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Abstract

The life cycle of the trypanosomatid Crithidia fasciculata is monogenetic, as the

unique hosts of these parasites are different species of culicids. The comparison of

these non-pathogenic microorganisms evolutionary close to other species of

trypanosomatids that develop digenetic life cycles and cause chronic severe

sickness to millions of people worldwide is of outstanding interest. A ground-

breaking analysis of differential protein abundance in Crithidia fasciculata is

reported herein. The comparison of the outcome with previous gene expression

profiling studies developed in the related human pathogens of the genus

Leishmania has revealed substantial differences between the motile stages of

these closely related organisms in abundance of proteins involved in catabolism,

redox homeostasis, intracellular signalling, and gene expression regulation. As L.

major and L. infantum agglutinate with peanut lectin and non-agglutinating

parasites are more infective, the agglutination properties were evaluated in C.

fasciculata. The result is that choanomastigotes are able to agglutinate with peanut

lectin and a non-agglutinating subpopulation can be also isolated. As a difference

with L. infantum, the non-agglutinating subpopulation over-expresses the whole

machinery for maintenance of redox homeostasis and the translation factors eIF5a,
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EF1a and EF2, what suggests a relationship between the lack of agglutination and

a differentiation process.

Introduction

Protists of the genus Crithidia (Léger, 1902) (Kinetoplastida: Trypanosomatidae)

are flagellate parasites that exclusively infect insects [1]. The numerous species of

Crithidia have broad host specificity and are able to parasitize a variety of species

grouped into the orders Diptera, Hemiptera and Himenoptera. Specificity also

varies importantly depending on the species of the parasite [1]. Particularly, C.

fasciculata successfully infects many species of mosquitoes.

Although these parasites are polymorphic, two stages are clearly distinguished.

Choanomastigotes are free-swimming stumpy cells characteristic of this genus

that are round in their posterior part and truncated in the apical pole by the

funnel-shaped flagellar pocket close to the kinetoplast, which is slightly anterior to

the nucleus. Amastigotes are non-motile round cells with a flagellum non-

emergent from the cellular body. Therefore, they are morphologically similar to

amastigotes of the genus Leishmania, although they are extracellular (reviewed in

[2]). The life cycle of C. fasciculata is developed in the gut of the culicid, which

becomes infected by ingestion of amastigotes voided with feces of other hosts.

Then, amastigotes undergo a differentiation process into choanomastigotes to

ensure proper colonization of the gut. Choanomastigotes differentiate back into

non-motile round amastigotes that are attached to the gut epithelium by

hemidesmosomes [3] frequently leading to damage [4]. Infected adult mosquitoes

contaminate aquatic environments with amastigotes as well as flowers when they

feed on nectar, thus providing chances for transmission of the parasite.

Amastigotes are released within the feces or the entire body of the dead insect.

Eventually, the larval and pupal instars of mosquitoes get infected in the aquatic

habitat and finally amastigotes are transmitted to the adult mosquito through the

metamorphosing gut [2] leading to completion of the life cycle (Fig. 1A).

Parasites grouped into the genus Crithidia develop monogenetic life cycles

involving the extracellular choanomastigote and amastigote stages, and conse-

quently do not infect mammals. The comparison with species of the same family

developing digenetic life cycles responsible for leishmaniasis and trypanosomiasis

is of outstanding interest. Even though these parasites afflict millions of people

worldwide, they are still neglected [5]. As a difference with Leishmania spp.,

parasites from the genus Crithidia are not pathogenic to humans. For this reason,

their biology at the molecular and cellular levels remains almost unexplored

despite their evolutionary relation with the genus Leishmania (reviewed in [6]).

Advantageously, both organisms are closely related at the crown of the

phylogenetic tree of trypanosomatids [6, 7, 8, 9] despite their different life cycles.
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There has been no attempt to quantify differential transcript and protein

abundance at medium or large scale in any of the Crithidia species so far. The

comparison between monogenetic and digenetic trypanosomatids may contribute

to explain the mechanisms of adaptation to different hosts in the latter, which are

mammals in the case of Leishmania spp. and Trypanosoma spp. This study is, to

our knowledge, the first insight into the proteome of C. fasciculata choanomas-

tigotes in axenic culture and has been performed by two dimension

Fig. 1. Life cycle, growth kinetics and peanut lectin agglutination of C. fasciculata choanomastigotes. (A) The monogenetic life cycle of C. fasciculata
involves a culicid host, where amastigotes attached to the gut epithelium and voided in faeces are disseminated in the environment and orally passed to
other hosts at any of the developmental stages. Choanomastigotes are the motile stage that allows the colonization of the gut of the host. GE: gut epithelium.
Adapted from Olsen, 1974. (B) Average growth curve of three C. fasciculata choanomastigote cultures (three biological replicates). Total proteins were
extracted every day until the culture reached the stationary phase. N is the average cell density. (C) and (D) 10% Giemsa staining of the PNA+ and PNA- C.
fasciculata choanomastigote subpopulations within the stationary phase of axenic culture, respectively.

doi:10.1371/journal.pone.0113837.g001
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electrophoresis (2DE)-based analysis and protein identification by MALDI-TOF/

TOF tandem mass spectrometry. The recent release of the C. fasciculata genome

sequence and annotations has led to successful identification of most of the spots

analyzed. Agglutination of choanomastigotes with PNA has been tested with

positive results and a proteome analysis of the PNA+ and PNA- subpopulations in

stationary phase has also been performed. The PNA- subpopulation is more

infective in L. major [10] and L. infantum [11] but the implications of the

existence of this subpopulation in Crithidia spp. revealed herein is more likely

related to development only. The new proteomic data, including the PNA+ and

PNA- subpopulations, have been compared with the outcome of published stage-

specific transcriptome and proteome analyses in the genus Leishmania, what has

revealed differences in abundance of proteins involved in gene expression

regulation, carbohydrate metabolism, redox homeostasis and other processes.

Materials and Methods

Parasite cultures

Choanomastigotes of the C. fasciculata strain LLM494 [12] were cultured at 27 C̊

in complete medium containing RPMI 1640 medium supplemented with L-

glutamine (Life Technologies, Carlsbad, CA), 10% heat inactivated foetal bovine

serum (Lonza, Basel, Switzerland) and 100 mg/ml streptomycin – 100 IU/ml

penicillin (Life Technologies) pH 7.2. Cell density of three replicate cultures

started at 26106 cells/ml was monitored and choanomastigotes were harvested

daily at 2,000 g for 10 min and washed once with PBS at 4 C̊.

Purification of PNA

100 g of non-roasted peanuts were submerged in 300 ml PBS at 4 C̊ overnight,

mashed and filtered through a gauze squeezing the homogenate to collect as much

liquid as possible. Then, the homogenate was centrifuged at 8000 rpm for 10 min

in a Sorvall RC5C centrifuge using a GSA rotor (Dupont, Stevenage, Herts, UK).

The supernatant was recovered and clarified through filter paper. Then, 40% (w/

v) (NH4)SO4 was progressively dissolved in the extract, which was then incubated

at room temperature for 30 min. After 20 min of centrifugation at 6000 rpm, the

supernatant was recovered and (NH4)SO4 progressively dissolved up to 75% (w/

v). The extract was centrifuged again and the pellet recovered, resuspended in

50 ml PBS and dialyzed three times with 40 volumes of PBS at 4 C̊ overnight. To

clarify the extract, an additional centrifugation step at 6000 rpm for 10 min using

an SS34 rotor and three filtration steps were carried out, the first one through

filter paper, the second one through a 47 mm diameter, 2 mm pore size

borosilicate fiber pre-filter (Millipore, Billerica, MA) and the third one through

BioGel A2 (BioRad, Hercules, CA). Finally, the PNA was purified by affinity

chromatography using melibiose immobilized in agarose beads (Sigma Aldrich,

Buchs, Switzerland). Two washes with PBS were performed and the lectin eluted
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with 50 mM D-galactose (Sigma). The 1 ml fractions collected were quantified by

the Warburg and Christian method [13].

