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Over the past decades, the genome and proteome have been widely explored for biomarker discovery and
personalized medicine. However, there is still a large need for improved diagnostics and stratification
strategies for a wide range of diseases. Post-translational modification of proteins by glycosylation affects
protein structure and function, and glycosylation has been implicated in many prevalent human diseases.
Numerous proteins for which the plasma levels are nowadays evaluated in clinical practice are glycopro-
teins. While the glycosylation of these proteins often changes with disease, their glycosylation status is
largely ignored in the clinical setting. Hence, the implementation of glycomic markers in the clinic is still
in its infancy. This is for a large part caused by the high complexity of protein glycosylation itself and of
the analytical techniques required for their robust quantification. Mass spectrometry-based workflows
are particularly suitable for the quantification of glycans and glycoproteins, but still require advances
for their transformation from a biomedical research setting to a clinical laboratory. In this review, we
describe why and how glycomics is expected to find its role in clinical tests and the status of current mass
spectrometry-based methods for clinical glycomics.
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Fig. 1. Glycosylation types most commonly found on human proteins and approaches for their analysis. (A) A selection of N- and O-GalNAc-glycans found on human proteins
on their respective attachment sites [23]. (B) Analytical approaches to study protein glycosylation at the level of the intact glycoproteins, glycopeptides or released glycans
and their specific advantages [17,24]. Monosaccharides are depicted by symbols according to the Symbol Nomenclature for Glycans (SNFG) [25].
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1. Introduction

There is a need for new biomarkers that target currently unmet
clinical needs in patient diagnosis, stratification and monitoring.
The proteome has long been recognized as a promising source of
diagnostic markers and the growing understanding that a protein
is actually a family of structurally variant molecules has impacted
how we utilize this resource [1]. A vast diversity of proteoforms is
caused by genetic and transcriptomic variation as well as post-
translational modifications (PTMs) [2,3]. One of the most abundant
and complex PTMs is protein glycosylation, which involves the
enzymatically regulated attachment of carbohydrate structures to
proteins. This modification has been found to have a large disease
biomarker potential [4]. Many proteins currently measured in the
clinical laboratory are glycoproteins [5,6], but there are only a
few examples of glycosylation itself being used as a marker in clin-
ical practice [7–9]. Many reviews on protein glycosylation have
been published, often with a focus on disease processes [10–14].
Likewise, methods for protein glycosylation analysis have been
covered [15–19]. In this review we aim to outline the path from
the detection of glycan-based biomarker candidates to the devel-
opment and implementation of medical tests. We will evaluate
currently available analytical methods and approaches for protein
glycosylation analysis, focusing on clinical applications, and dis-
cuss challenges that need to be addressed to promote the introduc-
tion of protein glycosylation tests in the medical laboratory.

1.1. Protein glycosylation

Over half of all human proteins are modified with one or more
glycans [20]. These glycans can affect protein folding, stability,
half-life, targeting, as well as receptor interaction [21]. Protein gly-
cosylation is vastly heterogeneous and is accomplished by a range
of different biosynthetic pathways. Two of the most abundant
types of protein glycosylation are N-glycosylation and O-GalNAc
glycosylation (O-glycosylation; Fig. 1A). N-glycosylation is initiated
by the co- or post-translational transfer of a 14-monosaccharide
precursor to the Asn in an Asn-Xxx-Ser/Thr (Xxx – Pro) motif in
the endoplasmic reticulum (ER) and subsequently subjected to gly-
cosidase and glycosyltransferase treatment to reach a mature
structure. O-glycosylation is initiated by the Golgi transfer of one
GalNAc to a Ser or Thr residue after which enzymatic elongation
and diversification occurs. While glycans are often attached to pro-
teins, other glycoconjugates such as glycosphingolipids and gly-
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cosaminoglycans exist, and the overall set of glycan determinants
covering the human glycome has been estimated to be many thou-
sands [22]. The biosynthesis of protein and lipid glycosylation is a
non-template-driven process and occurs in the ER and the Golgi
apparatus by the interplay between glycan-modifying enzymes,
sugar nucleotide transporters and monosaccharide donor availabil-
ity. These processes are largely controlled locally and are, there-
fore, tissue- and cell type-specific. The six most prevalent
monosaccharides in human protein glycosylation, as well as some
examples of their involvement in the structures of mature glycans,
are depicted in Fig. 1A. Many different glycan structures may
occupy one protein glycosylation site causing diversity between
protein copies (microheterogeneity). In addition, protein copies
may carry multiple glycosylation sites with differences in site
occupancy (macroheterogeneity). Combined, micro- and micro-
heterogeneity lead to the presence of a large number of glycoforms
of a protein. To reflect this heterogeneity, the analysis of glycopro-
teins usually does not target only one analyte, but rather a reper-
toire of glycoforms that together form the glycosylation profile of
a protein, tissue or cell type. The structural variability as well as
the potential engagement of glycoconjugates in glycan-protein
interactions are, despite their importance, for the most part, still
poorly explored [22].

