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reduction are powerful techniques for discovering
effective coordinate systems to represent the
dynamics of physical systems. Recently, it has
been shown that models identified by dynamic
mode decomposition on time-delay coordinates
provide linear representations of strongly nonlinear
systems, in the so-called Hankel alternative view
of Koopman (HAVOK) approach. Curiously, the
resulting linear model has a matrix representation
that is approximately antisymmetric and tridiagonal;
for chaotic systems, there is an additional forcing
term in the last component. In this paper, we establish
a new theoretical connection between HAVOK and
the Frenet–Serret frame from differential geometry,
and also develop an improved algorithm to identify
more stable and accurate models from less data. In
particular, we show that the sub- and super-diagonal
entries of the linear model correspond to the intrinsic
curvatures in the Frenet–Serret frame. Based on this
connection, we modify the algorithm to promote this
antisymmetric structure, even in the noisy, low-data
limit. We demonstrate this improved modelling
procedure on data from several nonlinear synthetic
and real-world examples.
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1. Introduction
Discovering meaningful models of complex, nonlinear systems from measurement data has
the potential to improve characterization, prediction and control. Focus has increasingly
turned from first-principles modelling towards data-driven techniques to discover governing
equations that are as simple as possible while accurately describing the data [1–4]. However,
available measurements may not be in the right coordinates for which the system admits a
simple representation. Thus, considerable effort has gone into learning effective coordinate
transformations of the measurement data [5–7], especially those that allow nonlinear dynamics
to be approximated by a linear system. These coordinates are related to eigenfunctions of
the Koopman operator [8–13], with dynamic mode decomposition (DMD) [14] being the
leading computational algorithm for high-dimensional spatio-temporal data [11,13,15]. For low-
dimensional data, time-delay embedding [16] has been shown to provide accurate linear models
of nonlinear systems [5,17,18]. Linear time-delay models have a rich history [19,20], and recently,
DMD on delay coordinates [15,21] has been rigorously connected to these linearizing coordinate
systems in the Hankel alternative view of Koopman (HAVOK) approach [5,7,17]. In this work,
we establish a new connection between HAVOK and the Frenet–Serret frame from differential
geometry, which inspires an extension to the algorithm that improves the stability of these models.

Time-delay embedding is a widely used technique to characterize dynamical systems from
limited measurements. In delay embedding, incomplete measurements are used to reconstruct a
representation of the latent high-dimensional system by augmenting the present measurement
with a time history of previous measurements. Takens showed that under certain conditions,
time-delay embedding produces an attractor that is diffeomorphic to the attractor of the latent
system [16]. Time-delay embeddings have also been extensively used for signal processing
and modelling [19,20,22–27], for example, in singular spectrum analysis (SSA) [19,22] and the
eigensystem realization algorithm (ERA) [20]. In both cases, a time history of augmented delay
vectors are arranged as columns of a Hankel matrix, and the singular value decomposition
(SVD) is used to extract eigen-time-delay coordinates in a dimensionality reduction stage. More
recently, these historical approaches have been connected to the modern DMD algorithm [15],
and it has become commonplace to compute DMD models on time-delay coordinates [15,21]. The
HAVOK approach established a rigorous connection between DMD on delay coordinates and
eigenfunctions of the Koopman operator [5]; HAVOK [5] is also referred to as Hankel DMD [17]
or delay DMD [15].

HAVOK produces linear models where the matrix representation of the dynamics has a
peculiar and particular structure. These matrices tend to be skew-symmetric and dominantly
tridiagonal, with zero diagonal (see figure 1 for an example). In the original HAVOK paper,
this structure was observed in some systems, but not others, with the structure being more
pronounced in noise-free examples with an abundance of data. It has been unclear how to
interpret this structure and whether or not it is a universal feature of HAVOK models. Moreover,
the eigen-time-delay modes closely resemble Legendre polynomials; these polynomials were
explored further in Kamb et al. [28]. The present work directly resolves this mysterious structure
by establishing a connection to the Frenet–Serret frame from differential geometry.

The structure of HAVOK models may be understood by introducing intrinsic coordinates
from differential geometry [29]. One popular set of intrinsic coordinates is the Frenet–Serret
frame, which is formed by applying the Gram–Schmidt procedure to the derivatives of the
trajectory ẋ(t), ẍ(t),

...
x (t), . . . [30–32]. Álvarez-Vizoso et al. [33] showed that the SVD of trajectory

data converges locally to the Frenet–Serret frame in the limit of an infinitesimal time step. The
Frenet–Serret frame results in an orthogonal basis of polynomials, which we will connect to
the observed Legendre basis of HAVOK [5,28]. Moreover, we show that the dynamics, when
represented in these coordinates, have the same tridiagonal structure as the HAVOK models.
Importantly, the terms along the sub- and super-diagonals have a specific physical interpretation
as intrinsic curvatures. By enforcing this structure, HAVOK models are more robust to noisy and
limited data.
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Figure 1. In thiswork,we unify key results fromdimensionality reduction, time-delay embedding and the Frenet–Serret frame
to show that a dynamical system may be decomposed into a sparse linear model plus a forcing term. Furthermore, this linear
model has a particular structure: it is an antisymmetricmatrixwith non-zero elements only along the super- and sub-diagonals.
These non-zero elements are interpretable as they are intrinsic curvatures of the system in the Frenet–Serret frame.

In this work, we present a new theoretical connection between time-delay embedding models
and the Frenet–Serret frame from differential geometry. Our unifying perspective sheds light on
the antisymmetric, tridiagonal structure of the HAVOK model. We use this understanding to
develop structured HAVOK models that are more accurate for noisy and limited data. Section 2
provides a review of dimensionality reduction methods, time-delay embeddings and the Frenet–
Serret frame. This section also discusses current connections between these fields. In §3, we
establish the main result of this work, connecting linear time-delay models with the Frenet–Serret
frame, explaining the tridiagonal, antisymmetric structure seen in figure 1. We then illustrate this
theory on a synthetic example. In §4, we explore the limitations and requirements of the theory,
giving recommendations for achieving this structure in practice. In §5, based on this theory,
we develop a modified HAVOK method, called structured HAVOK (sHAVOK), which promotes
tridiagonal, antisymmetric models. We demonstrate this approach on three nonlinear synthetic
examples and two real-world datasets, namely measurements of a double pendulum experiment
and measles outbreak data, and show that sHAVOK yields more stable and accurate models from
significantly less data.

2. Related work
Our work relates and extends results from three fields: dimensionality reduction, time-delay
embedding and the Frenet–Serret coordinate frame from differential geometry. There is an
extensive literature on each of these fields, and here we give a brief introduction of the related
work to establish a common notation on which we build a unifying framework in §3.

(a) Dimensionality reduction
Recent advancements in sensor and measurement technologies have led to a significant increase
in the collection of time-series data from complex, spatio-temporal systems. Although such
data are typically high dimensional, in many cases, it can be well approximated with a low-
dimensional representation. One central goal is to learn the underlying structure of this data.
Although there are many data-driven dimensionality reduction methods, here we focus on linear
techniques because of their effectiveness and analytic tractability. In particular, given a data matrix
X ∈ R

m×n, the goal of these techniques is to decompose X into the matrix product

X = UVᵀ, (2.1)
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where U ∈ R
m×k and V ∈ R

n×k are low rank (k < min(m, n)). The task of solving for U and V is
highly underdetermined, and different solutions may be obtained when different assumptions
are made.

Here, we review two popular linear dimensionality reduction techniques: SVD [34,35] and
DMD [13,15,36]. Both of these methods are key components of the HAVOK algorithm and play a
key role in determining the underlying tridiagonal antisymmetric structure in figure 1.

(i) SVD

The SVD is one of the most popular dimensionality reduction methods, and it has been applied
in a wide range of applications, including genomics [37], physics [38] and image processing [39].
SVD is the underlying algorithm for principal component analysis.

Given the data matrix X ∈ R
m×n, the SVD decomposes X into the product of three matrices,

X = UΣVᵀ,

where U ∈ R
m×m and V ∈ R

n×n are unitary matrices, and Σ ∈ R
m×n is a diagonal matrix with

non-negative entries [34,35]. We denote the ith columns of U and V as ui and vi, respectively.
The diagonal elements of Σ , σi, are known as the singular values of X, and they are written in
descending order.