Separation of PNA
+
and PNA

-
stationary phase choanomastigote

subpopulations

Stationary phase choanomastigotes were resuspended at 2 x 108 cells/ml in

complete medium containing 50 mg/ml PNA in a polypropylene tube. After

30 min incubation at room temperature allowing the sedimentation of

agglutination complexes, the supernatant was recovered and the sediment was

resuspended again in complete medium containing PNA at the same concentra-

tion. Sedimentation of both fractions was performed again but this time at 200 g

for 10 min. The resulting supernatants were mixed and centrifuged at 2,000 g for

10 min to harvest PNA- promastigotes, whereas only the pellet obtained from the

original sediment was processed as the PNA+ fraction. All the steps of this

procedure were checked at the light microscope (63X).

Preparation and quantification of protein extracts

We described a similar proteome analysis procedure [14] and modifications are

detailed herein. Each sample of parasites was resuspended in 300 ml lysis buffer

(8.4 M urea, 2.4 M thiourea, 5% CHAPS, 50 mM DTT, 1% Triton X-100, 50 mg/

ml DNase and Mini EDTA-free Protease Inhibitor Cocktail according to the

manufacturer’s instructions –Roche, Mannheim, Germany). The total protein

extracts obtained were agitated by mild rotation at 4 C̊ for 30 min, centrifuged at

8,000 g for 10 min and precipitated with methanol/chloroform [15]. All samples

were dried at room temperature for 5 min and resuspended in 2X rehydration

buffer (7 M urea, 2 M thiourea, 4% CHAPS, 0.003% bromophenol blue). Protein

quantification was performed by the RC DC protein assay kit (BioRad). 50 mg

aliquots of each sample were diluted to a final volume of 140 ml in 2X buffer

containing 18.2 M DTT and 0.5% IPG buffer solution pH 3–10 (BioRad). Further

confirmation was carried out by densitometric analysis of 10% PAGE-SDS gels

[16] as described [14].

2DE separation and analysis of protein abundance

Isoelectrofocusing of 50 mg total protein per sample was performed on IPG strips

(non-linear pH 3–10 gradient, 7 cm, BioRad) in a Protean IEF Cell system

(BioRad) following the manufacturer’s instructions. A seven step program was

used (50 V for 12 h, 250 V for 1 h, 500 V for 1 h, 1000 V for 1 h, 2000 V for 1 h,

linear ramp to 8000 V for 1 h and 8000 V up to 3500 V?h). More than a total of

12,000 V?h were reached in all runs. The second dimension was run by 12% SDS-

PAGE in a pre-cooled MiniProtean 3 Dodeca Cell system (BioRad) at 0.5 W/gel for

30 min and then at 1.5 W up to 5 min after the die-front reached the bottom edge

of the gels (approximately 2 h). Then, the gels were stained with SYPRO Ruby
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protein gel stain (BioRad) following the manufacturer’s instructions. Imaging was

performed with EXQuest Spot Cutter system and the analysis of differential

abundance with PDQuest 2D Advanced 8.0.1 software (BioRad) following the

manufacturer’s instructions. First, all spots were automatically detected and

thereafter manually checked by observation of single spot quantitation histograms

and 2DE gel images. Normalized intensities were calculated by the Total Quantity

in Valid Spots algorithm to ensure that relative quantification between gels is not

biased by staining and background. The statistical analysis was performed by the

Student’s t-test at 0.05 significance level. Three replicates of each experiment were

performed.

Protein identification by MALDI-TOF/TOF mass spectrometry

The spots selected in the previous analysis were excised with EXQuest Spot Cutter

(BioRad), digested with trypsin and prepared for MALDI-TOF/TOF mass-

spectrometry as we described [14]. A 0.8 ml drop of resuspended peptides from

each spot was deposited in an OptiTOF Plate (Life Technologies) together with a

0.8 ml drop of a 3 g/l a-cyano-4-hydroxycinnamic solution (Sigma). The mixture

was allowed to dry at room temperature. Samples were run in an ABI 4800

MALDI-TOF/TOF (Life Technologies) mass spectrometer in positive reflector

mode at 25 kV for MS and 1 kV for MS/MS. The spectra were prepared with ABI

4000 Series Explorer Software 3.6 (Life Technologies). Fingerprint and fragmen-

tation spectra were run in MASCOT 2.1 with Global Protein Server Explorer 4.9

(Life Technologies) for protein identification with both the NCBInr database and

annotations on the genome sequence of C. fasciculata. The genome sequence was

completed at Washington University School of Medicine in St. Louis (Stephen

Beverley, Richard Wilson) and assembly and annotations at Seattle Biomedical

Research Institute (Peter Myler). These data can be retrieved from http://

tritrypdb.org/common/downloads/release-8.0/CfasciculataCfCl/fasta/data/. A

MIAPE-compliant report and the MS data have been deposited to the

ProteomeXchange Consortium [17] via the PRIDE partner repository with the

dataset identifier PXD001331 and DOI 10.6019/PXD001331.

Western blot

Protein extracts were separated by SDS-PAGE in 8% slab gels (12 mA, 30 min;

30 mA, 90 min) in a MiniProtean II Cell system (BioRad). 20 mg protein extract

was loaded per well including 1 ml Benzonase Nuclease HC (Novagen, Madison,

WI). Blotting onto 0.45 mm nitrocellulose membranes (BioRad) was performed at

100 V for 1 h in a Mini Trans-Blot Cell wet transfer system (BioRad). Membrane

blocking was carried out with 5% skimmed milk in PBS-0.1% Tween 20 (Sigma)

for 1 h and washed three times with PBS-1% Tween 20 for 15, 5 and 5 min

respectively. Next, membranes were incubated with 1:500 of rabbit anti-LACK

polyclonal serum for 2 h [18] or 1:10,000 of monoclonal mouse anti-L. mexicana

glycosomal GAPDH antibody kindly provided by Paul Michels (University of
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Edinburg) [19], washed again and incubated with 1:2,000 HRP-conjugated goat

anti-rabbit IgG (DAKO, Ely, UK) for 90 min. Once the wash steps were repeated,

the immunoblots were developed using the ECL detection system (GE Healthcare,

Pittsburg, PA) according to the manufacturer’s instructions.

Results and Discussion

Growth kinetics of C. fasciculata choanomastigotes and 2DE-MS/

MS analysis

Choanomastigote cultures reached the stationary phase within 3 days (Fig. 1B),

twice as fast as Leishmania spp. promastigotes. Similar growth kinetics of C.

fasciculata choanomastigote clones has been reported [20]. Total protein of

56108 choanomastigotes was extracted at early logarithmic (day 1), mid-

logarithmic (day 2), late logarithmic/early stationary (day 3) and stationary phase

(day 4). In addition, protein extracts were successfully obtained from the PNA+

and PNA- subpopulations within the cultures in stationary phase. Protein

concentrations were comprised between 4 and 9 mg/ml and this was confirmed by

PAGE-SDS as described [14]. After 2DE separations, normalization with the Total

Quantity in Valid Spots algorithm and manual check of all the spots, 136 changes

in abundance of proteins were detected throughout the four time points of the

growth curve. Some proteins showed significant differences in abundance in more

than one time point of the choanomastigote growth curve. The cut-off values

were: ratio to day 1, R$1.7 or#0.6 within the significance level inferred with

Student’s t test (p,0.05). Of these, 63 spots that correspond to 83 differences in

abundance (Fig. 2A–D, Table 1) were excised from the 2DE gels as they were

suitable to be identified by MALDI-TOF/TOF. Therefore, 10 proteins are

differentially expressed at two of the time points compared. We also analyzed 43

spots containing constantly expressed proteins (Table 2), as well as 67 spots

differentially expressed between the PNA- and PNA+ subpopulations within the

stationary phase culture (Fig. 2E and F, Table 3). All proteins could be identified

when MASCOT searches were performed against the reference genome sequence

of C. fasciculata (Tables 1–3) when there was sufficient amount for identification,

whereas a total of 20 constantly expressed proteins (Table S2 in S1 File), 41

differentially expressed proteins in the growth curve (Table S1 in S1 File) and 30

proteins with different abundance between PNA+ and PNA- choanomastigotes

(Table S3 in S1 File) could be identified against the NCBInr database, which is

53.4% of the proteins analyzed by MALDI-TOF/TOF mass spectometry. Most of

the identifications (73.9%) were consistent between the two databases and most of

those successfully performed with the NCBInr database (63.9%) had the highest

MASCOT scores for orthologue proteins of the genus Leishmania, whereas only

9.3% of them matched with a Trypanosoma spp. orthologue (Tables S1–S3 in S1

File). This is additional evidence for the hypothesis supporting very close

evolutionary relationship between Leishmania spp. and Crithidia spp [6, 7, 8, 9].