1.2. Glycosylation changes in disease

Glycoconjugates play important roles in many physiological
and pathophysiological processes [21]. Striking examples are a
multitude of monogenic defects in the synthesis of glycoconjugates
that can lead to very severe, rather rare disorders, the so-called
congenital disorders of glycosylation (CDGs) [26–28]. CDGs are
usually multi-organ pathologies and many variants result in prena-
tal death or severe cognitive impairment of the patient [26]. A
genetic defect in one step in the glycan biosynthetic pathway often
results in defect-specific glycosylation phenotypes that can be
found throughout the glycoproteome of a CDG patient [29]. Due
to these systemic phenotypes, a CDG often affects the integrity
and function of multiple tissues. The versatility of CDG phenotypes
illustrates the importance of a correct glycosylation in human
development and homeostasis.

Next to CDGs, glycans are implicated in many prevalent human
diseases [30]. This is reflected in up- or downregulation of certain
glycoforms on specific proteins, resulting in altered glycosylation
profiles. For various types of cancer, cell surface glycosylation is
involved in disease processes, such as cell proliferation, metastasis
and immune modulation [31]. Furthermore, the differential
expression of glycoforms has been reported at both the cancer tis-
sue level and the systemic level [31]. For example, serum
immunoglobulins feature a reduced galactosylation in many can-
cer variants [32–34]. Also, in immune diseases and metabolic dis-
orders, protein glycosylation is often affected [14,33,35,36]. Of
note, plasma protein glycosylation changes found in diabetes have
recently received considerable attention as a potential source for
novel biomarker and drug targets [35]. HNF1A-MODY-type dia-
betes is directly linked to the decrease of antennary fucosylation
of plasma proteins, which has high potential to serve as a target
in the diagnosis of this rare subtype of the disease [37]. While cer-
tain pathological conditions may result in vastly skewed protein
glycosylation patterns, other factors such as genetic variation,
sex, age, body mass index and smoking have also been described
to induce considerable inter-person variability in the healthy pop-
ulation [14,38]. A prominent example is the level of IgG galactosy-
lation that correlates with sex and age, as well as overall health
status [33]. This highlights the importance of taking these factors
into account as potential confounding factors when studying
glycans as disease markers.
2. Current status of clinical glycomics

Numerous clinical chemistry tests for protein levels used in
patient diagnosis, stratification and monitoring target glycopro-
teins [6]. However, none of these assess glycoprotein-specific gly-
can features, but rather the overall glycoprotein concentration.
Examples are prostate specific antigen (PSA), a-fetoprotein (AFP),
carcinoembryonic antigen (CEA), mucin 1 (MUC1), MUC16, human
epididymis protein 4 (HE4), human epidermal growth factor recep-
tor 2 (HER2), thyroglobulin (Tg), many of the coagulation enzymes,
and all immunoglobulin (Ig) isotypes [5,6]. While most of these
proteins have proven their applicability in diagnosing certain
pathologies, e.g. the early detection of prostate cancer (PSA) or
the monitoring of colorectal cancer treatment (CEA), they often
lack clinical specificity [39–41]. This is partly caused by substantial
inter-individual variation in protein levels in combination with an
only moderate change in protein concentrations during the early
stages of disease. Protein glycosylation, as described above, is a
modification whose structure is highly dependent on the tissue
and microenvironment where the glycoprotein is produced. Hence,
it is thought that subpopulations of serum proteins, in the form of
tumor tissue-specific glycoforms, may offer a higher specificity in
disease diagnosis than the concentration of a protein alone [6].
Indications for improved clinical specificity through the quantita-
tion of glycoforms have indeed been reported for, amongst others,
the proteins PSA, AFP and IgG [33,38,42,43]. For PSA glycans,
higher levels of a2,3-linked sialylation are found in patients with
high-risk prostate cancer [42], while for AFP glycosylation, the
level of core fucosylation is positively associated with the occur-
rence of hepatocellular carcinoma and its progression [43]. Fur-
thermore, IgG galactosylation levels, more than absolute IgG
plasma levels, are found to be a marker for systemic inflammation
[33,38]. It must be noted that for most human proteins the glyco-
sylation, as well as the clinical relevance thereof, has hitherto not
been studied.
2.1. Glycomic markers in the clinic

While there are multiple reports of glycomic changes with dis-
ease, only a handful of glycomic markers are routinely used in the
clinic [44]. For example, cancer antigen 19-9 (CA19-9) is a serum
marker for monitoring response to therapy in patients with pan-
creatic adenocarcinoma [8]. This antigen is a tetrasaccharide (sialyl
Lewis a), usually carried by glycolipids or mucins present in minor
amounts in the circulation of healthy individuals. The increase of
this antigen in the circulation is assessed in the clinical laboratory
based on monoclonal antibody binding. Despite limitations, such
as false negative test results in sialyl Lewis-negative individuals,
CA19-9 remains an important glycomics marker for monitoring
pancreatic cancer, as well as in the diagnosis of symptomatic
patients [8].

