDL-72222)
antagonist (i.t.) Effect blocked

Lee et al.
(2016) [26]

SD
rat

6 mg/kg,
i.p.,

single

EA
(2 Hz, 20 min)

Inhibit cold allodynia

5-HT3R (MDL-72222)
antagonist (i.t.) Effect blocked

5-HT1AR (NAN-190),
5-HT2AR (Ketanserin)

antagonists (i.t.)
Failed to block

Andoh et al.
(2016) [63]

C57BL/6NCr
mouse

3 mg/kg,
i.p.,

single

Xaliproden or Tandospirone
(5-HT1A receptor agonist, p.o.,

0.3, 1, 3 mg/kg)

Inhibit mechanical
allodynia

Xaliproden
Tandospirone

Mast cell migration↓
(Plantar skin)

Chenaf et al.
(2017) [68]

SD
rat

18 mg/kg,
i.v.,

9 times

Agomelatine
(5-HT2C receptor antagonist, i.p.,

45 mg/kg)
Increase lowered TWL - -

Salat et al.
(2017) [64] CD-1 mouse 10 mg/kg, i.p.,

single

NLX-112
(5-HT1A receptor agonist, i.p.,

1.25, 2.5, 5 mg/kg)

Inhibit mechanical
allodynia

Fail to inhibit cold
allodynia

- -
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Table 2. Cont.

Authors Strain Oxaliplatin Treatments

Findings

Behavioral Changes Mechanisms
(↑: Increase, ↓: Decrease, -: Non Significant)

Rapacz et al.
(2018) [65] CD-1 mouse

10 mg/kg, i.p.,
single

3,3-diphenyl-propionamides (JOA 122
(3p), i.p., 1, 10, 30 mg/kg)

Inhibit mechanical
allodynia

5-HT1AR Binding affinity: 223.0 ±
4.5 nM Ki ± SEM

5-HT2AR Binding affinity: >5000 nM
Ki ± SEM

5-HT3R -

Panczyk
et al.

(2018) [66]
CD-1 mouse 10 mg/kg, i.p.,

single

1-[3-(2,4,6-trimethylphenoxy)propyl]-4-
(4-methoxyphenyl)piperazine

dihydrochloride
(Compound 3, 5-HT1A receptor

antagonist, i.p., 30 mg/kg)

Fail to inhibit mechanical
allodynia

5-HT1AR
antagonism

Binding affinity: 146.0 ±
28.4 nM Ki ± SEM

Li et al.
(2019) [28] C57BL/6 mouse

6 mg/kg,
i.p.,

single

Venlafaxine
(SNRI, i.p.,

10, 40, 60 mg/kg)

Inhibit cold and
mechanical allodynia

5-HT3R (MDL-72222)
antagonist (i.t.) Effect blocked

5-HT1/2R
(Methysergide)
antagonist (i.t.)

Failed to block

Martin et al.
(2020) [69]

SD
rat

6 mg/kg,
i.p.,

single

SB258585
(5-HT6 receptor inverse agonist, i.p., 1,

5 µmol/kg)
PZ-1388

(5-HT6 receptor antagonist, i.p.,
5, 25 µmol/kg)

Inhibit cold and
mechanical

pain behaviors

Tat-VEPE
(reducing 5-HT6R-mTOR

interaction)
Effect blocked

Lee et al.
(2021) [46] C57BL/6 mouse

6 mg/kg,
i.p.,

single

Water extract of Z. officinale
(p.o., 100, 300, 500 mg/kg)

Inhibit cold and
mechanical allodynia

Oxaliplatin mRNA of 5-HT1AR
(SC↓)

Z. officinale mRNA of 5-HT1AR
(SC↑)

5-HT1/2R (Methysergide),
5-HT1AR (NAN-190)

antagonist (i.t.)
Effect blocked

Abbreviations: 5-HT; serotonin, 5-HTR; serotonin receptor, AMY; amygdala, BVA; bee venom acupuncture, DRG; dorsal root ganglion, EA; electroacupuncture, i.v.; intravenous, i.p.; intraperitoneal, i.t.;
intrathecal, mRNA; messenger RNA, NU/kg; neurotropin units/kg, PAG; periaqueductal gray, p.o.; per os, RVM; rostral ventromedial medulla, SC; spinal cord, SD rats; Sprague Dawley rats, SEM; standard
error of the mean, SNRI; serotonin and noradrenalin reuptake inhibitor, SSRI; selective serotonin reuptake inhibitor, Tat-VEPE; fusion of sequence of amino acid (FFVTDSVEPE) to transduction domain of HIV Tat
protein, TWL; tail withdrawal latency, Z. officinale; Zingiber officinale.
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2.2.1. 5-HT1 Receptors