Also, only 9.3% matched with Crithidia spp., as very few genes had been identified
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Fig. 2. 2DE of total protein extracts throughout the growth curve and of the PNA+ and PNA- subpopulations of C. fasciculata choanomastigotes.
2DE of 50 mg of total protein extracts of C. fasciculata choanomastigotes at (A) early logarithmic, (B) mid logarithmic, (C) late logarithmic and (D) stationary
phase. (E) PNA- and (F) PNA+ subpopulations. One out of three replicates is shown for each phase/subpopulation. IEF was performed in a non-linear 3–10
pH interval. Complete spot names include Cf (A–D) or Cfp (E and F) preceding the spot numbers (see Tables 1–3).

doi:10.1371/journal.pone.0113837.g002
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Table 1. Differentially regulated proteins throughout the growth curve of C. fasciculata choanomastigotes.

Spot Protein TriTryp Id.
MW
(KDa)

MASCOT
score
(p,0.05) Ratio (p,0.05)

d2:d1 d3:d1 d4:d1

Cf0202 Thiol-dependent reductase 1, putative CfaC1_35_0470 26.5 187 _ 0.01 _

Cf0601 Mitotubule-associated protein Gb4, putative CfaC1_33_0870 45.0 48* 0.58 _ _

Cf0908 Mitotubule-associated protein, Gb4, putative CfaC1_33_0870 170.0 455 0.50 _ _

Cf1101 60S ribosomal protein L21, putative CfaC1_17_0510 17.9 30* 0.01 _ _

Cf1102 Eukaryotic initiaton factor 5a, putative CfaC1_28_1000 22.2 44* 0.58 _ _

Cf1103 Eukaryotic initiation factor 5a, putative CfaC1_28_1000 23.6 271 0.48 _ _

Cf1202 Hypothetical protein, conserved CfaC1_11_0220 26.8 116 0.44 _ _

Cf1301 Translation elongation factor 1b, putative CfaC1_30_1700 32.8 126 0.58 _ _

Cf1801 Peroxisomal targeting signal-1 receptor CfaC1_31_1260 92.6 75 _ 0.32 _

Cf1802 Unnamed protein product Cfa_19_1120 70.4 144 _ _ 1.72

Cf2303 Hypothetical protein CfaC1_16_2100 33.6 90 0.24 _ _

Cf2401 Unspecified product CfaC1_AODS01004023_0010 35.0 89 0.21 _ _

Cf2603 Thiol-dependent reductase 1, putative CfaC1_35_0470 53.9 187 3.18 _ _

Cf2903 Hypothetical protein, conserved CfaC1_22_0410 227.4 33* 89.60 0.18 _

Cf3202 Phosphomannomutase, putative CfaC1_30_2340 27.2 380 1.78 _ _

Cf3203 Tryparedoxin peroxidase (C. fasciculata) CfaC1_10_1430 (gi3851500) 24.1 138 _ 3.28 _

Cf3401 Transaldolase B, putative CfaC1_17_0910 36.1 299 0.46 _ _

Cf3403 CACK protein (C. fasciculata), activated
protein kinase C receptor (LACK), guanine
nucleotide-binding protein b subunit-like

CfaC1_26_3810 (gi3132790) 36.5 210 0.58 _ _

Cf3605 Hypothetical protein CfaC1_07_1350 46.9 137 2.34 _ _

Cf3608 Unspecified protein product (enolase
orthologue)/Oxidoreductase-like protein

CfaC1_AODS01003826_
0010/CfaC1_22_0890

51.1 173 1.73 _ _

Cf3701 Chaperonin hsp60, mitochondrial precursor CfaC1_30_2420 67.5 377 _ 0.01 _

Cf3703 Vacuolar ATP synthase subunit B CfaC1_26_3200 55.8 426 8.41 _ _

Cf4001 Unspecified protein CfaC1_AODS01003826_0010 15.9 173 0.58 _ _

Cf4204 SNARE protein, putative CfaC1_19_0830 26.0 34* 0.03 _ _

Cf4303 Putative GTP-binding protein CfaC1_28_1830 29.1 164 _ _ 1.76

Cf4304 Aldose 1-epimerase-like protein, putative CfaC1_33_4840 34.5 330 1.84 _ 1.93

Cf4501 Unspecified product (enolase orthologue) CfaC1_AODS01003826_0010 41.0 194 0.50 _ _

Cf4503 Unspecified product (Enolase ortologue) CfaC1_AODS01003826_0010 41.0 357 0.56 _ _

Cf4602 Glutamate dehydrogenase, putative CfaC1_26_3700 50.2 319 2.12 _ _

Cf4703 Pyruvate/indol pyruvate carboxylase,
putative

CfaC1_33_5440 59.6 333 458.61 _ _

Cf5101 Tryparedoxin peroxidase CfaC1_10_1430 (gi3851500) 12.9 186 0.02 _ _

Cf5203 Hypothetical protein CfaC1_19_1320 26.5 154 0.58 _ _

Cf5301 Unspecified product (Glycosomal malate
dehydrogenase orthologue)

CfaC1_AODS01001854_0010 34.2 106 2.15 _ 2.85

Cf5502 Alcohol dehydrogenase CfaC1_06_0480 40.87 642 _ 0.58 _

Cf5601 Unspecified product (enolase orthologue) CfaC1_AODS01003826_0010 51.2 728 1.84 _ _

Cf5701 Hypothetical protein, conserved CfaC1_30_4240 55.9 279 0.58 _ _

Cf5703 Pyruvate kinase CfaC1_24_1930 59.3 77 3.94 _ _

Cf5803 Transketolase CfaC1_30_4190 75.7 193 28.65 35.21 39.96

Proteome Profiling of Crithidia fasciculate Choanomastigotes

PLOS ONE | DOI:10.1371/journal.pone.0113837 December 11, 2014 9 / 26



in this organism prior to the release of the reference genome sequence (Tables S1–

S3 in S1 File). Sometimes, different spots represent the same type of protein. This

may be due to the presence of different isoforms, post-translational modifications

or protein aggregation at the conditions assayed. In the next sections, we refer to

these possibilities using the term variant of a given protein.

Table 1. Cont.

Spot Protein TriTryp Id.
MW
(KDa)

MASCOT
score
(p,0.05) Ratio (p,0.05)

d2:d1 d3:d1 d4:d1

Cf6001 ADF/Cofilin, putative CfaC1_14_1580 15.0 235 0.57 _ _

Cf6002 Small myristoylated protein-1, putative CfaC1_19_1600 15.4 233 0.50 1.70 _

Cf6003 Elongation factor 2, putative CfaC1_30_0260 12.9 234 0.01 _ _

Cf6101 Fe-superoxide dismutase CfaC1_32_2350 21.8 321 0.58 1.72 _

Cf6102 NADP-dependent alcohol dehydrogenase,
putative

CfaC1_22_0610 23.4 95 0.37 _ _

Cf6503 NADP-dependent alcohol dehydrogenase CfaC1_22_0610 40.4 267 1.93 _ _

Cf6602 Mitotubule-associated protein Gb4, putative CfaC1_33_0870 45.6 134 _ 11.1 _

Cf6603 Unspecified product (enolase orthologue) CfaC1_AODS01003826_0010 51.2 230 80.53 _ _

Cf6703 Catalase CfaC1_30_0050 64.6 125 3.44 _ _

Cf6704 Catalase CfaC1_30_0050 63.3 189 3.26 _ _

Cf6804 Transketolase CfaC1_30_4190 75.6 125 57.40 _ 72.40

Cf7202 NADP-dependent alcohol dehydrogenase,
putative

CfaC1_22_0610 24.2 125 0.51 _ _

Cf7302 Fructose-1,6-bisphosphate aldolase, putative CfaC1_30_1480 32.9 418 0.23 _ _

Cf7402 Fructose-1,6-bisphosphate aldolase, putative CfaC1_30_1480 36.8 407 0.35 3.02 _

Cf7405 Fructose-1,6-bisphosphate aldolase, putative CfaC1_30_1480 37.6 278 0.29 _ _

Cf7501 Phosphoribosylpyrophosphate synthetase,
putative, phosphoribosyl transferase, putative