In the case of hepatocellular carcinoma (HCC) and other liver
conditions, clinical translation of glycomics biomarkers is already
well-advanced [45–47]. Helena Biosciences has recently launched
a glycomics-based blood test on a certified capillary electrophore-
sis (CE) platform for the diagnosis and prognosis of various liver
diseases, including HCC [7]. The tests are based on total serum N-
glycome profiles obtained by enzymatic release of glycans from
the serum proteins. While the N-glycan release of total serum pro-
teins does result in rather complex mixtures of hundreds of differ-
ent structures [48], the clinically used method simplifies the
challenge through enzymatic desialylation, followed by targeted
quantification of just four glycoforms of interest [7,45].

Mass spectrometry (MS) is an emerging technology in clinical
glycomics. The most advanced example of clinical glycomics by
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MS is the analysis of transferrin glycosylation in the diagnosis of
alcohol abuse and CDGs [26]. Carbohydrate deficient transferrin
is routinely measured for alcohol abuse using immunonephelo-
metric or immunoturbidimetric techniques [49,50], but MS-based
methods have been reported to characterize reference materials
and calibrators [51]. Genetic analyses often play a key role in the
diagnosis of CDGs, complemented by glycomics assays that include
the intact mass analysis of human serum transferrin with its N-
glycoforms [28]. In addition to its diagnostic power, MS analysis
of transferrin glycoforms is instrumental in treatment monitoring
[28]. A recent publication also attempted to define the type of
CDG (i.e., identifying the enzyme affected) by quantifying specific
glycans using multiple reaction monitoring (MRM)-MS [52]. Simi-
lar to CDGs, the degradation of glycoconjugates may be disturbed
in monogenic diseases leading to lysosomal storage disorders
[53]. These disorders are detected using an array of techniques,
including genetic tests, enzyme assays and MS analysis of glyco-
conjugates from dried blood spots [54].
2.2. Clinical glycomics technology

In the past decade, MS has been recognized as a valuable tech-
nique for the quantification of proteins in the clinical chemistry
laboratory [55]. Specifically, the use of MRM for targeted quantifi-
cation of peptides representative of a protein for deducing protein
concentrations was selected ‘Method of the Year’ by Nature Meth-
ods in 2012 [56]. The advantages of MS-based quantification of
proteins over traditional immunoassays have been outlined clearly
[57]. Immunoassays are fraught with a lack of concordance among
immunoassay platforms, interference due to autoantibodies or
anti-reagent antibodies and the high-dose hook effect. The direct
quantification of proteins by MS, independent of antibodies, over-
comes these disadvantages.

A second advantage of MS is its increased analytical specificity
over conventional detection methods. MS-based methods allow for
the unequivocal identification of glycans, peptides and glycopep-
tides through the unique combination of precursor mass and frag-
mentation patterns [58]. As such, the technique allows for the
molecular characterization of proteins (the proteoforms), including
the presence of specific glycoforms [17,59]. The measurand of a
test can, thus, be defined much more accurately using MS, as com-
pared to using activity- or immunoassays, that are typically ‘blind’
to the individual proteins [3,60].

Despite these advantages, current methods for glycomic analy-
sis that have a high enough level of accuracy and precision to be
used for clinical chemistry purposes rely predominantly on non-
MS-based approaches. Important examples are antibody binding
assays for the detection of specific glycan epitopes on intact glyco-
conjugates [8,61] and CE with fluorescence detection (FLD) for the
analysis of released and labeled N-glycans from plasma or serum
[7,45]. HILIC-FLD, likewise, has potential for highly robust analysis
of released glycans in the clinic [62], but until now has not been
used in this setting.

In contrast, MS is extensively used in glycomics biomarker dis-
covery [17], particularly since the throughput and level of robust-
ness that allows the glycosylation analysis of large numbers of
clinical samples has recently been reached [63,64]. This is impor-
tant, because there is often not a single protein glycoform that
shows biomarker potential for a certain condition, but rather a
panel of structures that are, ideally, analyzed simultaneously
[45]. It is anticipated that glycan-based markers that are discov-
ered by MS methods could be validated and translated more easily
if MS-based quantitative glycomics could be applied in clinical
chemistry laboratories.
3. Mass spectrometric approaches for clinical glycomics

The translation of glycomic markers to the clinic, and the adap-
tation of MS for this purpose, is still in its infancy. Importantly, the
requirements of methods for biomarker development, validation
and implementation differ, as each of these phases requires the
analysis of different numbers of samples, and a different level of
accuracy and precision. For proteomics, this has resulted in the def-
inition of 3 levels of methods [65]. Tier 3 methods may be used for
biomarker discovery, with very limited requirements in terms of
precision and accuracy. Tier 2 assays with more considerations
for accuracy and precision can be used for biomarker validation.
Tier 1 tests, that should fulfill stringent quality requirements, are
needed for clinical chemistry purposes. Given the extreme com-
plexity of protein glycosylation, most MS-based glycomics
approaches are suitable for biomarker discovery studies, but their
translation to widely used MS-based clinical chemistry tests
requires further advancements.