The rank of the data is defined to be R, which equals the number of non-zero singular values.
Consider the low-rank matrix approximation

Xr =
r∑

j=1

ujσjv
T
j ,

with r ≤ R. An important property of Xr is that it is the best rank r approximation to X in the
least-squares sense. In other words,

Xr = argminY‖X − Y‖ such that rank(Y) = r,

with respect to both the l2 and Frobenius norms. Furthermore, the relative error in this rank-r
approximation using the l2 norm is

‖X − Xr‖l2
‖X‖l2

= σr+1

σ1
. (2.2)

From (2.2), we immediately see that if the singular values decay rapidly (σj+1 � σj), then Xr is a
good low-rank approximation to X. This property makes the SVD a popular tool for compressing
data.

(ii) DMD

DMD [13–15] is another linear dimensionality reduction technique that incorporates an
assumption that the measurements are time-series data generated by a linear dynamical system
in time. DMD has become a popular tool for modelling dynamical systems in such diverse fields,
including fluid mechanics [11,14], neuroscience [21], disease modelling [40], robotics [41], plasma
modelling [42], resolvent analysis [43] and computer vision [44,45].

Like the SVD, for DMD, we begin with a data matrix X ∈ R
m×n. Here, we assume that our

data are generated by an unknown dynamical system so that the columns of X, x(tk), are time
snapshots related by the map x(tk+1) = F(x(tk)). While F may be nonlinear, the goal of DMD is to
determine the best-fit linear operator A : R

m → R
m such that

x(tk+1) ≈ Ax(tk).
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If we define the two time-shifted data matrices,

Xn−1
1 =

⎡
⎢⎣ | | · · · |

x(t1) x2(t2) · · · x(tn−1)
| | · · · |

⎤
⎥⎦ and Xn

2 =

⎡
⎢⎣ | | · · · |

x(t2) x(t3) · · · x(tn)
| | · · · |

⎤
⎥⎦ ,

then we can equivalently define A ∈ R
m×m to be the operator such that

Xn
2 ≈ AXn−1

1 .

It follows that A is the solution to the minimization problem

A = min
A′ ‖Xn

2 − A′Xn−1
1 ‖F,

where ‖·‖F denotes the Frobenius norm.
A unique solution to this problem can be obtained using the exact DMD method and

the Moore–Penrose pseudo-inverse Â = Xn
2(Xn−1

1 )† [13,15]. Alternative algorithms have been
shown to perform better for noisy measurement data, including optimized DMD [46], forward–
backward DMD [47] and total least-squares DMD [48].

One key benefit of DMD is that it builds an explicit temporal model and supports short-
term future state prediction. Defining {λj} and {vj} to be the eigenvalues and eigenvectors of A,
respectively, then we can write

x(tk) =
r∑

j=1

vj eωjtk , (2.3)

where ωj = ln(λj)/�t are eigenvalues normalized by the sampling interval �t, and the
eigenvectors are normalized such that

∑r
j=1 vj = x(t1). Thus, to compute the state at an arbitrary

time t, we can simply evaluate (2.3) at that time. Furthermore, letting vj be the columns of U and
{exp(ωjtk) for k = 1, . . . r} be the columns of V , then we can express data in the form of (2.1).

(b) Time-delay embedding
Suppose we are interested in a dynamical system

dξ

dt
= F(ξ ),

where ξ (t) ∈ R
l are states whose dynamics are governed by some unknown nonlinear differential

equation. Typically, we measure some possibly nonlinear projection of ξ , x(ξ ) ∈ R
d at discrete time

points t = 0, �t, . . . , q�t. In general, the dimensionality of the underlying dynamics is unknown,
and the choice of measurements are limited by practical constraints. Consequently, it is difficult
to know whether the measurements x are sufficient for modelling the system. For example, d may
be smaller than m. In this work, we are primarily interested in the case of d = 1; in other words,
we have only a single one-dimensional time-series measurement for the system.

We can construct an embedding of our system using successive time delays of the
measurement x, at x(t − τ ). Given a single measurement of our dynamical system x(t) ∈ R, for
t = 0, �t, . . . (q − 1)�t, we can form the Hankel matrix H ∈ R

m×n by stacking time-shifted
snapshots of x [49],

H =

⎡
⎢⎢⎢⎢⎣

x1 x2 x3 x4 · · · xn

x2 x3 x4 x5 · · · xn+1
...

...
...

...
. . .

...
xm xm+1 xm+2 xm+3 · · · xq

⎤
⎥⎥⎥⎥⎦ . (2.4)

Each column may be thought of as an augmented state space that includes a short, m-dimensional
trajectory in time. Our data matrix H is then this m-dimensional trajectory measured over n
snapshots in time.



6

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210097

..........................................................

= + r
d
dt

v1

v2

...
vr−1

v1

v2

...
vr−1

vr

V T

x1 x2 x3 x4 xn

x2 x3 x4 x5 xn+1

xm xm+1 xm+2 xm+3 xq

U

H =

H =

measure
x(t)

time-delay
embed

regression on
dynamics

forcinglinear dynamics

x
SVD

× ×

S

Figure 2. Outline of steps in HAVOK method. First, given a dynamical system a single variable x(t) is measured. Time-shifted
copies of x(t) are stacked to form a Hankel matrix H. The singular value decomposition (SVD) is applied to H, producing a low-
dimensional representation V . The dynamic mode decomposition (DMD) is then applied to V to form a linear dynamical model
and a forcing term.

There are several key benefits of using time-delay embeddings. Most notably, given a chaotic
attractor, Taken’s embedding theorem states that a sufficiently high-dimensional time-delay
embedding of the system is diffeomorphic to the original attractor [16], as illustrated in figure 2.
In addition, recent results have shown that time-delay matrices are guaranteed to have strongly
decaying singular value spectra. In particular, Beckerman & Townsend [50] prove the following
theorem:

Theorem 2.1. Let Hn ∈ R
n×n be a positive definite Hankel matrix, with singular values σ1, . . . , σn.

Then σj ≤ Cρ−j/ log nσ1 for constants C and ρ and for j = 1, . . . , n.

Equivalently, Hn can be approximated up to an accuracy of ε‖Hn‖2 by a rank O(log n log 1/ε)
matrix. From this, we see that Hn can be well-approximated by a low-rank matrix.

Many methods have been developed to take advantage of this structure of the Hankel matrix,
including the ERA [20], SSA [19] and nonlinear Laplacian spectrum analysis [22]. DMD may also
be computed on delay coordinates from the Hankel matrix [15,21,51], and it has been shown that
this approach may provide a Koopman invariant subspace [5,52]. In addition, this structure has
also been incorporated into neural network architectures [53].

This analysis is limited to delay embeddings of one-dimensional signals. However,
embeddings of multi-dimensional signals have also been explored [15,54]. Most notably,
higher order DMD is particularly powerful for very high dimensional embeddings [55–57].
Understanding the structure of these higher dimensional embeddings is also an exciting area
of current research.

(c) HAVOK: dimensionality reduction and time-delay embeddings
Leveraging dimensionality reduction and time-delay embeddings, the HAVOK algorithm
constructs low-dimensional models of dynamical systems [5]. Specifically, HAVOK learns
effective measurement coordinates of the system and estimates its intrinsic dimensionality.
Remarkably, HAVOK models are simple, consisting of a linear model and a forcing term that
can be used for short-term forecasting.

We illustrate this method in figure 1 for the Lorenz system (see §5b for details about this
system). To do so, we begin with a one-dimensional time series x(t) for t = 0, �t, . . . , (q − 1)�t.
We construct a higher dimensional representation using time-delay embeddings, producing a
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Hankel matrix H ∈ R
m×n as in (2.4) and compute its SVD,

H = UΣVᵀ.

If H is sufficiently low rank (with rank r), then we need only consider the reduced SVD,

Hr = UrΣrV
ᵀ
r ,

where Ur ∈ R
m×r and Vr ∈ R

n×r are orthogonal matrices and Σr ∈ R
r×r is diagonal. Rearranging

the terms, Vᵀ
r = Σ−1

r Uᵀ
r Hr and we can think of

Vᵀ
r =

[
v1 v2 · · · vn

]
(2.5)

as a lower dimensional representation of our high dimensional trajectory. For quasi-periodic
systems, the SVD decomposition of the Hankel matrix results in principal component trajectories
[54], which reconstruct dynamical trajectories in terms of periodic orbits.

To discover the linear dynamics, we apply DMD. In particular, we construct the time-shifted
matrices,

Vᵀ
1 =

[
v1 v2 · · · vn−1

]
and Vᵀ

2 =
[
v2 v3 · · · vn

]
. (2.6)

We then compute the linear approximation Â such that Vᵀ
2 = ÂVᵀ

1 , where Â = Vᵀ
2 Vᵀ†

1 . This yields
a model vi+1 = Âvi.

