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We show how a variety of stable spatio-temporal periodic patterns can be created in 2D-lattices of coupled
oscillators with non-homogeneous coupling delays. The results are illustrated using the FitzHugh-Nagumo
coupled neurons as well as coupled limit cycle (Stuart-Landau) oscillators. A ‘‘hybrid dispersion relation’’ is
introduced, which describes the stability of the patterns in spatially extended systems with large time-delay.

C
oupled dynamical systems with time-delays arise in various applications including semiconductor
lasers1–4, electronic circuits5, optoelectronic oscillators6, neuronal networks7–9, gene regulation networks10,
socioeconomic systems11,12 and many others13–18. Understanding the dynamics in such systems is a

challenging task. Even a single oscillator with time-delayed feedback exhibits phenomena, which are not expected
in this class of systems, such as Eckhaus instability19, coarsening20, or chimera state21. Some of them, like low
frequency fluctuations in laser systems with optical feedback are still to be understood22. The situation is even
more complicated when several systems are interacting with non-identical delays. In this case, somewhat more is
known about some specific coupling configurations, e.g. ring23–26, and less on more complex coupling
schemes7,27–30. Recently, it has been shown that a ring of delay-coupled systems possesses a rich variety of stable
spatio-temporal patterns23,24. For the neuronal models in particular, this implies the existence of a variety of
spiking patterns induced by the delayed synaptic connections.

Here we present a system with time-delayed couplings, which is capable of producing a variety of stable two-
dimensional spatio-temporal patterns. More specifically, we show that a 2D regular set of dynamical systems
um,n(t) (neuronal models can be used) may exhibit a stable periodic behavior (periodic spiking) such that the
oscillator um,n(t) reaches its maximum (spikes) at a time gm,n, which can be practically arbitrary chosen within the
period. For this, time-delays should be selected accordingly to some given simple rule. As particular cases, the
synchronous, cluster, or splay states can be realized.

Our work is a generalization of the previous results on the ring23,24, extending them to the two-dimensional
case. However, the analysis, which we have to employ has important differences. In particular, the combination of
the spatial structure of the system (spatial coordinates m and n) and temporal delays required the introduction of
a so called ‘‘hybrid dispersion relation’’ for the investigation of the stability of stationary state and nonlinear plane
waves in the homogeneous system. Roughly speaking, this hybrid dispersion relation is a synthesis of the
dispersion relation from the pattern formation theory in spatially extended systems31,32 and the pseudo-continu-
ous spectrum developed for purely temporal delay systems19,33,34.

We believe that such a higher-dimensional extension allows to think about the possibility of employing such
systems for generating or saving visual patterns, and can be probably of use for information processing purposes.
Small arrays of delay-coupled optoelectronic oscillators have indeed already been realized experimentally6.
Similarly, autonomous Boolean networks of electronic logic gates have been demonstrated as versatile tools
for the realizations of various space-time patterns35. Moreover, our analysis provides another evidence that the
delays in coupled systems can play a constructive functional role.

More specifically, we consider a lattice of M 3 N delay-coupled systems (delay differential equations) of the
form

d
dt

um,n tð Þ~F um,n tð Þ,um{1,n t{t;m,n

� �
zum,n{1 t{t?m,n

� �� �
, m~1, . . . ,M; n~1, . . . ,N, ð1Þ
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where F : Rd|Rd?Rd is a nonlinear function determining the
dynamics of um,n[Rd in the lattice. The indices m and n determine
the position of the node, see Fig. 1. We assume periodic boundary
conditions uM 1 1,n ; u1,n and um,N 1 1 ; um,1 such that the system
has translation invariance. Time-delays t;m,n and t?m,n denote the
connection delays between the corresponding nodes. Since each
node has two incoming connections, the arrows # and R correspond
to the coupling from the node located above, respectively left, see
Fig. 1. Here we restrict the analysis to two systems: Stuart-Landau
(SL) oscillators as a simplest dynamical system exhibiting limit cycle
behavior and FitzHugh-Nagumo (FHN) systems as a representative
of conductance based, excitable neuronal models36,37. While the first
model allows for a deeper analytical insight, the second one can be
studied mainly numerically and shows qualitatively similar results.

An example of a stable spatio-temporal pattern in a lattice of 100
3 150 FHN neurons with non-homogeneous delays, the ‘‘Mona
Lisa’’-pattern is shown in Fig. 2. Each frame corresponds to a snap-
shot at a fixed time t and the different level of gray at a point (m,n)
corresponds to the value of the voltage component of um,n(t) at this
time t. More details on how such patterns can be created are given in
the following sections.

The structure of the remaining part of the paper is as follows: In
section Results we firstly consider SL systems with homogeneous
time-delays t?m,n~t;m,n~t. We investigate the stability of the homo-
geneous steady state as well as various plane wave solutions in the
system. The number of stable plane wave solutions is shown to
increase with the delay. Further, similar results are obtained for the
FHN systems. Afterwards, we consider the case when the delays are
not identical. In this case it is shown how a variety of spatio-temporal
patterns can be created by varying the coupling delays. Finally, addi-
tional illustrative examples are presented.