CfaC1_04_0370 42.7 60 2.6 _ _

Cf7603 3-ketoacyl-CoA thiolase, putative CfaC1_22_1180 47.4 607 1.74 _ _

Cf7604 Pyruvate dehydrogenase component E1
a-subunit, putative

CfaC1_21_1950 44.4 143 57.93 _ _

Cf7703 Succinyl-CoA:3-ketoacid-coenzyme A
transferase, mitochondrial precursor, putative

CfaC1_04_0870 56.7 189 2.22 _ 2.14

Cf7704 Dihydrolipoamide dehydrogenase, putative CfaC1_32_4840 54.8 507 2.72 _ _

Cf8402 Malate dehydrogenase CfaC1_33_1570 34.9 663 2.38 _ _

Cf8504 Fructose-1,6-bisphosphate aldolase, putative CfaC1_30_1480 42.8 594 2.93 _ _

Cf8601 Hexokinase CfaC1_31_0400 49.3 683 4.62 _ 4.83

Cf8701 Hypothetical protein CfaC1_32_1140 62.5 349 0.50 _ _

Cf9302 Unspecified product (glycosomal malate
dehydrogenase orthologue)

CfaC1_AODS01001854_0010 33.7 379 1.99 _ _

Estimated MW, pI, MASCOT scores (*non-significant) and ratios to day 1 are provided. Only spots with statistically significant ratios (p,0.05) over 1.7 or
under 0.6 were picked and analyzed and are shown in this table. As a consequence, hyphens in the columns containing ratios do not necessarily indicate
lack of differential abundance, because there are also cases of lack of statistical significance of ratios indicating over- or under-expression. Identifications
were performed against the C. fasciculata genome sequence released in the TriTryp database.

doi:10.1371/journal.pone.0113837.t001
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Table 2. Constantly expressed proteins throughout the growth curve of C. fasciculata choanomastigotes.

Spot Protein TriTrypDB Id.
MW
(KDa) pI

MASCOT
score
(p,0.05)

Cf1001 ATP-dependent RNA-helicase CfaC1_32_0820 17.91 4.5 28*

Cf1602 META domain-containing protein CfaC1_15_1260 52.82 4.6 613

Cf1904 Hypothetical protein CfaC1_24_0880 105.02 4.4 569

Cf2201 Hypothetical protein, conserved CfaC1_33_5560 27.96 5.2 38*

Cf2702 Hypothetical protein CfaC1_16_2100 60.31 4.7 50*

Cf2703 ATG8/AUT7/APG8/PAZ2 CfaC1_19_0910 57.83 5.0 28*

Cf2804 Unnamed protein product CfaC1_24_2570 91.86 5.0 122

Cf2805 Hypothetical protein CfaC1_26_3570 76.77 5.3 150*

Cf2901 Unspecified protein CfaC1_KB217687_0080 171.73 4.7 32*

Cf4201 Proteasome activator protein pa26, putative CfaC1_24_2680 25.11 5.7 337

Cf4202 Short chain dehydrogenase, putative CfaC1_31_1020 27.95 5.7 132

Cf4301 Biotin/lipoate protein ligase-like protein CfaC1_34_1660 28.88 5.7 109

Cf4302 Prostaglandin f2a synthase/D-arabinose dehydrogenase, putative CfaC1_34_3900 33.04 5.7 114

Cf4401 Thymine 7-hydroxylase, putative CfaC1_14_1860/70 36.76 5.8 60

Cf6202 Iron superoxide dismutase, putative CfaC1_25_0490 25.01 6.1 55

Cf6401 Coproporphyrinogen III oxidase CfaC1_24_0220 35.33 6.1 687

Cf6402 Methylthioadenosine phosphorylase, putative CfaC1_05_0930 37.29 6.1 101

Cf6501 NADP-dependent alcohol dehydrogenase CfaC1_22_0610 40.91 6.0 181

Cf6502 Branched-chain amino acid aminotransferase, putative CfaC1_27_2440 42.86 6.1 184

Cf6506 Arginase, putative CfaC1_31_1380 39.73 6.3 123

Cf6507 Chaperone protein DNAJ, putati ve/Unspecified product CfaC1_32_4400/CfaC1_AODS01001585_0010 42.47 6.3 40/40*

Cf6708 Aldehyde dehydrogenase, mitocondrial precursor, putative CfaC1_28_1490 55.55 6.1 256

Cf6901 Aconitase CfaC1_21_0760 104.44 6.4 454

Cf7002 Nucleoside diphosphate kinase CfaC1_32_3660 16.09 6.7 295

Cf7201 Ribulose phosphate 3-epimerase, putative CfaC1_31_3770 27.35 6.4 85

Cf7204 ATP synthase, putative CfaC1_35_2640 27.71 7.5 176

Cf7301 RNA-binding protein CfaC1_31_2330 37.67 6.5 433

Cf7601 Aldose 1-epimerase-like protein, putative CfaC1_24_2950 46.66 6.4 148

Cf7602 Phosphoglycerate kinase B, cytosolic CfaC1_23_0180 46.54 6.5 621

Cf7705 Glycosomal phosphoenolpyruvate carboxykinase, putative CfaC1_27_2690 62.20 6.7 191

Cf8102 Cyclophilin A, putative CfaC1_28_1250 19.39 8.6 356

Cf8104 Cyclophilin 4, putative CfaC1_04_0140 22.57 9.1 252

Cf8202 Triose phosphate isomerase CfaC1_27_0920 24.89 7.5 295

Cf8203 Triose phosphate isomerase (L. braziliensis) CfaC1_27_0920 25.02 8.3 126

Cf8204 RNA-binding protein, putative, UPB2 CfaC1_28_0710 24.03 9.1 103

Cf8301 Hypothetical protein CfaC1_18_0790 31.53 8.7 125

Cf8302 Succinyl-CoA synthetase a-subunit, putative CfaC1_02_0750 33.63 8.7 124

Cf8501 Aldose 1-epimerase-like protein, putative CfaC1_24_2950 41.01 8.0 509

Cf8502 Hypothetical protein, conserved/Hypothetical protein, conserved CfaC1_35_4400/CfaC1_33_5170 39.25 8.3 36/36*

Cf8702 Poly(A)-binding protein 2 CfaC1_31_0480 68.60 9.0 352

Cf9301 Hypothetical protein, conserved (gMDH) CfaC1_13_1170 31.77 9.2 272

Cf9401 Elongation factor 1a, putative CfaC1_15_0180 36.35 9.3 149

Cf9601 Elongation factor 1a, partial CfaC1_15_0180 53.84 9.2 165
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Peanut lectin agglutination capability of choanomastigotes

It is known that certain species of Leishmania agglutinate with PNA and a non-

agglutinating subpopulation can be isolated [10, 11]. This is the first time that the

agglutination properties of Crithidia spp. choanomastigotes with PNA have been

assayed and the outcome has been a noticeable agglutination capability and the

isolation of a non-agglutinating population in stationary phase. These findings

support a modification of the Crithidia spp. lipoarabinogalactans (LAG) at the

end of the growth curve analogous to that taking place in the lipophosphoglycan

(LPG) of Leishmania spp., even when the structure of the LAG [21], the surface

molecules that presumably agglutinate with the lectin in this genus, is quite

different to the leishmanial LPG. The biological roles of the respective

agglutinating surface molecules involved are probably different in these organisms

given the differences in their life cycles. L. major and L. infantum promastigotes

are able to agglutinate with PNA and the non-agglutinating subpopulations are

more infective and lead to higher infection rates than the agglutinating ones,

yielding more infected phagocytes and amastigotes per infected cell [10, 11].

Promastigotes attach to the gut epithelium by the LPG to maintain infection

during bloodmeal excretion and only with differentiation signals as starvation, a

developmental process ultimately leading to metacyclic promastigotes is triggered

(reviewed in [22]). The differentiation process is widely recognized to be

mimicked in axenic culture, where starvation also takes place when promastigotes

reach the stationary phase.

The change in LAG composition of C. fasciculata is likely due to developmental

processes according to the findings described herein (see below) but does not

provide evidence to be associated to any process related with infectivity. In fact,

the next step in the life cycle of this parasite is differentiation to the extracellular

amastigote stage that attaches to the gut epithelium of the insect host.