In the continuous case,
v̇(t) = Av(t), (2.7)

which is related to first order in �t to the discrete case by

A ≈ (Â − I)
�t

.

For a general nonlinear dynamical system, this linear model yields a high RMSE error on the
training data. Instead, [5] proposed a linear model plus a forcing term in the last component of v

(figure 1):
v̇(t) = Av(t) + Bvr(t), (2.8)

where v(t) ∈ R
r−1, A ∈ R

r−1×r−1 and B ∈ R
r−1. In this case, V2 is defined as columns 2 to n of

the SVD singular vectors with an r − 1 rank truncation Vr−1. Â ∈ R
r−1×r−1 and B̂ ∈ R

r−1×1 are

computed as [Â, B̂] = Vᵀ
2 Vᵀ†

1 . The continuous analogue of B̂, B, is computed by B ≈ (B̂ − I)/�t. v(t)
corresponds to the first r − 1 rows of Vᵀ

r , while vr(t) corresponds to the rth row of Vᵀ
r . The forcing

term vr is required to capture the essential nonlinearity of the system, such as lobe switching, that
cannot be captured by the linear model.

Once the A and B matrices have been derived, [5] found that HAVOK models could be used
to forecast in an online setting. In particular, given the previous snapshots xn, xn+1, . . . xq, we can
estimate vr at the next snapshot by taking the inner product of xn, xn+1, . . . xq with the rth column
of U scaled by the inverse of the rth component of Σ .

HAVOK was shown to be a successful model for a variety of systems, including a double
pendulum, switchings of Earth’s magnetic field and measurements of human behaviour [5,58]. In
addition, the linear portion of the HAVOK model has been observed to adopt a very particular
structure: the dynamics matrix was antisymmetric, with non-zero elements only on the super-
diagonal and sub-diagonal (figure 1).

Much work has been done to study the properties of HAVOK. Arbabi et al. [17] showed that,
in the limit of an infinite number of time delays (m → ∞), A converges to the Koopman operator
for ergodic systems. Bozzo et al. [59] showed that in a similar limit, for periodic data, HAVOK
converges to the temporal discrete Fourier transform. Kamb et al. [28] connect HAVOK to the use
of convolutional coordinates. The primary goal of this current work is to connect HAVOK to the
concept of curvature in differential geometry, and with these new insights, improve the HAVOK
algorithm to take advantage of this structure in the dynamics matrix. In contrast to much of the
previous work, we focus on the limit where only small amounts of noisy data are available.
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(d) The Frenet–Serret coordinate frame
Suppose we have a smooth curve γ (t) ∈ R

m measured over some time interval t ∈ [a, b]. As before,
we would like to determine an effective set of coordinates in which to represent our data. When
using SVD or DMD, the basis discovered corresponds to the spatial modes of the data and
is constant in time. However, for many systems, it is sometimes natural to express both the
coordinates and basis as functions of time [60,61]. One popular method for developing this non-
inertial frame is the Frenet–Serret coordinate system, which has been applied in a wide range of
fields, including robotics [62,63], aerodynamics [64] and general relativity [65,66].

Let us assume that γ (t) has r non-zero continuous derivatives, γ ′, (t), γ ′′(t), . . . γ (r)(t). We further
assume that these derivatives are linearly independent and ‖γ ′(t)‖ 
= 0 for all t. Using the Gram–
Schmidt process, we can form the orthonormal basis, e1, e2, . . . , er,

e1(t) = γ ′(t)
‖γ ′(t)‖ ,

e2(t) = γ ′′(t) − 〈γ ′′(t), e1(t)〉e1(t)
‖γ ′′(t) − 〈γ ′′(t), e1(t)〉e1(t)‖ ,

...

and er(t) = γ (r)(t) − ∑r−1
k=1〈γ (r)(t), ek(t)〉ek(t)∥∥∥γ (r)(t) − ∑r−1
k=1〈γ (r)(t), ek(t)〉ek(t)

∥∥∥ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.9)

Here, 〈·, ·〉 denotes an inner product, and we choose r ≤ m so that these vectors are linearly
independent and hence form an orthonormal basis. This set of basis vectors define the Frenet–
Serret frame.

To derive the evolution of this basis, let us define the matrix formed by stacking these
vectors Q(t) = [e1(t), e2(t), . . . , er(t)]ᵀ ∈ R

r×m, so that Q(t) satisfies the following time-varying
linear dynamics,

dQ
dt

= ‖γ ′(t)‖K(t)Q, (2.10)

where K(t) ∈ R
r×r.

By factoring out the term ‖γ ′(t)‖ from K(t), it is guaranteed that K(t) does not depend on
the parametrization of the curve (i.e. the speed of the trajectory), but only on its geometry. The
matrix K(t) is highly structured and sparse. To understand the structure of K(t) we derive two key
properties [33]:

(1) Ki,j(t) = −Kj,i(t) (antisymmetry):

Proof. Since r ≤ m, then by construction the columns of Q(t) are orthogonal and
thus QQᵀ = I. Taking the derivative with respect to t, dQ/dtQT + Q(dQᵀ/dt) = 0, or
equivalently

dQ
dt

Qᵀ = −
(

dQ
dt

Qᵀ
)ᵀ

.

Since Q is unitary, then Q−1 = Qᵀ, and hence

K(t) = 1
‖γ ′(t)‖

dQ
dt

Qᵀ,

from which we immediately see that K(t) = −K(t)ᵀ. �
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(2) Ki,j(t) = 0 for j ≥ i + 2:
We first note that since ei(t) ∈ span{γ ′(t), . . . , γ i(t)}, its derivative must satisfy e′

i(t) ∈
span{γ ′(t), . . . , γ (i+1)(t)}. Now by construction, using the Gram–Schmidt method, ej is
orthogonal to span{γ ′(t), . . . , γ (i+1)(t)} for j ≥ i + 2. Since e′

i(t) is in the span of this set,
then ej must be orthogonal to e′

i for j ≥ i + 2. Thus, Ki,j(t) = 〈e′
i(t), ej〉 = 0 for j ≥ i + 2.

With these two constraints, K(t) takes the form,

K(t) =

⎡
⎢⎢⎢⎢⎢⎣

0 κ1(t) 0

−κ1(t)
. . .

. . .
. . . 0 κr−1(t)

0 −κr−1(t) 0

⎤
⎥⎥⎥⎥⎥⎦ . (2.11)

Thus K(t) is antisymmetric with non-zero elements only along the super-diagonal and sub-
diagonal, and the values κ1(t), . . . , κr−1(t) are defined to be the curvatures of the trajectory. The
curvatures κi(t) combined with the basis vectors ei(t) define the Frenet–Serret apparatus, which
fully characterizes the trajectory up to translation [33].

From a geometric perspective, e1(t), . . . , er(t) form an instantaneous (local) coordinate frame,
which moves with the trajectory. The curvatures define how quickly this frame changes with time.
If the trajectory is a straight line the curvatures are all zero. If κ1 is constant and non-zero, while
all other curvatures are zero, then the trajectory lies on a circle. If κ1 and κ2 are constant and non-
zero with all other curvatures zero, then the trajectory lies on a helix. Comparing the structure of
(2.11) to figure 1, we immediately see a similarity. Over the following sections, we will shed light
on this connection.

(e) SVD and curvature
Given time-series data, the SVD constructs an orthonormal basis that is fixed in time, whereas
the Frenet–Serret frame constructs an orthonormal basis that moves with the trajectory. In recent
work, Álvarez-Vizoso et al. [33] showed how these frames are related. In particular, the Frenet–
Serret frame converges to the SVD frame in the limit as the time interval of the trajectory goes to
zero.

To understand this further, consider a trajectory γ (t) ∈ R
m as described in §2d. If we assume

that our measurements are from a small neighbourhood t ∈ (−ε, ε) (where ε � 1), then γ (t) is
well-approximated by its Taylor expansion,

γ (t) − γ (0) = γ ′(0)t + γ ′′(0)
2

t2 + γ ′′′(0)
6

t3 + · · · .