All aspects of a test - the pre-analytical, analytical and post-
analytical phases - should be well-designed during test develop-
ment [66], and should already be considered in the early stages
of biomarker discovery to avoid false positive results and research
waste. The pre-analytical phase comprises sample collection,
transport and storage. Glycomics studies have often been per-
formed using serum or citrated plasma, yet it is unclear as to what
extent glycomic signatures might change with storage conditions,
and this should be evaluated in future studies. Recently, the use
of dried blood spots as a stable matrix for the analysis of glycans
has been reported [67,68]. A number of critical elements can be
identified that determine the quality of MS-based quantitative
tests [66]. These include the definition of the measurand, the selec-
tion of the calibration strategy, the enzymatic digestion, as well as
the selection of LC stationary phase, and MS detection mode. The
Clinical Laboratory and Standards Institute (CLSI) has recently
developed guidelines for the development of LC-MS-based quanti-
tative tests [69,70]. Once both the pre-analytical and analytical
phases are in place, the definition of reference intervals or decision
limits is important to allow accurate decision making and usability
by clinicians. Guidance for the determination of these post-
analytical parameters may be found in the CLSI document C28-
A3c [71]. All the aspects mentioned above are important to ensure
proper test performance once implemented into clinical care. To
ensure that methods that are reported in literature can be repro-
duced and have been evaluated to a level that is accepted by the
field, guidelines are often implemented for publication standards.
Indeed, such guidelines have been described and should be
adhered to for reporting of glycomic identifications [72], as well
as clinical bottom-up proteomic methods [73].

Mass spectrometric protein glycosylation analysis may be per-
formed at different levels, including the analysis of released gly-
cans, glycopeptides and intact glycoproteins. Each of these
approaches has their own strengths and weaknesses, resulting in
their respective preferred applications (Fig. 1B) [17]. Of note, the
protein- and site-specificity of glycosylation analysis achieved by
analyzing intact glycoproteins or glycopeptides, often provides
information that is functionally meaningful. For example, in the
case of human IgG1, glycopeptide analysis allows specific assess-
ment of the glycosylation of the IgG1 Fc portion. The results can
be interpreted in light of the known influence of IgG1 Fc glycosyla-
tion on FccIII-receptor interaction and resulting effector functions
such as antibody-dependent cellular cytotoxicity [74].

One implication of the diverse and heterogeneous nature of gly-
cosylation is that high analytical sensitivity is required. Where the
assessment of protein concentrations by MS can rely on the analy-



Fig. 2. Sub-stoichiometric nature of glycosylation requires methods with high analytical sensitivity. While the MS-based quantification of proteins can rely on the detection
of one peptide representative for all proteoforms, glycopeptide-based glycoform quantification requires the evaluation of one glycopeptide per glycoform of interest. Blue,
yellow and grey balls give a schematic representation of a protein/peptide, glycan and glycosylation site, respectively. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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sis of one or two peptide(s) – representative of most, if not all, pro-
teoforms – the quantification of a specific glycoform has to account
for the sub-stoichiometric nature of glycosylation. It is not unusual
that one protein glycoform accounts for less than 1% of the total
abundance of a specific protein (Fig. 2).

3.1. Separation and ionization

In addition to their complexity and low abundance, glycans are
relatively hydrophilic and do not carry a readily protonatable
group, complicating their ionization in positive mode and desorp-
tion/desolvation, which is needed for MS analysis. This results in a
reduced ionization efficiency for glycoconjugates, as compared to
other analytes and matrix components, especially when released
glycans or glycopeptides are assessed.

One approach to overcome the ion suppression of glycans or
glycopeptides by their matrix components is to deplete the inter-
ferences in the samples [17]. This may be done via off-line solid-
phase extraction (SPE) methods. Immunoaffinity or lectin enrich-
ment are used when one is interested in specific glycoproteins or
glycoforms, respectively. Hydrophilic interaction liquid chro-
matography (HILIC)-SPE is a tool for the untargeted enrichment
of glycans and glycopeptides and is a common step in glycomics
sample preparation [17]. However, for the introduction of gly-
comics in the clinical laboratory, enrichment steps are preferably
omitted to reduce sample-handling and the introduction of biases.