Changes in abundance of proteins involved in glucid catabolism

and the pentose phosphate pathway

According to proteome profiling, glycolysis is more active in early and mid

logarithmic phase (Fig. 3, Table 1), when several protein variants alternate. In

fact, two aldolase (ALD) and two enolase variants are up-regulated at day 1 but at

the second day, their expression levels decay and are replaced by distinct ones,

respectively one ALD and two enolases. Additionally, an hexokinase (HK) variant,

the pyruvate kinase (PyrK), a putative and a glycosomal malate dehydrogenase

(MDH) and the components of the pyruvate dehydrogenase complex (PDH)

dihydrolipoamide dehydrogenase (DLD) and E1a are more abundant at day 2

(mid logarithmic phase), which suggests higher activity of hexose catabolic

processes and malate shuttles, provided that most of the glucolytic reactions take

Estimated MW, pI and MASCOT scores (*non-significant) are provided. Identifications were performed against the C. fasciculata genome sequence
released in the TriTryp database.

doi:10.1371/journal.pone.0113837.t002
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Table 3. Differential abundance of proteins between the PNA+ and PNA- subpopulations of C. fasciculata choanomastigotes in stationary phase of axenic
culture.

Spot Protein TriTryp DB Id.
MW
(KDa) pI

MASCOT
score (p
,0.05)

Ratio
(PNA+):(PNA-)
(p ,0.05)

Cfp0104 Eukaryotic initiation factor 5a CfaC1_28_1000 20.52 3.5 70 0.44

Cfp0803 Mitotubule-associated protein Gb4, putative CfaC1_33_0870 73.19 3.4 388 0.02

Cfp0903 Mitotubule-associated protein Gb4, putative CfaC1_33_0870 130.8 3.3 161 0.29

Cfp1203 Hypothetical protein CfaC1_16_2100 35.48 3.8 102 0.17

Cfp1803 Hypothetical protein CfaC1_26_3570 86.91 4.7 125 0.41

Cfp1901 Hypothetical protein, conserved CfaC1_24_0880 142.13 4.3 354 0.14

Cfp2402 Hypothetical protein/Unspecified product CfaC1_27_1220/CfaC1_AODS01003272_0020 34.22 5.2 24/23 0.57

Cfp2801 2,3-bisphosphoglycerate-independent
phosphoglycerate mutase, putative

CfaC1_35_3710 76.42 5.0 483 0.40

Cfp2802 Carboxylase, putative CfaC1_12_0120 88.35 5.1 175 0.15

Cfp2901 Oligopeptidase B, putative CfaC1_12_1200 92.75 5.4 59 0.03

Cfp3001 NADP-dependent alcohol dehydrogenase,
putative

CfaC1_22_0610 18.46 5.5 40* 0.01

Cfp3002 Unspecified product CfaC1_19_1390 19.12 5.4 22* 0.07

Cfp3101 Tryparedoxin peroxidase (C. fasciculata) CfaC1_10_1430 (gi385150) 22.36 5.4 169 0.01

Cfp4002 Nucleoside diphosphate kinase b CfaC1_32_3660 10.52 5.5 38* 0.03

Cfp4202 GTP-binding protein CfaC1_28_2830 23.10 5.6 133 0.03

Cfp4302 Aldose 1-epimerase-like protein, putative CfaC1_33_4840 28.68 5.6 82 0.52

Cfp4501 Unspecified product/Unspecified product CfaC1_AODS01001347_0030/CfaC1_
AODS01003093_0020

42.76 5.6 60/60 0.48

Cfp5001 Endoribonuclease L-PSP (pb5) CfaC1_22_0370 14.23 5.9 82 0.56

Cfp5002 60S ribosomal protein L37a, putative CfaC1_16_2060/CfaC1_30_2280 18.15 5.7 25/25* 0.02

Cfp5101 Tryparedoxin peroxidase (C. fasciculata) CfaC1_10_1430 (gi385150) 20.46 5.7 174 0.46

Cfp5201 Insufficient amount for
identification

- 27.17 5.8 - 0.09

Cfp5301 Unnamed protein product (enolase
orthologue)

CfaC1_AODS01003826_0010 41.26 5.7 442 0.33

Cfp5401 Nucleoside phosphorylase-like protein,
putative

CfaC1_18_1820 36.22 5.6 57 0.03

Cfp5504 Methionine aminopeptidase 2, putative CfaC1_16_0810 43.54 5.8 29* 0.04

Cfp5701 Hypothetical protein CfaC1_05_0410 60.28 5.7 36* 0.31

Cfp5702 Hypothetical protein, conserved CfaC1_30_4240 47.91 5.9 170 0.57

Cfp5901 Elongation factor 2, putative CfaC1_30_0260 171.5 5.8 59 0.54

Cfp6001 Fe-superoxide dismutase CfaC1_32_2350 19.25 6.0 356 0.59

Cfp6101 Iron superoxide dismutase CfaC1_25_0490 23.09 6.0 96 0.56

Cfp6102 Insufficient amount for identification - 25.23 6.0 - 0.06

Cfp6401 Coproporphyrinogen III oxidase CfaC1_24_0220 38.52 6.1 533 0.28

Cfp6504 Hypothetical protein CfaC1_19_0530 44.34 5.9 25* 0.05

Cfp6602 Insufficient amount for identification - 46.81 6.0 - 0.07

Cfp7001 Hypothetical protein, conserved/
Hypothetical protein, conserved

CfaC1_35_5730/40 19.87 6.2 36/35 0.03

Cfp7101 NADP-dependent alcohol
dehydrogenase, putative

CfaC1_22_0610 23.37 6.3 25* 0.01

Cfp7701 Catalase, putative CfaC1_30_0050 59.30 6.1 83 0.03
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place in the glycosome of these organisms (reviewed in [23]). In fact, other

monosaccharides may be increasingly utilized by choanomastigotes in mid

logarithmic phase as additional carbon and energy sources and/or to provide

Table 3. Cont.

Spot Protein TriTryp DB Id.
MW
(KDa) pI

MASCOT
score (p
,0.05)

Ratio
(PNA+):(PNA-)
(p ,0.05)

Cfp7403 Hypothetical protein CfaC1_30_0060 36.21 6.3 130 0.03

Cfp7502 Aldose 1-epimerase-like protein CfaC1_24_2950 53.96 6.3 169 0.64

Cfp7702 Catalase CfaC1_30_0050 87.42 6.2 159 0.53

Cfp7704 Catalase CfaC1_30_0050 87.11 6.3 215 0.36

Cfp7804 Fumarate hydratase, putative CfaC1_25_2280 98.56 6.1 95 0.06

Cfp8101 Hypothetical protein, conserved CfaC1_28_2780 24.22 6.5 21* 0.08

Cfp8401 Hypothetical protein CfaC1_26_0530 39.90 6.5 24* 0.04

Cfp8404 Insufficient amount for identification - 36.55 7.0 - 0.05

Cfp8501 Insufficient amount for identification - 41.22 6.3 - 0.04

Cfp8704 Insufficient amount for identification - 52.18 6.4 - 0.09

Cfp9002 Insufficient amount for identification - 20.12 9.5 - 0.01

Cfp9003 Insufficient amount for identification - 16.98 9.5 - 0.02

Cfp9602 Elongation factor 1a, putative CfaC1_15_0180 71.43 9.3 447 0.01

Cfp1301 Sphingosine kinase A, B, putative CfaC1_08_0670 36.09 4.6 32* 3.31

Cfp1801 Dipeptidylcarboxypeptidase, putative CfaC1_27_1750 70.35 3.5 38* 12.43

Cfp1804 Hypothetical protein CfaC1_13_1510 71.01 4.9 38* 503.6

Cfp3502 TATE DNA transposon CfaC1_19_2160 49.69 5.5 22* 1.96

Cfp4801 Hypothetical protein CfaC1_50_0070 78.23 5.7 38* 3.31

Cfp5602 Insufficient amount for identification - 56.13 6.9 - 40.85

Cfp6402 NADP-dependent alcohol dehydrogenase,
putative

CfaC1_22_0610 44.01 6.5 177 1.77

Cfp6403 NADP-dependent alcohol dehydrogenase,
putative

CfaC1_22_0610 44.01 6.5 39* 98.62

Cfp6802 Transketolase, putative CfaC1_30_4190 81.44 6.4 109 2.69

Cfp7302 Fructose-1,6-bishosphate aldolase, putative CfaC1_30_1480 39.05 6.2 270 1.92