Writing this in matrix form, we have that

γ (t) − γ (0) =

⎡
⎢⎣ | | | |

γ ′(0) γ ′′(0) γ ′′′(0) · · ·
| | | |

⎤
⎥⎦

︸ ︷︷ ︸
Γ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
2

1
6

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Σ

⎡
⎢⎢⎢⎢⎣

− t −
− t2 −
− t3 −
−

... −

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Tᵀ

. (2.12)

Recall one key property of the SVD is that the rth rank truncation in the expansion is the best
rank-r approximation to the data in the least-squares sense. Since ε � 1, then each subsequent
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term in this expansion is much smaller than the previous term,

‖γ ′(0)t‖2 �
∥∥∥∥γ ′′(0)

2
t2
∥∥∥∥

2
�

∥∥∥∥γ ′′′(0)
6

t3
∥∥∥∥

2
� . . . . (2.13)

From this, we see that the expansion in (2.12) is strongly related to the SVD. However, in the SVD,
we have the constraint that the U and V matrices are orthogonal, while for the Taylor expansion
Γ and T have no such constraint. Álvarez-Vizoso et al. [33] show that in the limit as ε → 0, then
U is the result of applying the Gram–Schmidt process to the columns of Γ , and V is the result of
applying the Gram–Schmidt process to the columns of T. Comparing this to above, we see that

U =

⎡
⎢⎣ | | | |

e1(0) e2(0) e3(0) · · ·
| | | |

⎤
⎥⎦ and V =

⎡
⎢⎣ | | | |

p1(t) p2(t) p3(t) · · ·
| | | |

⎤
⎥⎦ ,

where e1(t), e2(t), . . . , er(t) is the basis for the Frenet–Serret frame defined in (2.9) and

pi(t) =
ti − ∑i−1

j=1

〈
ti, pj(t)

〉
pj(t)∥∥∥ti − ∑i−1

j=1
〈
ti, pj(t)

〉
pj(t)

∥∥∥ for i = 1, 2, 3, . . . (2.14)

We note that the pi(t)’s form a set of orthogonal polynomials independent of the dataset. In this
limit, the curvatures depend solely on the singular values,

κi(t) = √
ai

σi+1

σ1(t)σi(t)
, where ai−1 =

(
i

i + (−1)i

)2 4i2 − 1
3

.

We note that connections between the SVD and the Gram–Schmidt method are well described
in the literature and underlie several different DMD frameworks [15,67]. Furthermore, this
particular connection is crucial for understanding the structure in HAVOK models.

3. Unifying SVD, time-delay embeddings and the Frenet–Serret frame
In this section, we show that time-series data from a dynamical system may be decomposed into
a sparse linear dynamical model with nonlinear forcing, and the non-zero elements along the
sub- and super-diagonals of the linear part of this model have a clear geometric meaning: they
are curvatures of the system. In §3a, we combine key results about the Frenet–Serret frame, time
delays and SVD to explain this structure. Following this theory, §3b illustrates this approach with
a simple synthetic example. The decomposition yields a set of orthogonal polynomials that form
a coordinate basis for the time-delay embedding. In §3c, we explicitly describe these polynomials
and compare their properties with the Legendre polynomials.

(a) Connecting SVD, time-delay embeddings and Frenet–Serret frame
Here, we connect the properties of the SVD, time-delay embeddings and the Frenet–Serret frame
to decompose a dynamical model into a linear dynamical model with nonlinear forcing, where the
linear model is both antisymmetric and tridiagonal. To do this, we follow the steps of the HAVOK
method with slight modifications and show how they give rise to these structured dynamics.
This process is illustrated in figure 3. We emphasize that to develop this new perspective,
our key insight is based on deriving a connection between the global Koopman frame and the
local Frenet–Serret frame for the case of time-delay coordinates. To do this, we observe that
for a low-dimensional time-delay embedding H that satisfies global analyses, the transpose of
this data Hᵀ is a time-delay embedding. By construction, Hᵀ covers a short time interval and
hence satisfies local analyses. The dynamics of these two sets of data are highly related, since
H and Hᵀ only differ by a transpose, from which we can connect the local/global dynamics.
These two perspectives for the same dataset are only possible because we are using time-delay
embeddings/Hankel matrices, and the transpose of a Hankel matrix is also a Hankel matrix.
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vr
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H Œ   m × n

H T Œ   n × m

t

t
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X =

U VT

e2

e1
e3

regression on
dynamics

SVD + centring

dynamics matrix

transpose

HT = 

= +
UT

d
dt

v1

v2

...
vr−1

v1

v2

...
vr−1

× ×

S

Figure 3. An illustration of how a highly structured, antisymmetric linear model arises from time-delay data. Starting with a
one-dimensional time series,we construct am × nHankelmatrix using time-shifted copies of thedata. Assume thatn� m, in
which caseH can be thought of as anm dimensional trajectory over a long period (n snapshots in time). Similarly, the transpose
of H may be thought of as a high dimensional (n dimensional) trajectory over a short period (m snapshots) in time. With this
interpretation, by the results of [33], the singular vectors ofH after applying centring yield the Frenet–Serret frame. Regression
on the dynamics in the Frenet–Serret frame yields the tridiagonal antisymmetric linear model with an additional forcing term,
which is non-zero only in the last component.

Following the notation introduced in §2c, let us begin with the time series x(t) for t = 0,
�t, . . . , (q − 1)�t. We construct a time-delay embedding H ∈ R

m×n, where we assume m � n.
Next, we compute the SVD of H and show that the singular vectors correspond to the Frenet–

Serret frame at a fixed point in time. In particular, to compute the SVD of this matrix, we consider
the transpose Hᵀ ∈ R

n×m, which is also a Hankel matrix. Thus, the columns of Hᵀ can be thought
of as a trajectory h(t) ∈ R

n for t = 0, �t, . . . , (m − 1)�t. For simplicity, we shift the origin of time so
that h(t) spans t = −(m − 1)�t/2, . . . , 0, . . . (m − 1)�t/2, and we denote h(i�t) as hi. In this form,

Hᵀ =

⎡
⎢⎣ | · · · | · · · |

h(−m+1)/2 · · · h0 · · · h(m−1)/2
| · · · | · · · |

⎤
⎥⎦ .

Subtracting the central column h0 from Hᵀ (or equivalently, the central row of H) yields the
centred matrix

H̄ᵀ = Hᵀ − h01ᵀ. (3.1)

We can then express hi as a Taylor expansion about h0,

hi − h0 = h′
0i�t + 1

2
h′′

0(i�t)2 + 1
3!

h′′′
0 (i�t)3 + · · · . (3.2)

We note that this is a Taylor expansion in each row of Hᵀ. The top right image in figure 3 shows
sample rows for the Lorenz system. The images with red lines show the sample rows of H (left)



12

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210097

..........................................................

and sample rows of Hᵀ (right). Many of these curves look nearly linear so even a low-order Taylor
expansion would yield good approximations.

With this in mind, applying the results of [33] described in §2e yields the SVD,1

H̄ᵀ =

⎡
⎢⎣ | | |

e1
0 e2

0 e3
0 · · ·

| | |

⎤
⎥⎦

︸ ︷︷ ︸
V

⎡
⎢⎢⎢⎢⎣

σ1
σ2

σ3
. . .

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Σ

⎡
⎢⎢⎢⎢⎣

− p1 −
− p3 −
− p3 −

...

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Uᵀ

. (3.3)

The singular vectors in V correspond to the Frenet–Serret frame (the Gram–Schmidt method
applied to the vectors, h′

0, h′′
0, h′′′

0 ),

e0 = h′
0

‖h′
0‖

and

ei
0 =

h(i)
0 − ∑i−1

j=1〈h
(i)
0 , ej

0〉e
j
0∥∥∥h(i)

0 − ∑i−1
j=1〈h

(i)
0 , ej

0〉e
j
0

∥∥∥ .

The matrix U is similarly defined by the discrete orthogonal polynomials

p1 = 1
c1

p

and

pi = 1
ci

⎛
⎝pi −

i−1∑
j=1

〈pi, pj〉pj

⎞
⎠ ,

where p is the vector

p =
[

(−m + 1)
2

(−m + 2)
2

· · · 0 · · · (m − 2)
2

(m − 1)
2

]
, (3.4)

and where ci is a normalization constant so that 〈pi, pi〉 = 1. Note that pi here means raise p to
the power i element-wise. These polynomials are similar to the discrete orthogonal polynomials
defined in [68], except p is the normalized ones vector 1/c1[1 · · · 1]. These polynomials will be
discussed further in §3c.

Next, we build a regression model of the dynamics. We first consider the case where the system
is closed (i.e. H̄ has rank r). By (3.3), V = [e1

0 e2
0 · · · ] well-approximates the Frenet–Serret frame at

the fixed point in time t = 0. Following the Frenet–Serret equations (2.10),

dV
dt

ᵀ
= AVᵀ, (3.5)

where A = ‖h′
0‖K. Here, K is a constant tridiagonal and antisymmetric matrix, which corresponds

to the curvatures at t = 0. From the dual perspective, we can think about the set of vectors
{e1

0, e2
0, . . . , er

0} as an r-dimensional time series over n snapshots in time,

Vᵀ =

⎡
⎢⎢⎢⎢⎣

− v1(t) −
− v2(t) −

...
− vr(t) −

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

− e1
0 −

− e2
0 −
...