Five different subtypes of 5-HT1 receptors are present (5-HT1A, B, D, E, and F) [70]. Al-
though the role of 5-HT1D, E, and F receptors in the pain state is poorly understood [71],
5-HT1A and B receptor agonists have been reported to reduce pain [72]. In this study, all
nine studies focused on 5-HT1A receptors; 5-HT1A receptors are involved in pain attenua-
tion, since spinal 5-HT1A receptor stimulation using selective agonists resulted in analgesia
in neuropathic animals [73,74]. In the CNS, a large number of 5-HT1A receptors are present
in serotonergic cells, mainly in the dorsal and median raphe nuclei [35]. In the spinal
cord, 5-HT1A receptors are known to be present in GABAergic interneurons located in the
superficial and deeper layers of the spinal dorsal horn [75]. In the PNS, they are expressed
in capsaicin-sensitive C-fibers [63,76].

Andoh et al. [62] reported that oxaliplatin produced mechanical allodynia from D7
to D14 and that the mRNA level of 5-HT1A receptors in the spinal dorsal horn, but not in
the DRG, increased after a single injection of oxaliplatin. Although a single oral treatment
with xaliproden, a selective 5-HT1A receptor agonist, failed to suppress oxaliplatin-induced
mechanical allodynia, xaliproden partially suppressed the increase in tibial nerve firing
after oxaliplatin treatment. The nerve firing was evoked with 0.69 mN of von Frey filament.
However, this inhibition (32%) was not significant enough to attenuate mechanical allody-
nia. In their study, xaliproden significantly attenuated mechanical allodynia induced by
paclitaxel injection, which is another chemotherapeutic agent, and the nerve response de-
creased to 68% compared to paclitaxel-treated mice. On the contrary to the study of Andoh
et al., in a study by Lee et al. [46] mRNA level of spinal 5-HT1A receptors was significantly
downregulated after oxaliplatin treatment and upregulated when allodynic signs were
alleviated. This discordance may be due to the difference in measurement time and the
dose of oxaliplatin, as Andoh et al. observed 10 days after 3 mg/kg of oxaliplatin injection,
while Lee et al. conducted experiments 5 days after 6 mg/kg of oxaliplatin. Due to the
limited number of studies that observed the mRNA expression of 5-HT1A in the spinal
cord after oxaliplatin treatment, it is hard to draw a firm conclusion; however, as in the
spinal cord, 5-HT1A receptors are known to be expressed both in inhibitory interneurons
and non-inhibitory interneurons [77,78], future study should be conducted to clarify which
5-HT1A receptors are upregulated or downregulated after oxaliplatin treatment.

In another study conducted by Andoh et al. [63] daily oral treatment with selective
5-HT1A receptor agonists (xaliproden or tandospirone) for 10 days significantly prevented
the development of oxaliplatin-induced mechanical allodynia in mice. Moreover, treatment
with selective 5-HT1A receptor agonists significantly reduced the number of mast cells
in the plantar skin of mice. These results suggested that 5-HT1A receptor agonists may
decrease oxaliplatin-induced mast cell migration by inhibiting the release of substance P
from C-fiber afferent neurons. It should be noted that activation of the 5-HT1A receptor
has been reported to cause hyperpolarization of capsaicin-sensitive neurons [79,80]. Mast
cells are known to participate in pain development by releasing inflammatory mediators
such as ATP, histamine, and tryptase [81]. Moreover, Sakamoto et al. [82] have reported
that oxaliplatin may activate C-fiber to release neuromodulators, which could degranulates
mast cells. Subsequently, tryptase released from the mast cell can sensitize the A-fibers
which could lead to allodynia.