Cfp7801 Hypothetical protein, conserved CfaC1_18_1860 90.58 6.6 52* 59.04

Cfp8701 Succinyl-CoA: 3-ketoacid-CoA transferase,
mitochondrial precursor, putative

CfaC1_04_0870 75.28 6.5 129 2.01

Cfp9203 Unspecified product (glycosomal malate
dehydrogenase orthologue)

CfaC1_AODS01001854_0010 35.74 9.6 188 3.16

Cfp9501 Fructose-1,6-bisphosphate aldolase,
putative

CfaC1_30_1480 48.93 9.2 526 1.89

Cfp9206 Insufficient amount for identification - 31.88 9.4 - 50.78

Cfp9207 Insufficient amount for identification - 31.29 8.5 - 49.33

Cfp9601 Hexokinase CfaC1_31_0400 61.24 9.2 611 7.26

Cfp9703 Insufficient amount for identification - 64.73 8.3 - 0.68

Estimated molecular weights, pI, MASCOTscores (*non-significant) and PNA+/PNA- ratios. Only spots with statistically significant ratios (p,0.05) over 1.7 or
under 0.6 were picked and analyzed and are shown in this table. Identifications were performed against the C. fasciculata genome sequence released in the
TriTryp database.

doi:10.1371/journal.pone.0113837.t003
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precursors for the biosynthesis of glycans. This is suggested on the basis of the

wide substrate specificity of the HK and the up-regulation of the phosphoman-

nomutase (PMM) and the aldose 1-epimerase (AEP). The PMM is involved in the

biosynthesis of N-glycans providing manose-1-phosphate, as the reaction is

reversible. The AEP is also up-regulated at the stationary phase, especially in PNA-

choanomastigotes (Tables 1 and 3). As highlighted in Fig. 3, the up-regulation of

these ALD variants may yield high levels of glyceraldehyde-3-phosphate not only

for the subsequent glucolytic reactions but also for the pentose-phosphate shunt,

provided the up-regulation of the transaldolase B (TALDO) at early logarithmic

phase (day 1) and the transketolase (TKETO) at mid logarithmic and stationary

phase. These proteins are related functionally with the phosphoribosyl pyropho-

sphate synthase (PRPPS), which is more abundant at day 2. These findings are

indicative of maximum activity of the glucolytic pathway at mid logarithmic

phase providing energy and essential precursors of certain amino acids,

ribonucleotides and derived coenzymes. By contrast, the highest expression levels

of genes involved in glucolysis are found in L. infantum promastigotes in

stationary phase [24] and differential regulation of genes involved in the pentose

phosphate shunt has not been detected up to date in these pathogenic

trypanosomatids.

Fig. 3. Differentially expressed proteins related with carbohydrate metabolic processes in C. fasciculata choanomastigotes. Functional connection
of differentially expressed enzymes involved in glucid metabolic processes. Legend: proteins/protein variants in blue are constitutively expressed throughout
the growth curve; proteins/protein variants in orange are up-regulated at day 1 or 2 (logarithmic phase); proteins/variants in green are up-regulated at day 3
or 4 (late logarithmic/stationary phase); proteins in red are up-regulated in PNA+ choanomastigotes; proteins in purple are up-regulated in PNA-

choanomastigotes.

doi:10.1371/journal.pone.0113837.g003
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The up-regulation of two alcohol dehydrogenases (ADH) at early logarithmic

phase is also related with sugar catabolism, as a relative inefficiency of the

respiratory process and the finding of subproducts as ethanol and lactate were

described in trypanosomatids (reviewed in [25]). Alternation in up-regulation

between ADH variants has been detected between PNA+ and PNA- choanomas-

tigotes (Table 3), and there are also constitutive and differentially regulated

variants of ADH and MDH.

In certain cases, only proteins that catalyze irreversible reactions and/or control

the kinetics of the metabolic process are increasingly abundant, whereas those

catalyzing reversible and non-limiting steps are constitutively expressed. This is

the case of the expression profile of glycolytic enzymes in C. fasciculata

choanomastigotes as the triose phosphate isomerase (TPI) and the phosphogly-

cerate kinase (PGK) (Fig. 3, Table 2) are constitutively expressed unlike others

mentioned above. Conversely, an L. infantum orthologue of the PGK reaches its

highest abundance in stationary phase promastigotes at the transcript level [24].

The aconitase is up-regulated in the promastigote stage with respect to

amastigotes in L. infantum [26] and the opposite profile was observed in L.

donovani [27], but the C. fasciculata orthologue is constitutively expressed in the

choanomastigote stage.

Several enzymes related with sugar metabolism are also differentially regulated

between PNA+ and PNA- choanomastigotes within the stationary phase. The

PGMBPI and the enolase are over-expressed, suggesting that only the second part

of glycolysis is more active in PNA- choanomastigotes in a bisphosphoglycerate-

independent manner. As a difference with mammalian organisms, the

trypanosomatid genomes encode the PGMBPI, which suggests that this protein is a

good drug target [28]. Interestingly, this enzyme is differentially regulated

between different life cycle stages in L. infantum [24] and also in C. fasciculata

according to the analysis described herein. The expression patterns of the HK,

ALD and TKETO are the opposite to those of the PGMBPI and the enolase.

Consequently, the expression profile of the glycolytic and the pentose phosphate

pathway are the same in the PNA+ subpopulation and the whole population in

stationary phase (Table 3). The finding is coherent as this is the major

subpopulation at that growth phase.

The heme biosynthetic enzyme coproporphyrinogen (III) oxidase (C(III)O) is

up-regulated in PNA- C. fasciculata choanomastigotes (Table 3) whereas it is

constitutively expressed throughout the growth curve (Table 2). Differential

expression was not observed during axenic growth of L. infantum promastigotes

either and it was revealed that C(III)O is up-regulated in intracellular amastigotes

[24] and axenic amastigotes obtained by temperature and pH shift [29]. The heme

group is necessary for a variety of cellular functions in Leishmania spp., including

not only the electron transport chain, but also the catalase, which is also over-

expressed in the PNA- subpopulation (see below).
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Changes in abundance of proteins involved in lipid metabolism

Fatty acid biosynthesis, ketone body degradation, b-oxidation of fatty acids and/

or branched chain amino acid degradation is probably more activated at day 2

because a putative 3-ketoacid-CoA thiolase (KAT) is up-regulated. This may be

linked with the up-regulation of the succinyl-CoA:3-ketoacid-CoA transferase

(SCAT), which suggests the utilization of ketone bodies in C. fasciculata mid

logarithmic phase choanomastigotes, which is of unknown meaning in

trypanosomatids. The existence of ketone bodies in trypanosomatids was tested by
1H NMR in L. donovani axenic amastigotes [30]. These molecules are probably

mere intermediate metabolites in these organisms. Given that the SCAT catalyzes

the split of acetoacetate into two acetyl-CoA molecules, a probable explanation for

its up-regulation may be that it is involved in the last step of Leu degradation, as

well as KAT up-regulation suggests a role in Ile catabolism and the DHL in

degradation of all branched chain amino acids. Conversely, thiolases reach their

highest expression levels in stationary phase promastigotes in L. infantum [24].

The SCAT is down-regulated in the PNA- choanomastigote subpopulation, which

indicates a decrease throughout choanomastigote development taken together

with the results obtained for the growth curve.

Changes in abundance of proteins involved in gene expression

regulation and signal transduction

A decreased translational elongation rate is expected throughout the growth curve

of choanomastigotes, as the abundance of the eukaryotic translation initiation

factor 5a (eIF5a), the translation elongation factor 1b (EF1b) and the elongation

factor 2 (EF2) decreases. This is likely due to the higher metabolic activity and

faster growth in logarithmic phase choanomastigotes. However, other proteins

involved in gene expression regulation that are differentially abundant in L.

infantum promastigotes [24, 31] are constitutively expressed conversely in C.

fasciculata choanomastigotes: the EF1a, a poly(A) binding protein (PABP2), two

RNA-binding proteins (RNA bp) and an ATP-dependent RNA helicase (Table 2).