Results
Stuart-Landau oscillators with homogeneous coupling delays. In
this section we start with a lattice of SL oscillators with homogeneous
delays t?m,n~t;m,n~t:

d
dt

zm,n tð Þ~ azibð Þzm,n tð Þ{zm,n tð Þ zm,n tð Þj j2

z
C
2

zm{1,n t{tð Þzzm,n{1 t{tð Þð Þ:
ð2Þ

The variables zm,n are complex-valued. The parameter a controls the
local dynamics without coupling, i.e. a stable steady state exists for a

, 0 and a stable limit cycle for a . 0; b is the frequency of this limit
cycle. The coupling strength is determined by C . 0.

We firstly study the bifurcation scenario, which is associated with
the destabilization of the homogeneous steady state z 5 0 and the
appearance of various plane waves. Many aspects of this scenario can
be studied analytically due to the S1 equivariance of the system: F(ein ?,
ein ?) 5 einF(?, ?) for any real n. At some places we will assume
additionally that the delay t is large comparing to the timescale of
the system (we will mention it each time explicitly), which simplifies
analytical calculations.

Stability and bifurcations of homogeneous stationary state. System (2)
has the homogeneous steady state zm,n ; 0. Its stability is described
by the eigenvalues (see Methods for the derivation)

lj,+~a+ibz
1
t

Wj tCeikz{ a+ibð Þt cos k{

h i
, ð3Þ

where Wj is the jth branch of the Lambert function, k+~
1
2

k1+k2ð Þ,
and (k1, k2) 5 2p(l/M, j/N), l 5 1, …, M, j 5 1, …, N is the wave-
vector. If all eigenvalues lj,6 have negative real parts for all possible
wavevectors (k1, k2), then the steady state is asymptotically stable.

In the case when the coupling delay is large, the discrete set of
eigenvalues can be approximated by the continuous spectrum of the
form (see Methods)

l+~
1
t

c+ V,k{ð ÞziV, ð4Þ

where V is a continuous parameter and

c+ V,k{ð Þ~{
1
2

ln
a2z V+bð Þ2

C2 cos2 k{

� �
: ð5Þ

An illustration of the numerically computed eigenvalues is shown
in Fig. 3 for the system of 3 3 3 coupled SL oscillators for three cases:
stable, critical, and unstable. All eigenvalues accumulate along the
curves c6(V, k2) given by Eq. (4) with maxima atV5 6 b. For a 3 3

3 lattice, only 3 values of jk2j are realized: 0, 2p/3, and 4p/3 (where
the latter two are mapped on each other in the spectrum due to the
cos2 (k2)). One can observe also how multiple Hopf-bifurcations
may emerge after the destabilization. In the following section we
discuss the plane waves arising in these Hopf-bifurcations.

Nonlinear plane waves. Because of the phase-shift symmetry of the
Stuart-Landau system (2), periodic solutions emerging from the homo-
geneous steady state via Hopf-bifurcations have the following form

zm,n tð Þ~aeiVt{ik1m{ik2n: ð6Þ

By substituting (6) into (2), we obtain the equation for amplitude a,
frequency V, and the wavevector k 5 (k1, k2) of the periodic solutions

iV~azib{a2zei kz{Vtð ÞC cos k{:

Taking real and imaginary parts, we obtain

a2~azR cos kt, ð7Þ

V~bzR sin kt, ð8Þ

where we denote R:5 C cos k2 and kt:5 k1 2 Vt. By excluding kt we
obtain

a2{a
� �2

z V{bð Þ2~R2: ð9Þ

Therefore all periodic solutions can be found on circles (9) in the
(a22a, V)-parameter space. Equation (8) is known as Kepler’s equation
an can be solved numerically with respect to V. The number of solu-
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Figure 1 | Coupling scheme. We consider a two-dimensional lattice of

delay-coupled oscillators with translation-invariance in both spatial

directions (a discrete 2-torus). The dynamics of each node um,n(t) is

described by system (1). Each coupling connection possesses a delay t;m,n or

t?m,n. All edges are unidirectional.
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tions of (8) matches the number of Hopf-bifurcations and periodic
solutions. All possible frequencies are confined to the interval 2jRj
1 b # V # jRj1 b. By studying Eqs. (7) and (8), the number of Hopf-
bifurcations, or periodic solutions respectively, can be estimated as

*
4Ct

p2
MN asymptotically for large M and N (we omit here the

straightforward calculations). Thus, in the case of large delay or lat-
tice-size the number of solutions grows and any point on the circles (9)
refers to a periodic solution, i.e. the circle disc is densely filled with
points (a2 2 a, V) corresponding to the existing periodic solutions. As
an example, the positions of periodic solutions in a 10 3 10-lattice are
shown in Fig. 4.

The stability of plane wave solutions is studied in detail in
Methods. The bifurcation diagram in Fig. 5 summarizes and illus-
trates the obtained results, showing the regions where the plane
waves are stable (light gray), weakly unstable (darker gray, labeled
with U and M), and strongly unstable (dark gray, labeled with S).

The main qualitative conclusions of the plane waves analysis are as
follows: The family of plane wave solutions (6) is located on the
circles (9) (for a fixed k2 or R, respectively), and the number of plane
waves grows as the product , tMN. The stability of a plane wave is
governed by the characteristic equation (23) and determined by its
position on the circle. More specifically, the plane waves with the
higher amplitude tend to be more stable than those with the lower
amplitude. Figure 4 and 5 illustrate this by showing stable, as well as
weakly and strongly unstable ‘‘positions’’ on the circle. Thus, with

increasing a, the number of stable plane waves increases. Plane waves
with smaller jk2j also tend to be more stable than those with larger
jk2j. Therefore we expect that the plane waves which are almost
diagonal are more abundantly observed.