According to the studies of Salat et al. and Rapacz et al. [64,65], intraperitoneal injec-
tion of NLX-112 and JOA 112 (3p), attenuated oxaliplatin-induced mechanical allodynia at
the acute and late phase (3 h and 7 days after the injection of oxaliplatin, respectively). NLX-
112 is a selective 5-HT1A receptor agonist, while JOA 112 (3p) has a moderate affinity for the
5-HT1A receptors (Ki ± SEM, 223.0 ± 4.5 nM). These results suggest that intraperitoneal in-
jection of 5-HT1A receptor agonist may participate in the suppression of oxaliplatin-induced
mechanical allodynia. In accordance with those results, Panczyk et al. [66] reported that
administration of 1-[3-(2,4,6-trimethylphenoxy)propyl]-4-(4-methoxyphenyl) piperazine
dihydrochloride, which has the potency of a 5-HT1A receptor antagonist, did not show any
significant analgesic effects against oxaliplatin-induced cold and mechanical allodynia.
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Furthermore, by using a potent 5-HT1A antagonist WAY100635, Masuguchi et al. [54]
reported that neurotropin (100 and 200 NU/kg) could significantly attenuate cold allodynia
via the action of spinal 5-HT1A receptors, as WAY100635 pretreatment blocked the effect of
neurotropin against cold allodynia.

Another potent 5-HT1A receptor antagonist (NAN-190) was used in two other studies
conducted with BVA [27] and electroacupuncture (EA) [26]. In their experiments, intrathe-
cal injection of 5-HT1A receptor antagonist failed to inhibit the anti-allodynic effect of
BVA and EA administered at Yaoyangguan (GV3) and Zusanli (ST36) acupuncture point,
respectively, indicating that the effect of BVA and EA was not mediated by spinal 5-HT1A
receptors. However, although intrathecal treatment of 5-HT1A receptors antagonist failed to
inhibit the effect of BVA, when mixed 5-HT1/2 antagonists (methysergide) was pretreated
intraperitoneally the effect of BVA was blocked showing that the effect of BVA may be
mostly mediated by peripheral 5-HT1 or 5-HT2 receptors than 5-HT1A receptors in the
spinal cord.

2.2.2. 5-HT2 Receptors

The 5-HT2 receptors are G-protein coupled receptors, with three subtypes, 5-HT2A,
5-HT2B, and 5-HT2C. Compared to 5-HT1 receptors, 5-HT2 receptors are present in the
spinal cord with relatively low density [83], and they are primarily reported to be found in
the ventral than in the dorsal horn of the spinal cord [84]. The 5-HT2A and 5-HT2C receptors
have a widespread distribution and function in the CNS, whereas 5-HT2B receptors have
restricted expression [85]. In the included studies, the roles of 5-HT2A and 5-HT2C receptors
were observed.

The involvement of 5-HT2A receptors in cold and mechanical allodynia has been
assessed by Masuguchi et al. [54]. Intrathecal administration of 5-HT2A receptor antagonists
(ketanserin) significantly inhibited the effect of neurotropin on cold hyperalgesia and
mechanical allodynia, suggesting that spinal 5-HT2A receptor activation may lead to
oxaliplatin-induced neuropathic pain attenuation. However, in the studies by Lee et al. [27]
and Lee et al. [26] 5-HT2A receptor antagonists (ketanserin) failed to block the analgesic
effect of BVA and EA, demonstrating that 5-HT2A receptors are not involved in their
pain-alleviating pathways.

Although in this review, only one study demonstrated the involvement of 5-HT2A
receptors in oxaliplatin-induced allodynia, the pain suppression effect of 5-HT2A receptors
has been reported in different types of pain. In a mono-arthritis animal model of pain,
upregulated mRNA expression of 5-HT2A receptors was observed in the nucleus of the
RVM, ventrolateral periaqueductal gray, and spinal cord when the pain was attenuated [86].
Moreover, in an animal model of diabetes- and traumatic-induced neuropathic pain, in-
crease in 5-HT2A receptors responsiveness resulted to pain inhibition [87,88]. In addition,
in nerve injury-induced mechanical and thermal hyperalgesia, the activation of spinal
5-HT2A receptor-induced upregulation of potassium chloride co-transporter type 2 (KCC2)
and suppressed pain [89].