− er
0 −

⎤
⎥⎥⎥⎥⎦ ∈ R

r×n. (3.6)

Here, v(t) = [v1(t), v2(t), . . . vr(t)]ᵀ ∈ R
r denotes the r-dimensional trajectory, which corresponds to

the r-dimensional coordinates considered in (2.5) for HAVOK. From (3.5), these dynamics must

1We define the left singular matrix as V and the right singular matrix as U. This definition can be thought of as taking the
SVD of the transpose of the matrix H − 1hᵀ

0 . This keeps the definitions of the matrices more in line with the notation used in
HAVOK.
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therefore satisfy
v̇(t) = Av(t),

where A is a skew-symmetric tridiagonal matrix. If the system is not closed, the dynamics take
the form ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v̇1
v̇2
...
v̇r

v̇r+1
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ‖h′
0‖

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 κ1

−κ1
. . .

. . .
. . . 0

. . .
−κr−1 0 κr

−κr 0
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1
v2
...
vr

vr+1
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We note that, due to the tridiagonal structure of K, the governing dynamics of the first r − 1
coordinates v1(t), . . . vr−1(t) are the same as in the unforced case. The dynamics of the last
coordinate includes an additional term v̇r = −κr−1vr−1 + κr+1vr+1. The dynamics therefore take
the form,

dv

dt
= Av(t) + Bvr+1(t),

where B is a vector that is non-zero only its last coordinate. Thus, we recover a model as in (2.8),
but with the desired tridiagonal skew-symmetric structure. The matrix of curvatures is simply
given by K = A/‖h′

0‖.
To compute A, similar to (2.6), we define two time-shifted matrices

Vᵀ
1 =

[
v(t1) v(t2) · · · v(tm−1)

]
and Vᵀ

2 =
[
v(t2) v(t3) · · · v(tm)

]
. (3.7)

The matrix A may then be approximated as

A = dV
dt

ᵀ
Vᵀ† ≈

(
V2 − V1

�t

)ᵀ
Vᵀ†

1 . (3.8)

In summary, we have shown here that the trajectories of singular vectors v(t) from a time-delay
embedding are governed by approximately tridiagonal antisymmetric dynamics, with a forcing
term non-zero only in the last component. Comparing these steps with those described in §2c, we
see that the estimation of K is nearly identical to the steps in HAVOK. In particular, ‖h0‖K is the
linear dynamics matrix A in HAVOK. The only difference is the centring step in (3.1), which is
further discussed in §3c.

Note that unlike in the general case for the Frenet–Serret equations, the dynamics matrix here
is constant, a surprising result. This is directly due to the time-delay nature of the data and
in particular depends on how well h is approximated by its Taylor expansion in (3.2). These
assumptions will be explored in more detail in §4.

(b) HAVOK computes approximate curvatures in a synthetic example
To illustrate the correspondence between non-zero elements of the HAVOK dynamics matrix
and curvatures, we start by considering an analytically tractable synthetic example. We start by
applying the steps of HAVOK as described in [5] with an additional centring step. The resultant
modes and terms on the sub- and super-diagonals of the dynamics matrix are then compared
with curvatures computed with an analytic expression, and we show that they are approximately
the same, scaled by a factor of ‖h′

0‖.
We consider data from the one-dimensional system governed by

x(t) = sin(t) + sin(2t),

for t ∈ [0, 10] and sampled at �t = 0.001. Following HAVOK, we form the time-delay matrix H ∈
R

41×9961 then centre the data, subtracting the middle row h0 from all other rows, which forms H̄.
We next apply the SVD to H̄ᵀ = VΣUᵀ.
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Figure 4. Frenet–Serret frame (a) and corresponding orthogonal polynomials (b) for HAVOK applied to time-series generated
by x(t)= sin(t) + sin(2t). The orthogonal polynomials and the Frenet–Serret frame are the right singular vectors U and left
singular vectors V of H̄, respectively.

Figure 4 shows the columns of U ∈ R
41×4 and the columns of V ∈ R

9961×4. The columns of
U correspond to the orthogonal polynomials described in §3c and the columns of V are the
instantaneous basis vectors ei for the 9961-dimensional Frenet–Serret frame. To compute the
derivative of the state, we now treat V as a four-dimensional trajectory with 9961 snapshots.
Applying DMD to V yields the A matrix,

A =

⎡
⎢⎢⎢⎣

−1.245 × 10−3 1.205 × 10−2 4.033 × 10−6 1.444 × 10−7

−1.224 × 10−2 3.529 × 10−4 4.458 × 10−3 2.283 × 10−6

−9.390 × 10−4 −3.467 × 10−3 5.758 × 10−4 6.617 × 10−3

3.970 × 10−4 −6.568 × 10−4 −7.451 × 10−3 2.835 × 10−4

⎤
⎥⎥⎥⎦ . (3.9)

This matrix is approximately antisymmetric and tridiagonal as we expect.
Next, we compute the Frenet–Serret frame for the time-delay embedding using analytic

expressions and show that HAVOK indeed extracts the curvatures of the system multiplied by
‖h′

0‖. Forming the time-delay matrix, we can easily compute h0 = [x0.02, x0.02+�t . . . , x9.98].

h0 =
[
sin(t) + sin(2t) for t ∈ [0.02, 0.021, . . . , 9.98]

]

and the corresponding derivatives,

ḣ0 =
[
cos(t) + 2 cos(2t) for t ∈ [0.02, 0.021, . . . , 9.98]

]
ḧ0 =

[
− sin(t) − 4 sin(2t) for t ∈ [0.02, 0.021, . . . , 9.98]

]
...
h0 =

[
− cos(t) − 8 cos(2t) for t ∈ [0.02, 0.021, . . . , 9.98]

]
and h(4)

0 =
[
sin(t) + 16 sin(2t) for t ∈ [0.02, 0.021, . . . , 9.98]

]
.

The fifth derivative h(5) is given by cos(t) + 32 cos(2t) and can be expressed as a linear combination
of the previous derivatives, namely, h(5)

0 = −5
...
h0 − 4ḣ0. This can also be shown using the fact that

x(t) satisfies the fourth-order ordinary differential equation x(4) + 5ẍ + 4x = 0.
Since only the first four derivatives are linearly independent, only the first three curvatures

are non-zero. Furthermore, exact values of the first three curvatures can be computed analytically
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using the following formulae from [69],

κ1 =

√
det

([
ḣ0 ḧ0

]ᵀ [
ḣ0 ḧ0

])
‖ḣ0‖3/2

, κ2 =

√
det

([
ḣ0 ḧ0

...
h0

]ᵀ [
ḣ0 ḧ0

...
h0

])
det

([
ḣ0 ḧ0

]ᵀ [
ḣ0 ḧ0

]) ,

κ3 =

√
det

([
ḣ0 ḧ0

...
h0 h(4)

0

]ᵀ [
ḣ0 ḧ0

...
h0 h(4)

0

])
det

([
ḣ0 ḧ0

]ᵀ [
ḣ0 ḧ0

])
det(

[
ḣ0 ḧ0

...
h0

]ᵀ [
ḣ0 ḧ0

...
h0

]
)‖h0‖

.

These formulae yield the values κ1 = 1.205 × 10−2, κ2 = 4.46 × 10−3 and κ3 = 6.62 × 10−3,
respectively.

As expected, these curvature values are very close to those computed with HAVOK,
highlighted in (3.9). In particular, the super-diagonal entries of the matrix appear to be very good
approximations to the curvatures. The reasons why the super-diagonal, but not the sub-diagonal,
is so close in value to the true curvatures is not yet well understood. Furthermore, in §5, we use
the theoretical insights from §3a to propose a modification to the HAVOK algorithm that yields
an even better approximation to curvatures in the Frenet–Serret frame.

(c) Orthogonal polynomials and centring
In the decomposition in (3.3), we define a set of orthonormal polynomials. Here, we discuss the
properties of these polynomials, comparing them with the Legendre polynomials and providing
explicit expressions for the first several terms in this series.