FitzHugh-Nagumo neurons with homogeneous coupling delays.
In this section we consider a lattice of M 3 N delay-coupled
FitzHugh-Nagumo neurons, which are coupled via excitatory
chemical synapses. The coupling architecture is the same as
described in Fig. 1. The model system reads

d
dt

vm,n~vm,n{
1
3

v3
m,n{wm,nzIz

z
C
2

vr{vm,nð Þ sm{1,n t{tð Þzsm,n{1 t{tð Þð Þ

d
dt

wm,n~e vm,nza{bwm,nð Þ

d
dt

sm,n~a vm,nð Þ 1{sm,nð Þ{0:6sm,n

ð10Þ

with a vð Þ~ 1
2

1ze{5 v{1ð Þ
h i{1

. The variable vm,n denotes the

membrane potential of the corresponding neuron and wm,n is a
slow recovery variable, combining several microscopic dynamical
variables of the biological neuron. The external stimulus current
applied to the neuron is denoted by I and C is the coupling
strength. We fix the parameters a 5 0.7, b 5 0.8, and e 5 0.08.
The reversal potential is taken as vr 5 2 for excitatory coupling.
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Figure 2 | Example of a created spatio-temporal pattern. Snapshots of the spatio-temporal behavior in a system of 100 3 150 identical FHN

neurons Eq. (10) with appropriately adjusted time-delays t;m,n and t?m,n. At each grid point with the coordinate (m, n), the level of gray (see colorbar)

corresponds to the membrane voltage vm,n(t) at this time moment. The pattern reappears periodically with a time period T 5 21.95. More details are given

in Results.
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Figure 3 | (a) Eigenvalues of the homogeneous steady state for SL system.
For 3 3 3 lattice of delay-coupled SL oscillators with C 5 2, b 5 0.5,
and t 5 20, the plots in (a) show numerically computed eigenvalues (3) and
the continuous large delay approximation (4) by the red line. The stationary
state is stable for a 5 22.5, critical at a 5 22, and unstable for a 5 21.6.
(b) Color plots of c(V, k2) < Re [lt] as a function of V and k2. The
parameter a is the same as in (a). For large lattices, all values of k2 can be
realized.
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Figure 4 | Hopf-bifurcation points and periodic solutions. The black dots

show the positions of all periodic solutions (or Hopf-bifurcation points

respectively) of the SL-system (2) in the parameter-plane of a 10 3 10

lattice with b 5 0.5, C 5 2 and t 5 10 for different values of a. The empty

gray dots represent unborn periodic solutions (a too small). For

large M, N and t the disc becomes densely filled with periodic solutions.

The green area marks the stable regions on the disc for the respective value

of a according to Eq. (30). The stable domain grows with increasing

a. In the limit of infinite a one quarter of all existing periodic solutions are

stable.
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Similar model equations have been investigated in Refs. 24, 38 for
unidirectional rings.

We demonstrate that the destabilization of the homogeneous
steady state, the set of plane waves as well as their stability properties
possess the same qualitative features which we observed in the
Stuart-Landau system (2). However, the apparent difficulty for the
analysis of nonlinear plane waves is that they are not known analyt-
ically. Therefore we use numerical bifurcation analysis with DDE-
BIFTOOL39 and have to restrict ourselves to relatively small lattice size
and delay values.

Homogeneous steady state and its stability. The system (10) has a
homogeneous steady state �u~ �v,�w,�sð Þ. The value for the membrane
resting potential �v can be obtained as a solution of the scalar equation

0~�v{
1
3

�v3{
�vza

b
zIzC vr{�vð Þ a vð Þ

a vð Þz0:6
: ð11Þ

The steady-state values of the remaining variables follow as
�w~ �vzað Þ=b and�s~a vð Þ= a vð Þz0:6ð Þ. In the case of weak coupling
strength the homogeneous stationary state is unique, but for CSN 5
1.46475 a saddle-node bifurcation of the equilibrium takes place. For
strong coupling C . CSN there is a domain of the control parameter I
with three coexisting stationary states, see Fig. 6.

In Methods, the characteristic equation, which determines the
stability of the homogeneous state, is derived (Eq. (32)) and studied.
The resulting bifurcation diagram is shown in Fig. 6 together with the
asymptotic spectra in the case of large delay and lattice size. The
boundaries of domains, where Hopf-bifurcations are possible are
shown as H1 and H2.

Hopf-bifurcations and periodic attractors. Using the software pack-
age DDE-BIFTOOL39, we perform a continuation of the Hopf-bifurca-
tions in the (I, t)-plane. The result is shown in Fig. 7, where the
Hopf-frequency V is plotted vs. the time-delay t. The structure of the
branches can be understood by using reappearance arguments for
periodic solutions40. Some of the Hopf-branches terminate with zero
frequency in a homoclinic bifurcation.