Fortunately, glycosylation analysis by MS via electrospray ion-
ization (ESI) has recently seen several developments that allow it
to partially overcome the low ionization efficiency of glycans and
glycopeptides via improved ionization regimes. A prominent
example is the implementation of dopant enriched nitrogen-gas
(DEN-gas) at the interface between a liquid-phase separation mod-
ule (e.g., liquid chromatography (LC) or CE) and the MS [75,76].
Using a DEN-gas setup, a vapor-enriched gas flows coaxially
around the ESI emitter and enhances droplet desolvation [77]. This,
in combination with the occurrence of higher charge states, has a
positive effect on the detection of glycoconjugates [48,75,76].
Additionally, low-flow ESI conditions improve the analytical sensi-
tivity of glycoconjugate analysis [78,79]. Nano-LC and -CE setups
with flow rates on the order of tens of nL/min have shown less dis-
criminative ionization behaviors and, thus, higher sensitivities for
glycoconjugates [79]. Yet, the nano-flow setups come with addi-
tional instrumental and robustness challenges, which may compli-
cate their application in a clinical laboratory. The infrastructure
required for the routine clinical assessment of protein glycosyla-
tion in the form of reversed-phase (RP)-LC-ESI-MS setups is
appearing more commonly in clinical laboratories, some typical
applications being newborn screening, hormone and drug analysis,
as well as protein quantification [80]. RP-LC-MS is highly applica-
ble for the analysis of intact glycoproteins and glycopeptides, as
well as labeled glycans [17,18,81]. For the latter, RP-LC is even able
to give more structural insights by resolving glycan isomers [18].
Alternative chromatographic and electrophoretic separation
approaches, such as HILIC, porous graphitized carbon (PGC) and
CE, have all shown their particular advantages in glycomic biomar-
ker discovery, but are, as of yet, not commonly used in clinical
practice. In this regard, we recently reported the development of
a HILIC-MRM-MS based method for the separation of glycopep-
tides from PSA that would likely be suitable for clinical practice
[82].

An attractive alternative to ESI for clinical glycomics by MS is
provided by matrix-assisted laser desorption/ionization (MALDI),
especially for the analysis of released glycans and glycopeptides
[83]. MALDI-time-of-flight (TOF)-MS instruments are already
established in clinical microbiology, where they are used for
microbe identification via whole cell analysis [84]. MALDI-TOF-
MS instrumentation is characterized by its ease of operation. Fur-
thermore, while techniques relying on LC or CE separation are lim-
ited in their throughput, the omission of a separation module
makes MALDI a high throughput alternative [17,64,85]. This tech-
nology has the potential to be of widespread use in laboratory
medicine, outside of its well-established impact in medical micro-
biology. Though, as compared to ESI approaches coupled to LC or
CE, MALDI-MS provides less information on glycosylation features,
and the lability of sialylated glycoforms during ionization may
limit its application. The latter issue can be resolved by sialic acid
derivatization, although this results in more cumbersome sample
preparation workflows [86]. Alternatively, in specific situations
where sialylation is not of interest, glycoconjugates may be treated
with neuraminidases to remove the sialic acids before subjecting
them to MALDI, allowing straightforward glycan-feature detection.
A similar approach was recently shown to be effective for the non-
invasive diagnosis of liver cirrhosis and HCC [7,45].

3.2. Mass spectrometric detection

Currently, most MS-based glycomics methods are used for
(biomedical) research, for which other characteristics are required



Fig. 3. Characterization of immunoglobulin glycosylation. Immunoglobulin G (IgG) Fc glycopeptide analysis was performed in a discovery setting (A) using RP-LC-(q)TOF-MS,
in which high resolution mass accuracy was achieved, and in a validation setting (B) using RP-LC-MRM-MS, which is better suitable for quantification in a clinical setting.
Figures were taken from ([92], A) and ([93], B), with minor modifications.
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than for applications in medical laboratories. For research pur-
poses, untargeted TOF- or iontrap-based analyses (using either
ESI or MALDI) are often used, which allow for the identification
of the complete repertoire of glycans or glycopeptides. An example
of the LC-(q)TOF analysis of IgG glycopeptides is shown in Fig. 3A.
Notably, while the collision induced dissociation (CID) fragmenta-
tion pattern of peptides is sequence-dependent, glycopeptides
fragment primarily into mono-, di- and trisaccharide oxonium ions
[87]. As a consequence, CID provides limited analytical specificity
for glycopeptide identification, which hampers the identification
of glycopeptides from complex mixtures through shotgun pro-
teomics. While alternative fragmentation techniques, such as
electron-transfer/higher-energy collision dissociation (EThcD) and
ultraviolet photodissociation (UVPD) have been introduced on
Orbitrap instruments [88–91], these high-end mass spectrometers
are not always readily available. Consequently, these MS/MS
approaches are less commonly used, and it will require clear clin-
ical applications of these techniques before their adoption in the
medical laboratory may be considered.

In biomedical research, relative quantification of individual gly-
can structures or glycopeptides is typically performed by compar-
ing signal intensity to the total glycan or glycopeptide signal
intensity [94]. To address specific glycan features, glycan traits
may be derived by calculating the ratios of groups of glycans with
these traits, such as fucosylation, galactosylation or sialylation
[86]. Both approaches are feasible in a research and biomarker
discovery setting, but they require the quantification of all glycans
in a sample or on a specific glycoprotein or glycopeptide. This is
non-ideal for application in medical tests, where higher quality
standards are required that should then hold up for all measured
glycosylation features. For medical tests, the absolute quantifica-
tion of individual glycans or glycoforms, relative to their labelled
analogue would be a suitable alternative [95].