Baptista-de-Souza et al. [67] analyzed the mRNA and protein expression of 5-HT2C
receptors in the spinal cord, periaqueductal gray (PAG), and amygdala (AMY) after ox-
aliplatin and fluoxetine administration. Oxaliplatin administration induced mechanical
and cold allodynia in rats and upregulated the mRNA and protein expression of 5-HT2C
receptors in the spinal cord and PAG but was downregulated in AMY. Multiple subcu-
taneous injections of fluoxetine, which acts as a competitive 5-HT2C receptor antagonist,
decreased mechanical and cold allodynia induced by oxaliplatin. Moreover, it decreased
the mRNA and protein levels of 5-HT2C receptors in the spinal cord, while in the AMY, they
were increased. In PAG, only the protein, but not the mRNA level, was upregulated. In a
surgical paw incision pain model rodents, blocking the spinal 5-HT2C receptor prevented
the hyperactivity of spinal neuron [90]. Furthermore, activation of 5-HT2C receptors in
the AMY has been reported to enhance fear-induced antinociception in rats [91]. Also,
activation of 5-HT2C receptors present in the PAG was demonstrated to increases antinoci-
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ception in mice exposed to the elevated plus-maze [92]. Altogether, these result support
that decreasing the activity of spinal 5-HT2C receptors in the spinal cord, and increasing
the function of 5-HT2C receptors in the AMY and PAG could result in pain reduction.

Chenaf et al. [68] also demonstrated that intraperitoneal treatment with agomelatine,
a 5-HT2C receptor antagonist, significantly suppressed oxaliplatin-induced cold allodynia
at 45 min and 24 h after injection. These results suggest that both 5-HT2A receptor agonists
and 5-HT2C receptor antagonists could attenuate oxaliplatin-induced neuropathic pain.

2.2.3. 5-HT3 Receptors

Among all 5-HT receptor families, 5-HT3 receptors are the only non-selective ligand-
gated ion channels [93]. In the PNS, they are localized in the DRG and in the myelinated
and unmyelinated primary afferent fiber terminals [94]. As ligand-gated ion channels, acti-
vation of 5-HT3 receptors in DRG has been shown to induce pronociceptive effects [95,96].
However, in the spinal cord, they are mostly found in the superficial laminae and inhibitory
GABAergic interneurons showing antinociceptive effects [35].

Five studies have observed the role of spinal 5-HT3 receptors in the analgesic effect
on oxaliplatin-induced pain. Although different treatment methods have been applied in
each study, they all reported that intrathecal pretreatment with a 5-HT3 receptor antagonist
(MDL-72222) significantly blocked the analgesic effect. Masuguchi et al. [54] reported that
the effect of neurotropin was inhibited by a 5-HT3 receptor antagonist. Lee et al. [27] and
Kim et al. [25] showed that the anti-allodynic effect of BVA alone or with morphine was
blocked by MDL-72222 pretreatment. Lee et al. [26] and Li et al. [28] also reported that the
effects of EA and venlafaxine were blocked by a 5-HT3 receptor antagonist. These results
show that intrathecal administration of 5-HT3 receptor agonists may be an effective agent
for treating oxaliplatin-induced neuropathic pain.

2.2.4. 5-HT6 Receptors

5-HT6 receptors are one of the most recently added receptors to the 5-HT family [97].
They are expressed in the excitatory interneurons of the spinal cord dorsal horn [33]. In
an animal model of spinal nerve injury, 5-HT6 receptor antagonists significantly blocked
allodynia [98], and in the rat formalin test, both spinal and peripheral 5-HT6 receptors
played a pronociceptive role [99].

Martin et al. [69] observed the effect of the 5-HT6 receptor inverse agonist and antago-
nist, SB258585 and PZ-1388, respectively, on oxaliplatin-induced cold and mechanical pain
behavior. Both drugs significantly attenuated oxaliplatin-induced pain behavior. Further-
more, injection of an interfering peptide (Tat-VEPE), which loosens the interaction between
the 5-HT6 receptor and mTOR, attenuates oxaliplatin-induced cold and mechanical allody-
nia. Notably, 5-HT6 receptors are known to engage in mTOR signaling, which is reported
to be involved in the modulation of neuropathic pain [100].