These proteins may be involved in developmental processes rather than in growth

in Leishmania spp. promastigotes. A similar hypothesis can be posed to explain

the up-regulation of the eIF5a, the EF1a, the EF2 and the endoribonuclease L-PSP

in the PNA- choanomastigotes, as this minor subpopulation was isolated from

culture in stationary phase, where growth conditions would not explain an

increase on the translation rate. The transcript levels of PABP are also higher in L.

infantum PNA- promastigotes, but those of the EF1a were significantly lower, thus

being the expression profile the opposite [11]. In fact, three variants of the EF1a
protein are more abundant in stationary phase promastigotes, where the PNA+

promastigote subpopulation is by far the more represented [14]. Future in depth

analysis of these differences between both parasites may aid to explain why their

developmental processes are different.

As for protein folding, only a variant of the hsp60 chaperonin is more abundant

in early logarithmic phase choanomastigotes, whereas other variant of this
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protein, a DnaJ domain-containing protein, two cyclophilins and the adenosine

kinase domain-containing nucleoside diphosphate kinase b (Ndkb) are consti-

tutively expressed throughout the growth curve of axenic choanomastigotes.

These findings also contrast with results found in L. infantum promastigotes

[11, 14, 24, 31]. To put an example, a cyclophilin is up-regulated in stationary

phase promastigotes in L. infantum.

Regarding intracellular signalling, the C. fasciculata analogue (CACK)

(gi3132790; CfaC1_26_3810) of the receptor of the activated protein kinase C

(RACK) is up-regulated in early logarithmic phase choanomastigotes (day 1)

(Fig. 2, Table 1). This expression profile has been confirmed by Western blot

(Fig. 4, Figures S1 and S2 in S2 File), which has revealed the progressive descent

of CACK abundance throughout the choanomastigote growth curve. The

leishmanial orthologue LACK, an antigenic protein that partially protects against

canine leishmaniasis [32, 33, 34], is located in the particulate fraction of the

cytoplasm near the plasma membrane. LACK is up-regulated in L. infantum

amastigotes but constantly expressed in promastigotes [18, 24]. Consequently, the

CACK/LACK expression patterns in the motile stages of C. fasciculata and L.

infantum are different, what suggests different roles in proliferation and

differentiation in their respective life cycles. PKCs are translocated by their

receptor (RACK) to different intracellular sites [35] and activated via

phospholipase C or Ca2+. PKCs and RACKs are involved in a variety of

characterized signal transduction cascades in mammals [36]. However, their role

in specific pathways is unknown in these parasites. Although the kinomes of

trypanosomatids are well characterized [37], the signaling pathways may not be

necessarily the same as in other organisms like yeasts and mammals. Signaling

proteins are expected to regulate gene expression but most of the specific

mechanisms and pathways have not been unraveled yet and may be different given

the unique features of gene expression in these parasites (reviewed in [38]). The

unknown specific function of this protein in signaling may be especially important

in Leishmania spp. for resistance of amastigotes inside the parasitophorous

vacuole of the host phagocyte cell whereas the only colonization step of the

Crithidia spp. life cycle is the infection of the gut of the insect host. CACK and

LACK seem to be important for growth and/or development of the motile stages

of the respective species they belong to, as up-regulation in C. fasciculata

logarithmic phase choanomastigotes has been found herein and its leishmanial

orthologue is one of the 50 most abundant transcripts of L. major promastigotes

[39].

Changes in abundance of proteins involved in thiol-based redox

homeostasis

The TryP of C. fasciculata previously characterized [40] (gi3851500;

CfaCl_10_1430) is over-expressed in mid logarithmic phase choanomastigotes, as

well as the thiol-dependent reductase 1 (TDR1) (Table 1, Fig. 5). This is an

important difference with promastigotes of L. major, an ethiological agent of
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cutaneous leishmaniasis in the Old World, as TryP is constitutively expressed in

all the stages of its life cycle [41, 42]. It is also known that L. donovani amastigotes

up-regulate the TryP with respect to promastigotes [27]. The catalase is absent in

pathogenic trypanosomatids [43] but not in C. fasciculata. In fact, variants

matching with the annotations CfaCl_30_0050 have been identified in several

spots (Tables 1 and 3). For this reason, hydrogen peroxide removal in C.

fasciculata is not necessarily dependent on trypanothione-linked peroxidases, as a

difference with the pathogenic trypanosomatids. Like the TryP, this protein is

more abundant at mid logarithmic phase. These data suggest higher levels of

oxidative stress counteracted with TDR1, TryP and catalase up-regulation in

Crithidia spp. choanomastigotes than in Leishmania spp. promastigotes at mid

logarithmic phase, possibly due to the greater growth rate observed in the former

(Fig. 1). In fact, the stationary phase is reached about 5–7 days in a typical growth

curve of Leishmania spp. (e.g., [24]). The up-regulation of TDR1 suggests that the

glutathione-ascorbate cycle is also participating in counteracting oxidative stress.

The analysis of the PNA+ and PNA- subpopulations within the stationary phase

has revealed that the entire redox defense system is up-regulated in the latter

(Table 3). This includes the catalase (three variants), the iron superoxide

dismutase (Fe-SOD) (two variants), a hypothetical protein (CfaC1_05_0410)

orthologue to the trypanothione reductases (TryR) of the pathogenic trypano-

somatids and two TryP variants. Therefore, the thiol-based redox defense system

is over-expressed in an NADPH-dependent manner in PNA- choanomastigotes.

These findings taken together with the expression profile observed throughout the

growth curve suggest that the differentiation process of C. fasciculata motile

choanomastigotes involves an increase in oxidative stress in the axenic culture

model that is overcome by the up-regulation of this defense system. These changes

have not been observed at the transcript level in L. infantum PNA- promastigotes

within the stationary phase [11], as well as at the whole stationary phase

population at the protein level in L. infantum [14] and in L. major [41, 42]. The

Fe-SOD reduces the superoxide anions generated in the ribonucleotide reductase

Fig. 4. CACK is up-regulated in logarithmic phase choanomastigotes. Detection and differential
expression analysis of CACK in 20 mg total protein extracts by Western blot with 1:500 polyclonal antibody
against the LACK analogue throughout the choanomastigote growth curve. The ,60 KDa band presumably
contains dimeric CACK aggregates (González-Aseguinolaza et al., 1999). gGAPDH is the protein of reference
(dilution 1:10,000 of the monoclonal antibody).

doi:10.1371/journal.pone.0113837.g004
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(RNR) reaction and other reactions to hydrogen peroxide. Then, the catalase and the

TryP, catalyze hydrogen peroxide oxidation and peroxidative reactions (reviewed in

[44]). The thiol-dependent mechanism also reinforces the reactive oxygen species

(ROS) reduction (Fig. 5). This system was characterized in C. fasciculata and consists

of the enzymes TryR and TryP, also including the tryparedoxin (TryX[S]/[SH2]).

The trypanothione (T[S]/[SH2]) (reviewed in [45]). The T[S]/[SH2] consists of two

glutathione residues coupled through a spermidine molecule. The peroxiredoxin

TryP acts as a catalase and also reducing a variety of other ROS and the TryR

regenerates the T[SH2] (reduced form) to T[S] (oxidized form).

To summarize, the thiol-based redox control system is over-expressed in mid

logarithmic phase C. fasciculata choanomastigotes and at the PNA- subpopulation

within the stationary phase. The faster growth kinetics compared to Leishmania spp.

may be related to the higher levels of oxidative stress overcome by the up-regulation

of TDR1, TryP and the catalase in C. fasciculata rather than in Leishmania spp. The

up-regulation of the TryR-TryP system together with the catalase and the Fe-SOD

in PNA- choanomastigotes suggests a relationship between differentiation and the

capability to overcome increased levels of oxidative stress.

Fig. 5. Differentially expressed proteins involved in redox homeostasis and translation in C. fasciculata choanomastigotes. (A) The redox control
system. Legend: proteins/protein variants in blue are constitutively expressed throughout the growth curve; proteins/protein variants in red are up-regulated
at day 1 or 2 (logarithmic phase); proteins in purple are up-regulated in PNA- choanomastigotes. (B) Summary of differential abundance of translation factors
and enzymes involved in redox homeostasis throughout the growth curve and in the PNA- subpopulation of choanomastigotes in stationary phase.

doi:10.1371/journal.pone.0113837.g005
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Differences in the proteome profiles of the motile stages of C.
fasciculata and Leishmania spp.