Traditionally, quantitative bottom-up proteomics strategies
comprise the use of multiple reaction monitoring (MRM) on triple
quadrupole mass spectrometers (QQQ-MS) as a targeted MS tech-
nique. Using this strategy clinical chemistry tests were already
developed for several proteins [96–98] and, although substantial
precautions need to be in place [99], robust performance of these
tests could be shown [100]. In the larger and specialized laborato-
ries, such instruments are, therefore, already available. Interest-
ingly, both glycans [93,101,102] and glycopeptides [60,93,103]
may also be quantified using MRM strategies [104], as illustrated
in Fig. 3B. QQQ-MS instruments make use of CID fragmentation,
and the oxonium ions are typically the glycan and glycopeptide
fragments with highest intensity. However, these fragments are
rather small and provide only limited analytical specificity, as
almost all glycopeptides (except for high-mannose-type glycans)
provide the same fragments in similar relative abundances. For
glycopeptides, Y1 ions (consisting of the intact peptide and the
innermost GlcNAc) may be monitored as an alternative, but, except
for high-mannose type glycans, this results in loss of the (already
poorer) analytical sensitivity of the quantification. While success-
ful applications have been reported using MRM of glycopeptides
by QQQ-MS [60,82,93,105], alternative strategies with increased
analytical specificity would be beneficial.



Fig. 4. Intact glycoprotein analysis by nRP-LC-TOF-MS reveals differential transferrin glycosylation for patients with congenital disorders of glycosylation (CDGs).
Deconvoluted intact protein mass spectra of transferrin from plasma from (A) a healthy volunteer, revealed the presence of two glycans, mostly diantennary and fully
sialylated each. (B) A mild type I CDG revealed the lack of a full glycan, while (C) a type II CDG showed much higher glycoform variability. Figures were taken from [9], with
modifications.
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While the QQQ-MS is a low resolution instrument, improved
analytical specificity for glycans and glycopeptides in targeted
assays may be achieved through the use of higher resolution
instrumentation such as TOF, Orbitrap or Fourier transform ion
cyclotron resonance (FTICR)-MS [106]. Indeed, the use of targeted
quantification of proteins using high-resolution, accurate-mass
MS is termed parallel reaction monitoring (PRM) [107,108]. The
use of PRM substantially increases the resolution of the transitions
monitored, and could improve the analytical specificity of targeted
glycopeptide quantification [109]. However, the linear dynamic
range of the Orbitrap-MS remains to be compared to QQQ-MS for
quantitative purposes, and it should be noted that Orbitraps are
high-end mass spectrometers that are only available in specialized
laboratories.

Besides the analysis of glycans and glycopeptides, protein gly-
cosylation may also be assessed using intact glycoprotein analysis.
A clear advantage of this method is that mass information on the
full protein is obtained, including all sites of glycosylation
(Fig. 1). Different than for glycopeptides, the glycan fraction of a
glycoprotein is relatively small, which reduces the ionization bias
when analyzing intact glycoproteins. Another advantage of an
intact glycoprotein analysis in a clinical laboratory is the limited
sample preparation required prior to MS detection. Usually, a sim-
ple affinity- or immune- purification of the protein of interest is
sufficient for its glycomic characterization. Limiting factors in the
implementation of intact glycoprotein analysis could include
advanced technical requirements regarding analytical sensitivity
and resolution, and the complexity of the data analysis. Despite
these challenges, the intact analysis of the glycoprotein transferrin
by C8-RP-HPLC coupled to high resolution (HR)-TOF-MS has
emerged as an invaluable tool in the detection and differentiation
of CDGs (Fig. 4) [9]. Provided that high-resolution mass spectrom-
eters become more widely available, intact glycoprotein analysis
has the potential to become feasible for clinical applications.
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3.3. Internal standardization and calibration

As indicated previously, the requirements of tests suitable for
clinical chemistry implementation are more stringent than those
used for biomedical research and biomarker discovery [65]. Inter-
nal standardization and calibration may not yet be necessary for
biomarker discovery studies using Tier 3 methods [103]. However,
internal standardization should be used during biomarker valida-
tion studies to achieve better analytical specificity and quantitative
results in Tier 2 assays. Recently, a non-MS based method for trans-
lation of glycomics markers was reported [110]. It is imperative for
successful clinical chemistry test development that each individual
test result is accurate and reproducible and, thus, a Tier 1 test,
including internal standardization and accurate calibration is
required.

The development of effective calibration methodology is vital
for successful establishment of reproducible glyco-diagnostics in
a clinical setting. Because MS is inherently not a quantitative tech-
nique and signal intensity is influenced by matrix-dependent ion
suppression [111], absolute quantification relies on the availability
of stable isotope labeled internal standards [112]. While the syn-
thesis of peptides, including incorporation of 13C,15N-stable isotope
labeled amino acids, is now routinely performed, the synthesis of
glycoconjugates is much more difficult. Particularly, the synthesis
of specific glycan linkage isomers was achieved only recently
[113,114]. However, pure 13C labeled free glycans are now avail-
able from a number of commercial sources, and have been shown
to improve quantification of individual glycoforms in released gly-
can approaches [115]. Because glycans are often chemically deriva-
tized prior to their analysis [116], isotope labels can also easily be
incorporated during derivatization [117,118]. A more dire situation
exists at the level of glycopeptides and intact glycoproteins. The
synthesis of pure glycopeptides or glycoproteins with full length
labeled glycans is not (yet) possible. The synthetic coupling of a
glycan to an asparagine residue, either as a single amino acid or
incorporated into a peptide, remains a challenging task. However,
synthetic peptides carrying a single GlcNAc at the asparagine resi-
due have been reported [119]. Similarly, a mouse monoclonal anti-
body has been produced recombinantly, which carries full-length
15N labeled glycans [120] as well as glycosylated human mono-
clonal antibodies with heavy labeled lysines and arginines incorpo-
rated in the protein backbone [121]. While these initial reports are
very promising, highly pure glycopeptides and glycoproteins carry-
ing a single glycan structure would be desirable.