3. Discussion

In this review, 16 animal studies focused on the serotonergic system in oxaliplatin-
induced neuropathic pain were analyzed. Five studies [27–29,54,55] focused on the role
of 5-HT, while fourteen studies observed the role of its receptors in oxaliplatin-induced
allodynia. Three studies discussed both 5-HT and its receptors [27,28,54]. To our knowl-
edge, this is the first review that focuses on the involvement of the serotonergic system in
oxaliplatin-induced neuropathic pain. As part of the descending pain inhibitory system,
the serotonergic system has long been known to play an active role in various types of
pain [35,36,101,102]. However, its role in oxaliplatin-induced neuropathic pain has not
been clearly defined.

Among the included studies, four studies pretreated PCPA to observe the role of 5-HT
in oxaliplatin-induced allodynia in rodents. Their results showed that 5-HT may not be
involved in the development of neuropathic pain, as 5-HT depletion did not aggravate or
attenuate oxaliplatin-induced neuropathic pain [26,28,29,54]. In contrast, 5-HT important
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in mediating the analgesic effect, as some drugs did not alleviate allodynia when 5-HT
was depleted [27,28,54]. These results are consistent with the guidelines of ASCO as
SNRI, which increases the level of monoamine neurotransmitters, has been recommended
only for treatment but not for prevention of chemotherapy-induced neuropathic pain [47].
Furthermore, these results also suggest that the impairment of 5-HT in the descending pain
inhibitory system may not be the leading cause of oxaliplatin-induced pain. Oxaliplatin
may be more focused on altering the function of neurons in the periphery (e.g., altering
the function of Na+ channels [9]) than in the brain or the spinal cord, as it has limited
permeability to the BBB [103,104]. Thus, 5-HT concentration in the CNS and PNS may
not affect the development of pain; however, 5-HT could decrease pain by modulating
pain signal transmission through the action of its receptors present in the brain, spinal
cord, and peripheral nerves (Figure 1). In line with this, noradrenaline depletion [28] or
silencing the locus coeruleus region [105] where most of the descending noradrenergic
system originate did not aggravate the oxaliplatin-induced neuropathic pain showing that
both 5-HT and noradrenaline depletion does not affect the development of neuropathic
pain. These results suggest that attenuating the 5-HT and noradrenergic system does not
affect; however, increasing the tone of noradrenaline and 5-HT may affect the development
of pain.
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Figure 1. The involvement of spinal serotonergic receptors in the alleviation of oxaliplatin-induced
neuropathic pain. Oxaliplatin administration increases the transmission of nociceptive signals from
the primary afferent fibers to the brain (red). Activation of spinal 5-HT1A, 2A, and 3 receptors and
inhibition of spinal 5-HT2C and 6 receptors could reduce allodynia induced by oxaliplatin (blue).
5-HTR; 5-HT receptors.

To observe the role of 5-HT1A receptors, various types of 5-HT1A receptor agonists
have been administered. Xaliproden, a selective 5-HT1A receptor agonist, did not attenuate
oxaliplatin-induced mechanical allodynia when administered orally; however, its multiple
administrations significantly reduced pain. Xaliproden was administered for 10 consec-
utive days and the pain alleviating effect initiated on D3 and peaked at D10 [63]. These
results show that single treatment may not be sufficient to attenuate oxaliplatin-induced
neuropathic pain. Although conducted in different animal model of disease, single ad-
ministration of 5-HT1A receptors resulted in acute decrease of 5-HT level in the brain area,
whereas chronic treatment for 21 days resulted in increase of 5-HT synthesis [106], this may
partially explain why multiple, but not single treatment succeeded to alleviated allodynia.

Intraperitoneal injection of NLX-112, which is reported to have full agonist activity
against 5-HT1A receptors, also decreased mechanical allodynia. Tandospirone is known to
be a highly potent partial agonist of 5-HT1A receptors, as it has a Ki value of 27 ± 5 nM [107],
and its multiple treatments significantly attenuated pain such as xaliproden. Moreover,
JOA 122 (3p), which has a moderate affinity with a Ki value of 223.0 ± 4.5 nM, decreased



Biomedicines 2021, 9, 970 12 of 17

the acute and late phases of oxaliplatin-induced neuropathic pain. However, the 5-HT1A
receptor antagonist (compound 3), with a Ki value of 146.0 ± 28.4 nM, did not affect
oxaliplatin-induced neuropathy. These results suggest that therapeutic agents that could
stimulate both spinal and peripheral 5-HT1A receptors can effectively alleviate oxaliplatin-
induced neuropathic pain.