We perform also a numerical continuation of the periodic solu-
tions, emerging from the Hopf-bifurcations. The spatial orientation
of a periodic solution is conserved along the branch, while varying
the external current I as a control parameter. Typically, a periodic
solution connects two Hopf-points, which are both solutions of Eq.
(32) with the same k1 and k2. For vanishing delay, all stable periodic
orbits are diagonal traveling waves with k2 5 0, including the syn-
chronized solution. Increasing the coupling delay significantly
enhances the stability properties of periodic solutions and allows
for stable traveling waves with k2 ? 0. Moreover, the periodic solu-
tions appear in a larger regime of the control parameter I. Snapshots
of several coexisting traveling waves in a system of 100 3 100 FHN-

neurons with t 5 50 are shown in Fig. 8. Such solutions serve as the
starting point for the more complicated patterns in systems with
inhomogeneous delays, discussed in the following section.

Patterns in systems with inhomogeneous delays. Componentwise
time-shift transformation. Consider a delayed dynamical system with
a coupling topology as described by Eq. (1) with homogeneous
delays. In the previous section we have shown the existence and
stability properties of traveling wave patterns in the Stuart-Landau
system, which have the explicit form given by Eq. (6). In the case of
FitzHugh-Nagumo oscillators the existence of patterns of the form
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Figure 5 | Stability diagrams for plane waves of the SL-system (2) with
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um,n(t) 5 v(t 2 T(k1m 1 k2n)/2p) was demonstrated numerically. In
both systems, there is a large number of stable coexisting periodic
patterns that grows with the increasing time-delay and the number of
oscillators in the lattice.

Here we show how one can transform the plane waves of the
homogeneous system into an (almost) arbitrary pattern by adjusting
the coupling delays. The derivation of the transformation presented
here is a generalization of the method described in Refs. 23, 24 for
unidirectionally coupled rings and Ref. 27 for arbitrary networks
with delays.

Rewriting system (1) with respect to the new coordinates v given
by um,n(t) 5 vm,n(t 2 gm,n) leads to the new system

_vm,n tð Þ~F vm,n tð Þ,vm{1,n tzgm,n{gm{1,n{t
� �

zvm,n{1 tzgm,n{gm,n{1{t
� �� �

~

~F vm,n tð Þ,vm{1,n t{t;m,n

� �
zvm,n{1 t{t?m,n

� �� � ð12Þ

(see Eq. (1)) with the adjusted non-homogeneous delays

t;m,n~t{gm,nzgm{1,n,

t?m,n~t{gm,nzgm,n{1:
ð13Þ

The time-shifts g[RM|N can have an arbitrary form, up to the
restriction that the new delays need to be positive. It is important
to note, that the round-trip time in each direction is conserved by this
transformation. By adjusting the time-shifts, one can obtain in sys-
tem (12) stable, time-periodic attractors of various spatial forms. For
example, a stable synchronous periodic solution um,n(t) 5 u0(t) 5

u0(t 1 T) of the homogeneous system corresponds to a solution
vm,n(t) 5 u0(t 1 gm,n) in the non-homogeneous system, where each
component is shifted in time by gm,n. E.g. in the case of Stuart-
Landau oscillators, the transformation zm,n(t) 5 Zm,n(t 2 gm,n) yields
the explicit form

Zm,n tð Þ~aeiV tzgm,nð Þ{ik1m{ik2n~zm,n tð ÞeiVgm,n , ð14Þ

with zm,n(t) from Eq. (6) solving the problem with homogeneous
delays (2). The stability properties of the periodic solutions are
invariant with respect to the componentwise time-shift transforma-
tion, i.e. the characteristic exponents do not change. We refer to Ref.
27 for a more detailed analysis of the stability.

The time-shift will result to a shifted value of the dynamical vari-
ables (e.g. voltage for the neuronal models). Thus, the encoded pat-

tern gm,n will be visible in the dynamical variables of the ensemble.
Since gm,n is practically arbitrary, there is a variety of patterns, which
can appear as stable attractors in the systems with inhomogeneously
delayed connections. Here and in the examples given later, we focus
on patterns that arise from the spatially homogeneous solution
um,n(t) 5 u0(t). This is done for the sake of simplicity and because
of the favorable stability properties of the synchronous solution (it
has the spatial mode k2 5 0). Note that, since the number of patterns
is not affected by the transformation, there can be coexisting stable
transformed traveling wave patterns

vm,n tð Þ~u0 tzgm,n{
T
2p

k1mzk2nð Þ
� �

for admissible values of the wavevector (k1, k2). In order to obtain a
particular pattern in a numerical simulation, one has to properly
adjust the initial functions according to the desired pattern. As a
rule, the delay-times should be kept as small as possible (however,
still having the new delays (13) positive) to limit the number of
coexisting stable patterns and therefore enhance the convergence.

Examples of created patterns. Illustrative examples of stable spatio-
temporal patterns in a lattice with non-homogeneous delays are
shown in Figs. 2 and 9. All examples are constructed from
synchronized solutions with k 5 (0, 0)T via the delay-
transformation (13). However, the scaling of the patterns gm,n with
respect to the period time is different in the examples. In the ‘‘Mona
Lisa’’-pattern (Fig. 2) the spiking times are chosen only slightly
different, so that the pattern is a slightly adapted standing front
solution. In the examples in Fig. 9 the spiking-times are distributed
over the whole period.