Besides internal standards, a suitable calibration strategy
should also comprise well characterized and accurately quantified
external calibrators. Ideally, these calibrators should be traceable
to SI to enable standardization and worldwide comparability of
results. However, while this is already a tour-de-force in the field
of protein quantification [122–124], the added complexity of gly-
cosylation makes this a daunting task. Indeed, in a study by NIST
on the glycomic characterization of an antibody using different
techniques in 76 laboratories (all characterized to a level for
biomedical research and not for clinical chemistry), variable results
were obtained [125]. This was partly due to the variability in ana-
lytical sensitivity and resolution between methods and different
ionization efficiencies in the MS-based technologies [126]. Despite
the differences, a consensus relative abundance could be calculated
for 57 glycoforms, which may form the basis for the well-needed
harmonization of glycosylation analysis techniques. A working
group from the international federation of clinical chemistry (IFCC)
was dedicated to the standardization of the measurement of carbo-
hydrate deficient transferrin (CDT). Within this working group, a
reference material based on human serum was established in
which the percentage disialotransferrin to total transferrin fraction
was determined within a reference laboratory network [127,128].
The cited examples demonstrate that it is possible to produce cal-
ibration markers of relative glycan abundances, but calibrators of
intact protein glycoforms or glycopeptides with demonstrable SI
units are yet to be developed. In this light, a recent attempt to pur-
ify and quantify a specific glycopeptide as a calibrator for absolute
quantification of glycopeptides, should be an encouragement
[129]. However, value assignment of this glycopeptide was not
traceable, the production was costly, material is not widely avail-
able and purification would be necessary for each individual gly-
copeptide. The situation is different if analysis only at the glycan
level is required, as techniques for the characterization and quan-
tification of glycans are available. Similarly to peptides, the purity
of glycans may be assessed using MS-based compositional
[130,131] and linkage analysis [132–134]. For quantification, gly-
cans may be hydrolyzed to monosaccharides [135], or subjected
to NMR spectroscopy [136].
4. Enzymatic digestion

In bottom-up proteomics, which is typically used for the quan-
tification of proteins and glycoproteins by MS, the protein is enzy-
matically cleaved into the peptides and glycopeptides that are
quantified. Because the actual measurand is changed from the
intact glycoprotein into peptides and glycopeptides, it is important
that the digestion kinetics, preferably, but even more importantly,
the final (glyco)peptide yield are constant, independent of the
matrix and glycan involved. Conditions that should be considered
are the digestion buffer and denaturing agents, as well as the aid
of protein-binding matrices such as S-trap and FASP [137–139].
For peptides, this has resulted in several in-depth studies towards
optimal digestion conditions and the digestion kinetics in relation
to peptide selection [140]. For glycopeptides, a complicating factor
is that specific glycoforms may affect the digestion efficiency.
Indeed, the presence of a large number of O-glycans on mucins
has already been reported to hamper mucin digestion [141]. Simi-
larly, in a recent study in which digestion conditions for IgG N-
linked glycans were studied, a strong preferential digestion of high
mannose, hybrid, alpha2-3-sialylated and bisected glycoforms was
observed [142]. It was also reported that fucosylated glycans in
close proximity to the proteolytic cleavage site may hamper the
digestion [143]. Digestion biases could be partly resolved under
denaturing conditions, but indicate that digestion conditions
should be carefully selected and monitored to ensure robust gly-
copeptide quantification.
5. Other considerations for the development of high-quality
clinical glycomics tests for the medical laboratory