In §3a, we apply the SVD to the centred matrix H̄, as in (3.3). The columns of U in this
decomposition yield a set of orthonormal polynomials, which are defined by (2.14). In the
continuous case, the inner product in (2.14) is 〈a(t), b(t)〉 = ∫p

−p a(t)b(t)dt, while in the discrete case

〈a, b〉 =∑p
j=−p ajbj. The first five polynomials in the discrete case may be found in the electronic

supplementary material, Note 1. The first five of these polynomials pi(x) in the continuous case
are

p1(x) = x
c1(p)

, where c1(p) =
√

6
√

p3

3

p2(x) = x2

c2(p)
, where c2(p) =

√
10

√
p5

5

p3(x) = 1
c3(p)

(
x3 − 3

5
p2x

)
, where c3(p) =

2
√

14
√

p7

35

p4(x) = 1
c4(p)

(
x4 − 5

7
p2x2

)
, where c4(p) =

2
√

2
√

p9

21

and p5(x) = 1
c5(p)

(
x5 + 5

21
p4x − 10

9
p2x3

)
, where c5(p) =

8
√

22
√

p11

693
.

By construction, pi(t) form a set of orthonormal polynomials, where pi(t) has degree i.
Interestingly, these orthogonal polynomials are similar to the Legendre polynomials li [70,71],

which are defined by the recursive relation

l1 = 1
c 1

[
1 1 · · · 1

]
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and

li = 1
pi

⎛
⎝pi −

i−1∑
k=1

〈pi, lk〉
⎞
⎠ ,

where p is as defined in (3.4). For the corresponding Legendre polynomials normalized over
[−p, p], we refer the reader to [68].

The key difference between these two sets of polynomials is that the first polynomial p1
is linear, while the first Legendre polynomial is constant (i.e. corresponding in the discrete
case to the normalized ones vector). In particular, if H is not centred before decomposition
by SVD, the resulting columns of U will be the Legendre polynomials. However, without
centring, the resulting V will no longer be the Frenet–Serret frame. Instead, the resulting frame
corresponds to applying the Gram–Schmidt method to the set {γ (t), γ ′(t), γ ′′(t), . . .} instead
of {γ ′(t), γ ′′(t), γ ′′′(t), . . .}. Recently, it has been shown that using centring as a preprocessing
step is beneficial for the DMD [72]. That being said, since the derivation of the tridiagonal
and antisymmetric structure seen in the Frenet–Serret frame is based on the properties of the
derivatives and orthogonality, this same structure can be computed without the centring step.

4. Limits and requirements
Section 3a has shown how HAVOK yields a good approximation to the Frenet–Serret frame in the
limit that the time interval spanned by each row of H goes to zero. To be more precise, HAVOK
yields the Frenet–Serret frame if (2.13) is satisfied. However, this property can be difficult to check
in practice. Here, we establish several rules for choosing and structuring the data so that the
HAVOK dynamics matrix adopts the structure we expect from theory.

Choose �t to be small. The specific constraint we have from (2.13) is

‖h′
0ti‖ �

∥∥∥∥h′′
0

2
t2
i

∥∥∥∥�
∥∥∥∥h′′′

0
6

t3
i

∥∥∥∥� · · · �
∥∥∥∥∥h(k)

0
k!

tk
i

∥∥∥∥∥ ,

for −m�t/2 ≤ ti ≤ m�t/2 or more simply |ti| ≤ m�t, where �t is the sampling period (inverse of
the sampling frequency) of the data and m is the number of delays in the Hankel matrix H. If we
assume that m�t < 1, then rearranging,

m�t � 2‖h′
0‖

‖h′′
0‖ ,

3‖h′′
0‖

‖h′′′
0 ‖ , . . . ,

k‖h(k−1)
0 ‖

‖h(k)
0 ‖

. (4.1)

In practice, since the series of ratios of derivatives defined in (4.1) grows, it is only necessary
to check the first inequality. By choosing the sampling period of the data to be small, we can
constrain the data to satisfy this inequality. To illustrate the effect of decreasing �t, figure 5a–d
shows the dynamics matrices A computed by the HAVOK algorithm for the Lorenz system for
a fixed number of rows of data and fixed time span of the simulation. As �t becomes smaller, A
becomes more structured in that it is antisymmetric and tridiagonal.

Choose the number of columns n to be large. The number of columns comes into the Taylor
expansion through the derivatives ‖h(k)

0 ‖, since h(k)
0 ∈ R

n.
For the synthetic example x(t) = sin(t) + 2 sin(t), we can show that the ratio 2‖h′

0‖/‖h′′
0‖

saturates to a fixed value in the limit as n goes to infinity (see the electronic supplementary
material, Note 2). However, for short time series (small values of n), this ratio can be arbitrarily
small, and hence (4.1) will be difficult to satisfy.

We illustrate this in figure 5 using data from the Lorenz system. We compute and plot the
HAVOK linear dynamics matrix for a varying number of columns n, while fixing the sampling
frequency and number of rows m. We see that as we increase the number of columns, the
dynamics becomes more skew-symmetric and tridiagonal. In general, due to practical constraints
and restrictions, it may be difficult to guarantee that given data satisfies these two requirements.
In §§4a and 5, we propose methods to tackle this challenge.
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increasing sampling frequency

increasing number of data columns

Dt = 0.01

n = 1001 n = 2001 n = 5001 n = 10 001

Dt = 0.005 Dt = 0.001 Dt = 0.0005

(a) (b) (c) (d )

(e) ( f ) (g) (h)

Figure 5. Increasing sampling frequency and number of columns yields more structured HAVOKmodels for the Lorenz system.
Given the Hankel matrix H, the linear dynamical model is plotted for values of sampling period�t equal to 0.01, 0.005, 0.001,
0.0005 for a fixed number of rows and fixed time span of measurement (a–d). Similarly, the model is plotted for values of
the number of columns n equal to 1001, 2001, 5001 and 10 001 for fixed sampling frequency and number of delaysm (e–h). As
we increase the sampling frequency and the number of columns of the data, A becomes more antisymmetric with non-zero
elements only on the super- and sub-diagonals. These trends illustrate the results in §4. (Online version in colour.)

(a) Interpolation
From the first requirement, we see that the sampling frequency �t needs to be sufficiently small to
recover the antisymmetric structure in A. However, in practice, it is not always possible to satisfy
this sampling criterion.

One solution to remedy this is to use data interpolation. To be precise, we can increase the
sampling rate by spline interpolation, then construct H from the interpolated data that satisfies
(4.1). The ratio of the derivatives ‖h′

0‖/‖h′′
0‖, ‖h′′

0‖/‖h′′′
0 ‖, . . . may also contain some dependence on

�t, but we observe that this dependence is not significantly affected in practice.
As an example, we consider a set of time-series measurements generated from the Lorenz

system (see §5 for more details about this system). We start with a sampling period of �t = 0.1
(figure 6a–c). Note that here we have simulated the Lorenz system at high temporal resolution
then subsampled to produce these time-series data. Applying HAVOK with centring and m = 201,
we see that A is not antisymmetric and the columns of U are not the orthogonal polynomials like
in the synthetic example shown in figure 4.

Next, we apply cubic spline interpolation to these data, evaluating at a sampling rate of
�t = 0.001 (figure 6d–f ). We note that, especially for real-world data with measurement noise, this
interpolation procedure also serves to smooth the data, making the computation of its derivatives
more tractable [73]. Applying HAVOK to this interpolated data yields a new antisymmetric A
matrix and the U corresponds to the orthogonal polynomials described in §3c.

5. Promoting structure in the HAVOK decomposition
HAVOK yields a linear model of a dynamical system explained by the Frenet–Serret frame,
and by leveraging these theoretical connections, here we propose a modification of the HAVOK
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Figure6. In the casewhere a dynamical system is sparsely sampled, interpolation canbeused to recover amore tridiagonal and
antisymmetricmatrix for the linearmodel inHAVOK. First,we simulate the Lorenz system,measuring x(t)with a samplingperiod
of�t = 0.1. The resulting dynamics model A and corresponding singular vectors of U are plotted. Due to the low sampling
frequency, these values do not satisfy the requirements in (4.1). Consequently, the dynamics matrix is not antisymmetric and
the singular vectors do not correspond to the orthogonal polynomials in §3c. Next, the data are interpolated using cubic splines
and subsequently sampled using a sampling period of �t = 0.001. In this case, the data satisfy the assumptions in (4.1),
which yields the tridiagonal antisymmetric structure for A and orthogonal polynomials for U as predicted. (Online version
in colour.)

algorithm to promote this antisymmetric structure. We refer to this algorithm as sHAVOK and
describe it in §5a. Compared with HAVOK, sHAVOK yields structured dynamics matrices that
better approximate the Frenet–Serret frame and more closely estimate the curvatures. Importantly,
sHAVOK also produces better models of the system using significantly less data. We demonstrate
its application to three nonlinear synthetic example systems in §5b and two real-world datasets
in §5c.