Discussion
We have shown that arbitrary stable spatio-temporal periodic pat-
terns can be created in two-dimensional lattices of coupled oscillators
with inhomogeneous coupling delays. We propose that this offers
interesting applications for the generation, storage, and information
processing of visual patterns, for instance in networks of optoelec-
tronic6 or electronic35 oscillators. Our results have been illustrated
with two models of the local node dynamics which have a wide range
of applicability: (i) the Stuart-Landau oscillator, i.e., a generic model
which arises by center-manifold expansion of a limit cycle system
near a supercritical Hopf-bifurcation, and (ii) the FitzHugh-Nagumo
model, which is a generic model of neuronal spiking dynamics.

Methods
Characteristic equation for the homogeneous state in the coupled SL systems.
System (2) has a homogeneous steady state zm,n ; 0. We investigate the stability of
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this stationary state and find the expression (3) for the eigenvalues as well as the large
delay approximation (5). Linearizing the equation of motion (2) at zm,n 5 0 yields the
following equation for the evolution of small perturbations dzm,n(t):

d
dt

dzm,n tð Þ~ azibð Þdzm,n tð Þz C
2

dzm{1,n t{tð Þzdzm,n{1 t{tð Þð Þ:

This equation can be diagonalized by a spatial discrete Fourier-transformation

d~zk1 ,k2 ~
XM

m~1

XN

n~1

eik1mzik2ndzm,n,

where the wavevector k 5(k1, k2) admits the following discrete values:

k1,k2ð Þ~2p l=M,j=Nð Þ ð15Þ

with l 5 1, …, M and j 5 1, …, N. We obtain

d
dt

d~zk1 ,k2 tð Þ~ azibð Þd~zk1 ,k2 tð Þz C
2

eik1 zeik2
� �

d~zk1 ,k2 t{tð Þ: ð16Þ

Since the equation for the Fourier modes is uncoupled, one can drop the indices k1

and k2 for simplicity (d~zk1 ,k2?d~z) and introduce the notations

k+~
1
2

k1+k2ð Þ, ð17Þ

which is basically a rotation of coordinates in the Fourier space. Note that k6 admits
discrete values accordingly to (15). Then system (16) can be rewritten in real
coordinates d~x tð Þ, d~y tð Þ[R as

d
dt

d~x

d~y

 !
~

a {b

b a

 !
d~x

d~y

 !
z

zC cos k{ð Þ
cos kzð Þ {sin kzð Þ

sin kzð Þ cos kzð Þ

 !
d~x t{tð Þ

d~y t{tð Þ

 !
,

ð18Þ

where we decomposed the complex variable as d~z tð Þ~d~x tð Þzid~y tð Þ. Since the
modes are decoupled in the Fourier space, the corresponding characteristic equation
factorizes and reads

0~ P
kz ,k{ð Þf g

azC cos k{ð Þcos kzð Þe{lt{l
� 	2

z bzC cos k{ð Þsin kzð Þe{lt
� 	2

� �
:ð19Þ

The solution of this transcendental equation with respect to l leads to the expression (3).

Large delay approximation. A deeper analysis of the spectrum can be achieved for
large delays using the asymptotic methods described in Refs. 17, 33, 41. Accordingly
to these results, the spectrum splits generically into two parts for large delays. The first
part is called the strongly unstable spectrum and the second part is the pseudo-con-
tinuous spectrum. The strong spectrum exists for a . 0 and consists of two complex
conjugate, isolated roots which are close to lS,6 5 a 6 ib. In such a case, the

contribution of the term
1
t

Wj
:½ � in (3) vanishes. In fact, the strong spectrum always

converges to the unstable part of the spectrum of the system with omitted delayed

terms33,34,42, i.e.
d
dt

d~z tð Þ~ azibð Þd~z tð Þ in this case. Besides the strong spectrum there

are infinitely many more eigenvalues, accumulating on some curves in the complex
plane as t R ‘. These eigenvalues form the pseudo-continuous spectrum and can be

found by substituting the ansatz l~
1
t

c V,k{ð ÞziV in the characteristic equation

(19). One obtains the two branches

i V+bð Þ~azC cos k{ð Þe+ikz e{c{iVt,

where the small term c/t has been neglected. It can be solved as

Y+ : ~e{ce{i Vt+kzð Þ~
i V+bð Þ{a

C cos k{ð Þ

and finally we obtain c+ V,k{ð Þ~{
1
2

ln Y+ V,k{ð Þj j2, which leads to Eq. (5). Note

that the spectrum is invariant with respect to complex conjugation, i.e. c1 (2V, k-) 5

c2 (V, k2). It is easy to see that the spatial mode k2 5 0 corresponds to the maximal
values of c(V, k2). Thus, the spatial modes with k2 5 0 are most unstable. Moreover,
it is easy to check that the maxima of c6 are negative for jaj . C and positive
otherwise. This implies that the homogeneous steady state is asymptotically stable for
a , 2C and unstable for a . 2C (we take also into account that there is a strongly
unstable spectrum for a . 0). Hence, the destabilization takes place at a 5 2C via
Hopf-bifurcation at the frequencies V < 6b for a perturbation with k2 5 0.