Besides analytical challenges, the translation of glycomics
research into actionable clinical parameters is also hampered by
a lack of clear clinical evidence. While strong efforts are made to
draft dedicated study designs, including hypotheses, cohort selec-
tion and method selection, it should be stressed that these should
ideally be guided by well-specified unmet clinical needs [144,145].
For the successful translation of fundamental glycomic research to
the clinical laboratory, and the incorporation of the developed tests
in clinical practice, an interaction triangle is warranted between
biomarker developers, clinical chemists, and clinicians. These three
parties should collaborate to define the unmet clinical need and
direct the preclinical research towards actionable results that fulfill
clinical performance criteria [146,147]. An early stage partnership
between the three parties prevents the accumulation of glycomic
associations with diseases in the pre-clinical phase, without per-
spective of reaching daily clinical practice.
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One reason for the limited translation of the now reported gly-
comics markers to the clinic is the lack of replication of the perfor-
mance of these markers. This is a challenge encountered also in
other fields, such as metabolomics and proteomics [148–150],
and is partly caused by the shortage of large and well-defined
prospective clinical cohorts (or their limited accessibility) and an
insufficient statistical evaluation of the initial findings, resulting
in poor validation of initial results. An example would be the
reporting of 8 differentially expressed N-glycans in 82 breast can-
cer patients compared to 27 healthy controls in one study [151],
while a different study reported 25 different N-glycans to be differ-
entially expressed in 256 breast cancer patients compared to 311
healthy controls [152]. While the analytical methods used were
different, it is highly likely that these incongruent results are con-
founded by general descriptors of the population, such as age, sex
and BMI [14,38,153]. Additionally, even one glycoprotein can
already occur in dozens or even hundreds of glycoforms, drastically
increasing the number of variables in an exploratory study. To limit
the number of false positive assignments, multiple testing correc-
tion is essential and has to be considered in the power assess-
ments. Equally important are the inclusion and definition of
different patient groups, for which differential diagnosis and treat-
ment is relevant. Ultimately, exploratory glycomic research for a
well-defined clinical question should result in a model including
a subset of glycoforms that shows predictive value for a disease.
Of note, development and registration of such a glycoform pattern
or signature will often require advanced biostatistical and bioinfor-
matics approaches. Replication in an independent sample set is
essential to assure its translational potential. For successful clinical
implementation the simplicity and robustness of such models and
algorithms will be of utmost importance, and the outcome of the
test has to be presented in a simple and comprehensible manner
in order facilitate acceptance by clinicians.

To ensure that reasonable expectations are set for each of the
stakeholders in the medical test development pipeline, it is imper-
ative that everyone is aware of the possibilities and limitations of
current glyco-analytical technologies. Glycobiology is an emerging
and highly interdisciplinary field, currently not commonly
included in (bio)medical university curricula [154]. It involves
knowledge on the chemistry of carbohydrates, enzymology for gly-
can formation and processing, the role of glycans in systems biol-
ogy and techniques to characterize and manipulate the
glycosylation of a living system. To enhance communication and
mutual understanding between the three parties, efforts should
be taken by fundamental glyco-scientists to disseminate glycobio-
logical and glyco-analytical knowledge to medical professionals,
clinical chemists and biomedical researchers, in line with recently
published recommendations [154].
6. Conclusions and future perspectives

Over the past decades, tremendous improvements have been
made in analytical technology for the identification and quantifica-
tion of protein glycosylation, which now make the translation of
such technologies into clinical practice feasible. Specifically,
methodologies are now in place to perform glycosylation analyses
in a high-throughput and sufficiently robust [155] manner for bio-
marker discovery. To enable translation of biomarkers from discov-
ery through validation into clinical tests, analytical methods that
are fit-for-purpose, with increased levels of accuracy and precision
are required [65]. To truly enable translation of glycomics-based
tests, further investigations into the preanalytical requirements,
as well as digestion conditions are needed. The development of
stable internal standards and calibrators that reflect and represent
the endogenous protein glycosylation is also needed for improved
robustness, precision and accuracy. An interesting observation is
the relative intra-individual stability of the human glycome in
the absence of major physiological or pathological changes
[156,157]. Longitudinal monitoring of protein glycosylation could
have the potential to reveal pathophysiological changes at an early
stage if repeated sampling is employed. Such a strategy would
allow for the use of reference change values [158,159], compared
to reference intervals or decision limits.

It is now more and more emphasized that the analytical rigor of
methods and tests used not only for diagnostics, but already during
biomarker development should be of high standard and well doc-
umented [160,161]. Recently, standards were developed for
reporting the use of clinical bottom-up proteomics methods in sci-
entific literature [73]. While guidelines for reporting glycomic
identifications have also been described [72], it should be empha-
sized that a guideline on the information needed for reporting clin-
ical glycomics data for application in diagnostics should be
developed.

Clinical chemistry tests should allow for absolute quantification
of (glyco)proteins. Ideally, equivalence of test results in time and
space is achieved through metrological traceability to SI units.
Worldwide standardization efforts are in place to develop refer-
ence measurement systems to accomplish this at the protein level.
However, the current end-user measuring systems (whether as a
lab-developed-test or commercially available) often do not take
protein glycosylation into account [3,60], and are unaware of
potential interference due to differential glycosylation. It is, thus,
important to know the clinical implications of glycosylation that
may be present on current diagnostic markers. A proper definition
of the measurand, as is currently being attempted for antithrombin
[104], is highly beneficial for standardization efforts.

As presented in this review, there is ample evidence that
protein glycosylation plays pivotal roles in the onset and progres-
sion of diseases. Direct evidence for the utility of protein glycosy-
lation to resolve unmet clinical needs remains sparse. However,
the rapidly developing analytical technologies and large and
well-designed glycomics studies specifically addressing such
well-defined unmet clinical needs are likely to accelerate the role
of glycomics in clinical test development in the near future.
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