In contrast to 5-HT1A receptors, Baptista-de-Souza et al. [67] and Chenaf et al. [68]
demonstrated that inhibiting the action of 5-HT2C receptors could attenuate pain. In a
study by Baptista-de-souza, multiple injections of oxaliplatin significantly increased the
mRNA levels of 5-HT2C receptors in the spinal cord and PAG, and the selective 5-HT2C
receptor antagonist fluoxetine decreased the increased level of 5-HT2C receptors in the
spinal cord, but not in the PAG. In contrast to the results of Baptista-de-Souza and Chenaf,
some studies have reported that intrathecal administration of various 5-HT2C receptor
agonists such as 6-chloro-2-(1-piperazinyl)-pyrazine, 1-(m-chlorophenyl)-piperazine, or
1-(m-trifluoromethylphenyl)-piperazine could significantly decrease neuropathic pain in
rodents [108–110]. These results suggest that the role of spinal 5-HT2C receptors may
differ between pain models (i.e., spinal cord injury [SCI] vs. oxaliplatin). In addition,
it should also be considered that the route of administration was different (intrathecal
vs. intravenous and subcutaneous). Further studies that directly inject 5-HT2C receptor
agonists or antagonists into the spinal cord of oxaliplatin-induced pain rats need to be
conducted to clarify the role of spinal 5-HT2C receptors.

In contrast to 5-HT2C receptors, activation of 5-HT2A receptors was shown to alle-
viate pain, as spinal 5-HT2A receptor antagonist pretreatment significantly blocked the
analgesic effect of neurotropin. Taken together, these results demonstrate that 5-HT2A
receptors promote antinociception, whereas 5-HT2C receptors play a pain-enhancing role in
oxaliplatin-induced pain. Although future studies are needed to clarify the role of 5-HT2A
and 5-HT2C receptor in oxaliplatin-induced pain, the function of these receptors may be
different as 5-HT2A receptors are known to be expressed in spinal inhibitory interneurons
and have an antinociceptive role [111,112], whereas the activation of spinal 5-HT2C recep-
tors were reported to excites neurons [113–115], and its distribution in the spinal cord was
demonstrated to be compatible with a pronociceptive role of 5- HT in the dorsal horn [116].

Furthermore, published reports of included studies suggested that spinal 5-HT3 re-
ceptors are involved in the attenuation of oxaliplatin-induced neuropathic pain. 5-HT3
receptors are known to be present in the superficial laminae of the spinal dorsal horn
at the terminals of myelinated and unmyelinated primary afferent fibers. As mentioned
previously, they are also known to mediate the release of GABA, but not glycine or glu-
tamate [117,118]. In contrast to the analgesic role in oxaliplatin-induced neuropathy, in
humans suffering from chronic neuropathic pain and SCI-induced neuropathic pain model
mice, treatment with ondansetron, a 5-HT3 receptor antagonist, has been reported to pro-
duce a robust and long-term reduction in allodynia [119,120]. However, in our review,
no studies have reported changes in behavioral response following administration of the
5-HT3 receptor antagonist. Although it is difficult to clarify the reasons for this inconsis-
tency, it may be due to differences in the antagonists used (ondansetron vs. MDL-72222). It
should be noted that ondansetron, along with its 5-HT3 receptor antagonistic effects, has
been reported to act as a local anesthetic by blocking sodium channels [121,122].

In conclusion, our review demonstrates that 5-HT is not involved in the development
of oxaliplatin-induced allodynia, but modulation of 5-HT may help attenuate allodynia.
Furthermore, the results suggest that increasing the activity of the spinal 5-HT1A, 5-HT2A,
and 5-HT3 receptors and decreasing the action of the spinal 5-HT2C and 5-HT6 receptors
may help to inhibit pain. However, more constructively designed experiments that use re-
ceptor knockout and selective agonists and antagonists should be conducted to deduce any
firm conclusions. Considering that oxaliplatin is one of the most widely used anti-cancer
agents and no optimal treatment for oxaliplatin-induced pain exists, our efforts to clarify
the role of the serotonergic system may help other researchers to find an optimal drug to
alleviate the suffering of patients with chemotherapy-induced peripheral neuropathic pain.
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