Stability of plane wave solutions in coupled SL system. The local asymptotic
stability of plane wave solutions can be studied using the linearized equation for small
perturbations jm,n(t). In co-rotating coordinates we set

zm,n tð Þ~aei Vt{k1m{k2nð Þ 1zjm,n tð Þ
� �

, ð20Þ

where the plane wave is recovered by the steady state jm,n 5 0. Therefore, after
substituting (20) in (2) and linearizing the obtained equation in small perturbations
jm,n(t), we obtain

d
dt

jm,n tð Þ~ azib{iV{2a2
� �

jm,n tð Þ{a2j�m,n tð Þz

z
C
2

e{iVt eik1 jm{1,n t{tð Þzeik2 jm,n{1 t{tð Þ
� �

:

ð21Þ

The solutions can be found by the ansatz

jm,n tð Þ~b1elt{iq1 m{iq2 nzb�2el� tziq1 mziq2 n: ð22Þ

The ansatz (22) can be obtained, e.g. by rewriting the system (21) in the real form,
diagonalizing it with the discrete Fourier transform, and noticing that the equations
for the Fourier components ~jq1 ,q2

and ~j{q1 ,{q2
are complex conjugate, and hence,

they have the same stability properties with the complex conjugate eigenvalues, see
also Ref. 32. After substituting (22) into (21), the coefficients at the two linearly
independent functions elt{iq1m{iq2n and el� tziq1mziq2 n should be zero. This leads to
the system of two linear equations for unknowns b1 and b2, which we omit here for
brevity. This system has a nontrivial solution if the determinant of its matrix is zero.
As a result, we arrive at the following characteristic equation

x l,q{,qzð Þ~l2z2 a2zR cos kt

� �
lzR2z2Ra2 cos ktzRzR{e{2ltz2iqz {

{ a2zR cos ktzl
� �

Rzeikt zR{e{ikt
� �

{iR sin kt Rzeikt {R{e{ikt
� �� 	

e{ltziqz ,
ð23Þ

where we introduced q+ : ~
1
2

q1+q2ð Þ and R6:5 C cos(k2 6 q2). The obtained

characteristic equation (23) determines the stability of a plane wave. Namely, for any
plane wave, which is defined by the amplitude a, frequency V, wavevectors k1 and k2

(then also kt 5 k1 2 Vt is given), the equation (23) determines the stability with
respect to the perturbation mode with the spatial perturbations q1 and q2. In
particular, if for all q1, q2 g [0, 2p], all the solutions l of the characteristic equation
(23) have negative real parts, then the plane wave is asymptotically stable. The
symmetry-relation x*(l*, q2, 2q1; 2kt) 5 x(l, q2, q1; kt) implies, that the stability
properties of periodic solutions are invariant with respect to changing kt R 2kt.
Notice that the obtained equation is a quasi-polynomial, which has generically
infinitely many roots.

Although Eq. (23) can be studied numerically for each given set of parameters, an
additional useful analytical insight in the properties of its solutions is possible under
the assumption of large delay t. This is performed in the next section.

Plane wave solutions in coupled SL system: large delay approximation. Strong
spectrum. As it was discussed previously, the strong spectrum involves only the
instantaneous part of the dynamics. Therefore it does neither depend on the spatial
perturbation modes q nor on the network-size, since all spatial effects induced by the
coupling-structure are contained in the delayed terms. The reduced characteristic
equation for the strong spectrum can be formally obtained by setting e{lteiqz ~0 in
(23):

0~l2z2 2a2{a
� �

lz2a2 a2{a
� �

zR2

Its solutions are

l+~a{2a2+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4z a2{að Þ2{R2

q
:

Any of the solutions l6 with positive real part belongs to the strong spectrum. Simple
calculations show that there exists at least one strong eigenvalue with positive real part
if

a2
va2

S a; Rð Þ~
a=2, for { Rj jƒaƒ

ffiffiffi
2
p

Rj j
1
2 az

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2{2R2
p� �

, for
ffiffiffi
2
p

Rj jva,

8<
: ð24Þ

i.e. if the amplitude of the plane wave is smaller than the one determined by the curve
aS(a, R). Moreover, when the inequality a4 1 (a2 2 a)2 2 R2 , 0 is satisfied, there are
two complex conjugate unstable eigenvalues lz~l�{[C with Re l6 5 a 2 2a2. The
bifurcation diagram in Fig. 5 illustrates the regions of strong instability of plane waves
(dark gray regions, labeled with S).

Pseudo-continuous (weak) spectrum. Besides the strong spectrum, there are infinitely
many eigenvalues in the weak or pseudo-continuous spectrum. Similarly to the case of
the steady state, this spectrum can be found by substituting the ansatz

l~
c vð Þ

t
ziv

into the characteristic equation (23). In the limit of large delay, the terms of the order
O 1=tð Þ can be neglected, resulting in the following equation
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0~S q{ð ÞY2{2 A v,q{ð ÞziB v,q{ð Þ½ �YzD vð ÞziE vð Þ, ð25Þ

with Y : ~e{lteiqz , and the real valued functions

S q{ð Þ~RzR{~C2 cos k{zq{ð Þcos k{{q{ð Þ,

A v,q{ð Þ~C Rza2 cos kt

� 	
cos k{ cos q{zv sin kt sin k{ sin q{

� �
,

B v,q{ð Þ~C {a2 sin kt sin k{ sin q{zv cos kt cos k{ cos q{

� �
,

D vð Þ~R2{v2z2Ra2 cos kt,

E vð Þ~2v a2zR cos kt

� �
:

Solving the quadratic equation (25) with respect to Y leads to

Y+ v,q{ð Þ~ 1
S q{ð Þ A v,q{ð ÞziB v,q{ð Þ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f v,q{ð Þ

p� �
,

with

f v,q{ð Þ~A2{B2{SDzi 2AB{SE½ �:

Note that the solutions do not depend on q1, which therefore has no impact on the
stability in the limit of large delay. Since there are two solutions Y6, one obtains two
branches of the pseudo-continuous spectrum

c+ v,q{ð Þ~{ln Y+j j~{
1
2

ln Y+Y�+
� �

:

The spectrum possesses the following symmetries

Y+ v,q{zpð Þ~{Y+ v,q{ð Þ ð26Þ

and

Y+ {v,{q{ð Þ~Y�+ v,q{ð Þ: ð27Þ

The first relation (26) implies that it is sufficient to consider only one of the two
functions c6(v, q2), since they are related to each other by the shift q2 R q2 1 p as

cz v,q{zpð Þ~c{ v,q{ð Þ: ð28Þ

This also indicates that the pseudo-continuous spectrum is twofold degenerate in the
limit of M, N R ‘. The second property (27) implies that the spectrum has the
reflection-symmetry in the (v, q2)-plane:

c+ {v,{q{ð Þ~c+ v,q{ð Þ:

Note that in the special case k2 5 0 the additional symmetry-relations
Y+ {v,q{ð Þ~Y�+ v,q{ð Þ and Y6(v, 2q2) 5 Y6(v, q2) hold.

The eigenvalues l are known as characteristic exponents or Floquet-exponents and

are related to the Floquet-multipliers via m~elT~exp
2pc

Vt

� �
exp

2piv
V

� �
. As known

from the Floquet-theory for periodic solutions, there is always one trivial multiplier m
5 1 or trivial exponent l 5 0, arising from the continuous symmetry with respect to
time-shifts in autonomous systems (phase shift on the limit cycle). For a perturbation
with v 5 0 and q2 5 0 one obtains

Y+ v~0,q{~0ð Þ~1z
a2

R
cos kt 1+

cos kt

cos ktj j

� �
:

The corresponding trivial characteristic exponent follows as

cz 0,0ð Þ~
{ln 1z2 a2

R cos kt

� �
v0 for cos kt§0

0 for cos ktv0

(

c{ 0,0ð Þ~
0 for cos kt§0

{ln 1z2 a2

R cos kt

� �
w0 for cos ktv0

( ð29Þ

Note that this property of the spectrum is not affected by the long delay approxi-
mation, since the approximation becomes exact at c 5 0. Apparently there are two
parameter domains separated by cos kt 5 0. Using (7), one finds that this boundary
corresponds to the the curve aU : ~

ffiffiffi
a
p

(see U in Fig. 5). Thus, all periodic solutions
with the amplitudes smaller than aU for a given a are unstable due to a positive
characteristic exponent with v 5 0. According to Ref. 31 this instability is called a
uniform instability. In order to determine the neutral stability curve, the following
discussion is restricted to the regime with cos kt $ 0. Since the relation (28) holds, we
will focus the analysis on c2(v, q2).

The trivial multiplier always denotes a critical point of the pseudo-continuous
spectrum at (v 5 0, q2 5 0), where the gradient vanishes:

+c{ v~0,q{~0~
L

Lv
,

L
Lq{

� �
c{

����
����
v~0,q{~0

~0:

This can be verified by a direct calculation. Therefore the point (v 5 0, q2 5 0) is
either an extremum or saddle of the pseudo-continuous spectrum. Analyzing the
shape of the spectrum close to the trivial multiplier shows the appearance of the
modulational instability31,32. For this, let us consider the second order approximation
of c2 at (v, q2) 5 0, involving the corresponding Hessian matrix H. Direct cal-
culation leads to the following expressions for the elements of the Hessian matrix

L2c{

Lv2

����
v~0,q{~0

~
1

R2 cos2 kt

R
a2

sin2 kt

cos kt
{1

� �
,

L2c{

Lq2
{

����
v~0,q{~0

~{1z
R tan2 k{

a2 cos3 kt
ztan2 k{ tan2 kt,

L2c{

LvLq{

����
v~0,q{~0

~
tan k{ tan kt

a2 cos2 kt
:

The curvature of the asymptotic continuous spectrum close to the trivial multiplier is
directly related to the stability of the corresponding plane wave. If the surface is locally
concave close to (v, q2) 5 (0, 0), then the Hessian is negative definite and the cor-
responding periodic orbit is stable (at least the part of the spectrum which is close to (v,
q2) 5 (0, 0)). Otherwise, if the curvature is convex (Hessian is positive definite) or the
origin is a saddle-point (Hessian is indefinite), the plane wave is unstable. The curvature
is characterized by the real eigenvalues of the symmetric Hessian matrix. The analysis of
the eigenvalues of the Hessian matrix leads to the following condition for the stability of
the plane wave, which is the condition for the negativeness of the eigenvalues of H:

cos2 kt{sin2 k{

� �
R cos ktza2
� �

{R cos ktw0:

Using the amplitude relation (7), the bifurcation is described by a 3rd order polynomial
in a2:

0~a6{
5
2

aa4z 2a2{
R2

2
1z2 sin2 k{

� �� �
a2{

a3

2
z

R2a

2
1zsin2 k{

� �
: ð30Þ

Solving Eq. (30) for a2 gives the neutral stability curve for an arbitrary plane wave with

k{j j[ 0,
p

2

h i
(shown as M in Fig. 5 for different values of k2). The analytical solution can

be found by using Cardano’s method, but is not written here for brevity. In the particular
case k2 5 0, the neutral stability curve can be simply expressed as

a2
M~

1
4

3az
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2z8C2
p� �

, ð31Þ

which coincides with the result obtained in Ref. 43 for the ring of coupled oscillators. For
large delay a plane wave is asymptotically stable, if its amplitude exceeds the critical
amplitude implicitly given by Eq. (30). By substituting (7) into (30), one can obtain the
minimal a 5 a0 with

a0 k{,ktð Þ~R cos kt
1{2 cos2 k{{sin2 ktð Þ

cos2 k{{sin2 kt
,

where a plane wave with particular k2 and kt stabilizes.
Finally, we can analytically determine the position of the dominant Floquet

exponent of a newly born periodic solution at its Hopf-point (a2 5 0) for q2 5 6k2

and v 5 6R sin (kt) for k2, kt g [0, p/2]. This implies that the new born, unstable
traveling waves tend to lose their stability in the q2 < 6k2 direction.

Stability of the homogeneous state of the coupled FHN systems. In order to analyze
the stability of the stationary state, we derive the linearized evolution equation for
small perturbations of the equilibrium and subsequently diagonalize it in Fourier-
space, just as in the previous section. One obtains the system

d
dt

d~u tð Þ~Ad~u tð Þz2B cos k{ð Þeikz d~u t{tð Þ

with the real valued matrices

A~

1{�v2{C�s {1 0

e {be 0

5a �vð Þ 1{2a �vð Þð Þ 1{�sð Þ 0 {a �vð Þ{0:6

0
B@

1
CA

and

B~

0 0 C
2 vr{�vð Þ

0 0 0

0 0 0

0
B@

1
CA:

The corresponding characteristic equation reads
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0~ P
kz ,k{ð Þf g

det {lIdzAz2B cos k{ð Þeikz e{lt
�� ��: ð32Þ

Similarly to the previous analysis, the stability of the homogeneous steady state is
completely determined by Eq. (32), which can be studied numerically using e.g.
Newton-Raphson iteration. An additional insight in the properties of the spectrum
can be given using the large delay approximation, which is done in the following.

Large delay approximation. Strongly unstable spectrum. The strongly unstable
spectrum results from considering only the instantaneous part of Eq. (32)

0~det A{lIdj j~ a33{lð Þ a11{lð Þ a22{lð Þ{a21a12½ �:

There is always one real solution l0 5 a33 # 20.6 of this 3rd-order polynomial, which
is strictly negative. The remaining eigenvalues are

l+~
1
2

a11{be+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11zbeð Þ2{4e

q� �
:

Note that all relevant parameters are contained in a11~1{�v2{C�s, involving the
current I and coupling strength C directly or via the corresponding homogeneous
steady state, respectively.

The strongly unstable spectrum exists when the real part of the largest eigenvalue
l1 is positive. This is the case when a11 . be. The appearance of the strongly unstable
spectrum occurs at the cusp-bifurcation of the asymptotic continuous spectrum and
is labeled as ‘‘C’’ in Fig. 6. Moreover, there exists a pair of complex conjugate eigen-
values for a11v2

ffiffi
e
p

{be, otherwise the eigenvalues are real. The corresponding
boundary is labeled with ‘‘S’’ in Fig. 6 and mediates the transition between an unstable
focus-node and a saddle-focus.

Pseudo-continuous spectrum. The primary bifurcations of the steady state are cap-
tured by the pseudo-continuous spectrum. Just as in the previous section in the case of
Stuart-Landau oscillators, this can be found by applying the ansatz l 5 c/t 1 iV. By
neglecting terms of orderO 1=tð Þ and introducing Y~e{cei kz{Vtð Þ, one obtains the
modified characteristic equation

0~det {iVIdzAz2B cos k{Yj j~

~ a11{iVð Þ a22{iVð Þ a33{iVð Þ{2 a22{iVð Þa31b13 cos k{Y{ a33{iVð Þa12a21:

Due to the simple linear coupling-structure, this is a linear equation in Y, which can be
solved as

Y~
a33{iV

2a31b13 cos k{

a11{iV{
a12a21

a22{iV

� �
,

leading to the asymptotic spectrum

c V,k{ð Þ~{ln Y V,k{ð Þj j: ð33Þ

This is a function of two parameters, determining the spectrum and stability of the
steady state with respect to the perturbations with the spatial mode k2 (independent
of k1) and the delay-induced temporal modes V. Some plots of this surface are
illustrated in Fig. 6. Apparently the destabilization is similar to the case of Stuart-
Landau oscillators. The asymptotic weak spectrum is invariant with respect to V R
2V, k2 R 2k2 and k2 R k2 1 np, n[Z. The bifurcations of (33) lead to the
boundaries of domains, where Hopf-bifurcations are possible (shown as H1 and H2 in
Fig. 6), and saddle-node-bifurcations. Many properties (such as extrema and roots) of
the hybrid dispersion relation (33) are analytically accessible, but not given here
explicitly, since they involve solutions of 3rd order polynomials.
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