(a) The sHAVOK algorithm
We propose a modification to the HAVOK algorithm that more closely induces the antisymmetric
structure in the dynamics matrix, especially for shorter time series. The key innovation in
sHAVOK is the application of two SVDs applied separately to time-shifted Hankel matrices
(compare figures 1 and 7). This simple modification enforces that the singular vector bases on
which the dynamics matrix is computed are orthogonal, and thus more closely approximate the
Frenet–Serret frame.

Building on the HAVOK algorithm as summarized in §2c, we focus on the step where the
singular vectors V are split into V1 and V2. In the Frenet–Serret framework, we are interested in
the evolution of the orthonormal frame e1(t), e2(t), . . . , er(t). In HAVOK, V1 and V2 correspond to
instances of this orthonormal frame.

Although V is a unitary matrix, V1 and V2—which each consist of removing a column from
V—are not. To enforce this orthogonality, we propose to split H̄ into two time-shifted matrices H̄1
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Figure 7. Outline of steps in structured HAVOK (sHAVOK). First, given a dynamical system a single variable x(t) is measured.
Time-shifted copies of x(t) are stacked to form a Hankel matrix H. H is split into two time-shifted matrices, H1 and H2. The
singular value decomposition (SVD) is applied to these two matrices individually. This results in reduced order representations,
V 1 and V 2, of H1 and H2, respectively. The matrices, V 1 and V 2 are then used to construct an approximation to this low-
dimensional state and its derivative. Finally, linear regression is performed on these two matrices to form a linear dynamical
model with an additional forcing term in the last component. (Online version in colour.)

and H̄2 (figure 7) and then compute two SVDs with rank truncation r,

H̄1 = U1Σ1Vᵀ
1 and H̄2 = U2Σ2Vᵀ

2 .

By construction, V1 and V2 are now orthogonal matrices.
Like in HAVOK, our goal is to estimate the dynamics matrix A such that

v̇(t) = Av(t).

To do so, we use the matrices V1 and V2 to construct the state and its derivative,

V = V1

and

dV
dt

= V2 − V1

�t
.

A then satisfies

A = dV
dt

ᵀ
Vᵀ† =

(
V2 − V1

�t

)ᵀ
Vᵀ†

1 =
(

Vᵀ
2 V1 − I

�t

)
. (5.1)

If this system is not closed (non-zero forcing term), then V2 is defined as columns 2 to n − 1 of
the SVD singular vectors with an r − 1 rank truncation Vᵀ

r−1, and A ∈ R
r−1×r−1 and B ∈ R

r−1×1

are computed as [A, B] = (Vᵀ
2 V1 − I)/�t. The corresponding pseudocode is elaborated in the

electronic supplementary material, Note 3. We note that sHAVOK requires one additional SVD
evaluation compared with HAVOK. For situations in which runtime is a limiting factor, H̄2 may
be expressed using rank one updates of H̄1. Using this factor, efficient methods may be leveraged
to compute the SVD of H̄2 from H̄1, with a negligible increase to runtime [74,75].
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As a simple analytic example, we apply sHAVOK to the same system described in §b generated
by x(t) = sin(t) + sin(2t). The resulting dynamics matrix is

A =

⎡
⎢⎢⎢⎣

−1.116 × 10−5 1.204 × 10−2 −1.227 × 10−5 8.728 × 10−8

−1.204 × 10−2 −1.269 × 10−5 4.458 × 10−3 4.650 × 10−6

2.053 × 10−5 −4.458 × 10−3 −4.897 × 10−6 6.617 × 10−3

−9.956 × 10−8 −1.118 × 10−7 −6.617 × 10−3 −3.368 × 10−6

⎤
⎥⎥⎥⎦ .

We see immediately that, with this small modification, A has become much more structured
compared with (3.9). Specifically, the estimates of the curvatures both below and above the
diagonal are now equal, and the rest of the elements in the matrix, which should be zero, are
almost all smaller by an order of magnitude. In addition, the curvatures are equal to the true
analytic values up to three decimal places.

We emphasize that from a theoretical standpoint, sHAVOK aligns much more closely with
the findings of §3. In particular, sHAVOK enforces that the singular vector bases on which
the dynamics matrix is computed are orthogonal, and thus more closely approximate the
Frenet–Serret frame compared with HAVOK. Methods with stronger theoretical foundations are
beneficial as they allow us to (1) better predict/understand their behaviour on new datasets
and (2) more easily understand their underlying assumptions and areas for future modifications.
For further analysis of the sHAVOK method for varying lengths of data, initial conditions, rank
truncations and noise levels, see the electronic supplementary material, Note §5–8.

(b) Comparison of HAVOK and sHAVOK for three synthetic examples
The results of HAVOK and sHAVOK converge in the limit of infinite data,2 and the models
they produce are most different in cases of shorter time-series data, where we may not have
measurements over long periods of time. Using synthetic data from three nonlinear example
systems, we compute models using both methods and compare the corresponding dynamics
matrices A (figure 8). In every case, the A matrix computed using the sHAVOK algorithm is more
antisymmetric and has a stronger tridiagonal structure than the corresponding matrix computed
using HAVOK.

In addition to the dynamics matrices, we also show in figure 8 the eigenvalues of A, ωk ∈ C

for k = 1, . . . r for HAVOK (teal) and sHAVOK (maroon). We additionally plot the eigenvalues
(black crosses) corresponding to those computed from the data measured in the large data limit,
but at the same sampling frequency. In this large data limit, both sHAVOK and HAVOK yield
the same antisymmetric tridiagonal dynamics matrix and corresponding eigenvalues. Comparing
the eigenvalues, we immediately see that eigenvalues from sHAVOK more closely match those
computed in the large data limit. Thus, even with a short trajectory, we can still recover models
and key features of the underlying dynamics.

We emphasize here that sHAVOK is robust to initial conditions. In particular, for the first
example, corresponding to the Lorenz system, we plot the HAVOK and sHAVOK results for
three different subsets of the data. In all of these cases, although the HAVOK dynamics matrix
varies significantly in structure, the sHAVOK matrix remains antisymmetric and tridiagonal.
Furthermore, the sHAVOK eigenvalues are much closer to those from the long trajectory
compared with HAVOK. We describe each of the systems and their configurations below.

Lorenz attractor: We first illustrate these two methods on the Lorenz system. Originally
developed in the fluids community, the Lorenz [76] system is governed by three first-order
differential equations [76]:

ẋ = σ (y − x),

ẏ = x(ρ − z) − y

and ż = xy − βz.

2See the electronic supplementary material, Note §4, for more details.
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Rössler

double pendulum
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x(t)

x(t)

x(t)

x(t)

x(t)

HAVOK x(t)
sHAVOK x(t)
HAVOK (full data)

Figure 8. Structured HAVOK (sHAVOK) yields more structuredmodels from short trajectories than HAVOK. For each system, we
simulated a trajectory extracting a single coordinate in time (grey). We then apply HAVOK and sHAVOK to data x(t) from a short
subset of this trajectory, shown in black. Themiddle columns show the resulting dynamics matrices A from themodels. The top
three rows correspond to different subsets of the Lorenz system, while the fourth and fifth rows correspond to trajectories from
the Rössler system and a double pendulum, respectively. Compared with HAVOK, the resulting models for sHAVOK consistently
show stronger structure in that they are antisymmetric with non-zero elements only along the sub- and super-diagonals. The
corresponding eigenvalue spectra of A for HAVOK and sHAVOK are plotted in teal and maroon, respectively, in addition to
eigenvalues from HAVOK for the full (grey) trajectory. In all cases, the sHAVOK eigenvalues are much closer in value to those
from the long trajectory limit than HAVOK. (Online version in colour.)

The Lorenz system has since been used to model systems in a wide variety of fields, including
chemistry [77], optics [78] and circuits [79].

We simulate 3000 samples with initial condition [−8, 8, 27] and a stepsize of �t = 0.001,
measuring the variable x(t). We use the common parameters σ = 10, ρ = 28 and β = 8/3. This
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trajectory is shown in figure 8 and corresponds to a few oscillations about a fixed point. We choose
the lengths of these datasets to be short enough that the HAVOK dynamics matrix is visually
neither antisymmetric nor tridiagonal. We compare the spectra with that of a longer trajectory
containing 300 000 samples, which we take to be an approximation of the true spectrum of the
system.