Stage-specific regulation at the transcript and protein levels in the genus

Leishmania has been widely studied. Much of the information extracted is related

to differentially regulated genes between amastigotes and promastigotes

[27, 29, 41, 46, 47] but few analyses have provided data about differential

expression throughout the promastigote growth curve [48, 49, 50]. A high-

throughput transcriptome analysis was specifically focused on the differences

between logarithmic and stationary phase promastigotes with amastigotes in L.

infantum [24]. Comparing the proteomic data sets available for the motile stages

of L. infantum [14] and C. fasciculata (this work), an important difference has

been found, the up-regulation of the TryR in logarithmic phase promastigotes in

the former (this gene was reported as thiol-dependent antioxidant protein,

gi21307665 in the NCBI protein databank and corresponds to gene LinJ.05.0350)

vs. the PNA- subpopulation in C. fasciculata.

Important differences with Leishmania spp. can be noticed taking the

information extracted from the transcriptome and the proteome as a whole.

Indeed, regarding metabolic processes, the expression profiles of glucolytic

enzymes and the thiolase between the motile stages of L. infantum and C.

fasciculata are different. Glucolysis is active in Leishmania spp. promastigotes and

probably reaches its highest activity in stationary phase, whereas expression of

many of the glucolytic enzymes decays in stationary phase choanomastigotes in C.

fasciculata, being increased only in PNA- parasites.

As a difference with the L. major TryP [40], the C. fasciculata orthologue does

not maintain constant expression levels in the motile stage, especially in the PNA-

subpopulation of choanomastigotes in stationary phase, where the whole thiol-

based redox defense system (catalase, Fe-SOD, TryP, TryR) is up-regulated. In

fact, differential expression of the TryR, the TryP and the Fe-SOD was not found

in L. major and L. infantum metacyclic promastigotes, whereas the tryparedoxin

levels vary between procyclic and metacyclic promastigotes in both species

[11, 48, 49]. Additionally, up-regulation of the TryR observed in L. infantum

logarithmic phase promastigotes has been precisely the only one not found in C.

fasciculata choanomastigotes, where TDR1 is more abundant instead. The

oxidative phase of the pentose-phosphate shunt is the source of NADPH for these

important cellular processes and it is constitutively expressed in both organisms

probably. However, the non-oxidative phase of this pathway is over-expressed in

logarithmic phase only in C. fasciculata. The plethora of changes in gene

expression regulation and post-translational modification of proteins observed

previously in L. infantum promastigotes has not been observed in C. fasciculata

choanomastigotes. Indeed, only the eIF5a, the EF1b, the EF2 and the hsp60 are

up-regulated in logarithmic phase choanomastigotes (Table 1) whereas the PABP,

two RNAbp, two variants of the EF1a, an ATP-dependent RNA helicase, a

different hsp60 variant, the Nkdb, a DnaJ chaperone and a peptidyl-prolyl cis-

trans isomerase and two cyclophilins are constitutively expressed throughout the

growth curve (Table 2) according to this analysis. A different profile of EF2
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expression was observed in L. major, where it is over-expressed in metacyclic

promastigotes [48]. Interestingly, the EF1a is more abundant in PNA-

choanomastigotes of C. fasciculata, what is opposite to PNA- promastigotes of L.

infantum, where it decreases. This may be linked with differences between the

developmental processes these parasites undergo instead of being related to

growth in a rich medium and contributes to explain in part the differences

between the life cycles of C. fasciculata and Leishmania spp. Promastigotes

undergo a deep differentiation process inside the gut of the phlebotomine sand fly

to successfully establish intracellular infection in the mammalian host. By

contrast, the life cycle of Crithidia spp. is monogenetic and differentiation of the

characteristic choanomastigote motile stage is probably not so complex because

the amastigote stage is not intracellular. This assumption is suggested by the

substantial differences found in the abundance of proteins involved in gene

expression regulation and protein modification between both genera. However,

both organisms are close in the crown of the phylogenetic tree of trypanosomatids

and growth kinetics of their motile stages in culture is similar. For this reason,

future in depth study of these differences in protein abundance may help to

explain their different mechanisms of adaptation to axenic cultures that mimic the

conditions of the insect host gut. The MASCOT identifications performed against

the NCBInr database (Tables S1-S3 in S1 File) provide additional evidence for the

hypothesis of a very close relationship in the evolutionary tree. The increased

abundance of the translation factors eIF5a, EF1b the EF2 in early logarithmic

phase choanomastigotes may be linked to a more active metabolic status required

for growth, whereas the increase in eIF5a, EF1a and EF2 in the PNA-

choanomastigote subpopulation in stationary phase suggests a role in develop-

ment, as it cannot be associated to growth under starvation conditions (Fig. 5B).

The same has been observed with the redox homeostasis control system.

Logarithmic phase C. fasciculata choanomastigotes up-regulate the ascorbate-

dependent TDR1, as well as the TryP, the catalase and the Fe-SOD, probably

because of an increased oxidative stress resulting from faster growth kinetics than

in Leishmania spp., and the abundance of these enzymes decay in the ongoing of

the growth curve. Then, it increases again in the PNA- subpopulation within the

stationary phase (TryR instead of TDR1), being presumably associated to

development at this stage as well (Fig. 5B). It is important to notice that the

expression profiles described correspond to the motile stages of these parasites in

axenic culture and the developmental processes of Crithidia spp. are almost

unexplored. The axenic culture model is widely accepted in Leishmania spp.

because cultured promastigotes are able to stablish infection in mammalian hosts,

what suggests that the main developmental processes may be reproduced in

culture. In the case of Crithidia spp., it is not known whether culture greatly

affects development. The main findings of this study point to similar but faster

growth kinetics in C. fasciculata and different metabolic adaptations to the same

culture medium conditions.
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Conclusions

The growth kinetics is slightly faster in C. fasciculata than in Leishmania spp.

Choanomastigotes of C. fasciculata are able to agglutinate with PNA and a non-

agglutinating subpopulation can be isolated. Consequently, the behavior in the

presence of the lectin is the same. Logarithmic phase choanomastigotes of C.

fasciculata over-express CACK, enzymes involved in redox homeostasis (TDR1,

TryP, catalase and Fe-SOD), the translation factors eIF5a, EF1b and EF2 and most

of the glycolytic enzymes catalyzing irreversible reactions and the enzymes of the

non-oxidative phase of the pentose-phosphate pathway. The abundance of the

translation factors (EF1a instead of EF1b) and of the enzymes involved in redox

homeostasis (TryR instead of TDR1) increases again in the PNA- subpopulation.

These changes in abundance may have a role in growth in the nutrient rich

environment at the logarithmic phase and a role in differentiation in the minor

PNA- subpopulation within the population in stationary phase.

Supporting Information

S1 File. Supporting tables. Table S1. Differentially regulated proteins throughout

the growth curve of C. fasciculata choanomastigotes identified with the NCBInr

database. Estimated pI, significant MASCOT scores and ratios to day 1 are

provided. Only spots with statistically significant ratios (p,0.05) over 1.7 or

under 0.6 were picked and analyzed and are shown in the table. As a consequence,

hyphens in the columns containing ratios do not necessarily indicate lack of

differential abundance, because there are also cases of lack of statistical

significance of ratios indicating over- or under-expression. Table S2. Constantly

expressed proteins throughout the growth curve of C. fasciculata choanomasti-

gotes identified with the NCBInr database. Estimated molecular weights, pI and

significant MASCOT scores are provided. Table S3. Differential abundance of

identified proteins between the PNA+ and PNA- subpopulations of C. fasciculata

choanomastigotes in stationary phase of axenic culture identified with the NCBInr

database. Estimated molecular weights, pI, significant MASCOT scores and PNA+/

PNA- ratios. Only spots with statistically significant ratios (p,0.05) over 1.7 or

under 0.6 were picked and analyzed and are shown in the table.

doi:10.1371/journal.pone.0113837.s001 (DOCX)

S2 File. Supporting figures. Figure S1. Western blot of C. fasciculata

choanomastigote protein extracts throughout the growth curve for CACK

detection. Complete image of the autoradiography. Figure S2. Western blot of C.

fasciculata choanomastigote protein extracts throughout the growth curve for

gGAPDH detection. Complete image of the autoradiography.

doi:10.1371/journal.pone.0113837.s002 (PPT)
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