Rössler attractor: The Rössler attractor is given by the following nonlinear differential
equations [80,81]:

ẋ = −y − z,

ẏ = x + ay

and ż = b + z(x − c).

We choose to measure the variable x(t). This attractor is a canonical example of chaos, like the
Lorenz attractor. Here, we perform a simulation with 70 000 samples and a stepsize of �t = 0.001.
We choose the following common values of a = 0.1, b = 0.1 and c = 14 and the initial condition
x0 = y0 = z0 = 1. We similarly plot the trajectory and dynamics matrices. We compare the spectra
in this case with a longer trajectory using a simulation for 300 000 samples.

Double pendulum: The double pendulum is a similar nonlinear differential equation, which
models the motion of a pendulum that is connected at the end to another pendulum [82]. This
system is typically represented by its Lagrangian,

L= 1
6

ml2(θ̇2
2 + 4θ̇2

1 + 3θ̇1θ̇2 cos (θ1 − θ2)) + 1
2

mgl(3 cos θ1 + cos θ2), (5.2)

where θ1 and θ2 are the angles between the top and bottom pendula and the vertical axis,
respectively. m is the mass at the end of each pendulum, l is the length of each pendulum and
g is the acceleration constant due to gravity. Using the Euler–Lagrange equations,

d
dt

∂L
∂θ̇i

− ∂L
∂θi

= 0 for i = 1, 2,

we can construct two second-order differential equations of motion.
The trajectory is computed using a variational integrator to approximate

δ

∫ b

a
L(θ1, θ2, θ̇1, θ̇2) dt = 0.

We simulate this system with a stepsize of �t = 0.001 and for 1200 samples. We choose m1 = m2 =
l1 = l2 = 1 and g = 10, and use initial conditions θ1 = θ2 = π/2, θ̇1 = −0.01 and θ̇2 = −0.005. As our
measurement for HAVOK and sHAVOK, we use x(t) = sin(θ1(t)) and compare our data with a
long trajectory containing 100 000 samples.

(c) sHAVOK applied to real-world datasets
Here, we apply sHAVOK to two real-world time-series datasets, the trajectory of a double
pendulum and measles outbreak data. Similar to the synthetic examples, we find that the
dynamics matrix from sHAVOK is much more antisymmetric and tridiagonal compared with the
dynamics matrix for HAVOK. In both cases, some of the HAVOK eigenvalues contain positive
real components; in other words, these models have unstable dynamics. However, the sHAVOK
spectra do not contain positive real components, resulting in much more accurate and stable
models (figure 9).

Double pendulum: We first look at measurements of a double pendulum [83]. A picture of
the set-up can be found in figure 9. The Lagrangian in this case is very similar to that in (5.2).
One key difference in the synthetic case is that all of the mass is contained at the joints, while in
this experiment, the mass is spread over each arm. To accommodate this, the Lagrangian can be
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Figure 9. Comparison of HAVOK and structured HAVOK (sHAVOK) for two real-world systems: a double pendulum andmeasles
outbreakdata. For each system,wemeasure a trajectory extracting a single coordinate (grey).We thenapplyHAVOKand sHAVOK
to a subset of this trajectory, shown in black. The A matrices for the resulting linear dynamical models are shown. sHAVOK
yields models with an antisymmetric structure, with non-zero elements only along the sub-diagonal and super-diagonal. The
corresponding eigenvalue spectra for HAVOK and sHAVOK are additionally plotted in teal and maroon, respectively, along with
eigenvalues from HAVOK for a long trajectory. In both cases, the eigenvalues of sHAVOK are much closer in value to those in
the long trajectory limit than HAVOK. Some of the eigenvalues of HAVOK are unstable and have positive real components. The
corresponding reconstructions of the first singular vector of the corresponding Hankel matrices are shown along with the real
data. Note that the HAVOK models are unstable, growing exponentially due to the unstable eigenvalues, while the sHAVOK
models do not. Credit for images on left: (double pendulum) [83] and (measles) CDC/Cynthia S. Goldsmith; William Bellini, PhD.
(Online version in colour.)

slightly modified,

L= 1
2

(m1(ẋ2
1 + ẏ2

1) + m2(ẋ2
2 + ẏ2

2)) + 1
2

(I1θ̇
2
1 + I2θ̇

2
2 ) − (m1y1 + m2y2)g,

where x1 = a1 sin(θ1), x2 = l1 sin(θ1) + a2 sin(θ2), y1 = a1 cos(θ1) and y2 = l1 cos(θ1) + a2 cos(θ2). m1
and m2 are the masses of the pendula, l1 and l2 are the lengths of the pendula, a1 and a2 are the
distances from the joints to the centre of masses of each arm, and I1 and I2 are the moments of
inertia for each arm. When m1 = m2 = m, a1 = a2 = l1 = l2 and I1 = I2 = ml2 we recover (5.2). We
sample the data at �t = 0.001 s and plot sin(θ2(t)) over a 15 s time interval. The data over this
interval appear approximately periodic.

Measles outbreaks: As a second example, we apply measles outbreak data from New York
City between 1928 and 1964 [84]. The case history of measles over time has been shown to exhibit
chaotic behaviour [85,86], and [5] applied HAVOK to measles data and successfully showed that
the method could extract transient behaviour.

For both systems, we apply sHAVOK to a subset of the data corresponding to the black
trajectories x(t) shown in figure 9. We then compare that with HAVOK applied over the same
interval. We use m = 101 delays with a r = 5 rank truncation for the double pendulum, and
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m = 51 delays and a r = 6 rank truncation for the measles data. For the measles data, prior
to applying sHAVOK and HAVOK, the data is first interpolated and sampled at a rate of
�t = 0.0018 years. Like in previous examples, the resulting sHAVOK dynamics is tridiagonal
and antisymmetric while the HAVOK dynamics matrix is not. Next, we plot the corresponding
spectra for these two methods, in addition to the eigenvalues applied to HAVOK over the entire
time series. Most noticeably, the eigenvalues from sHAVOK are closer to the long data limit
values. In addition, two of the HAVOK eigenvalues lie to the right of the real axis, and thus have
positive real components. All of the sHAVOK eigenvalues, on the other hand, have negative real
components. This difference is most prominent in the reconstructions of the first singular vector.
In particular, since two of the eigenvalues from HAVOK are positive, the reconstructed time series
grows exponentially. By contrast, for sHAVOK the corresponding time-series remains bounded
providing a much better model of the true data.

6. Discussion
In this paper, we describe a new theoretical connection between models constructed from time-
delay embeddings, specifically using the HAVOK approach, and the Frenet–Serret frame from
differential geometry. This unifying perspective explains the peculiar antisymmetric, tridiagonal
structure of HAVOK models: namely, the sub- and super-diagonal entries of the linear model
correspond to the intrinsic curvatures in the Frenet–Serret frame. Inspired by this theoretical
insight, we develop an extension we call structured HAVOK that effectively yields models with
this structure. Importantly, we demonstrate that this modified algorithm improves the stability
and accuracy of time-delay embedding models, especially when data are noisy and limited in
length. All code is available at https://github.com/sethhirsh/sHAVOK.

Establishing theoretical connections between time-delay embedding, dimensionality reduction
and differential geometry opens the door for a wide variety of applications and future work.
By understanding this new perspective, we now better understand the requirements and
limitations of HAVOK and have proposed simple modifications to the method which improve its
performance on data. However, the full implications of this theory remain unknown. Differential
geometry, dimensionality reduction and time-delay embeddings are all well-established fields,
and by understanding these connections we can develop more robust and interpretable methods
for modelling time series.

For instance, by connecting HAVOK to the Frenet–Serret frame, we recognize the importance
of enforcing orthogonality for V1 and V2 and inspired development of sHAVOK. With this
theory, we can incorporate further improvements on the method. For example, sHAVOK can be
thought of as a first-order forward difference method, approximating the derivative and state by
(V2 − V1)/�t and V1, respectively. By employing a central difference scheme, such as
approximating the state by V , we have observed this to further enforce the antisymmetry in the
dynamics matrix and move the corresponding eigenvalues towards the imaginary axis.

Throughout this analysis, we have focused purely on linear methods. In recent years,
nonlinear methods for dimensionality reduction, such as autoencoders and diffusion maps, have
gained popularity [7,87,88]. Nonlinear models similarly benefit from promoting sparsity and
interpretability. By understanding the structures of linear models, we hope to generalize these
methods to create more accurate and robust methods that can accurately model a greater class of
functions.
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