Dev Genes Evol (2015) 225:259-273
DOI 10.1007/500427-015-0508-1

@ CrossMark

ORIGINAL ARTICLE

Genes conserved in bilaterians but jointly lost with Myc
during nematode evolution are enriched in cell proliferation

and cell migration functions

Albert J. Erives'

Received: 10 February 2015 / Accepted: 24 June 2015 /Published online: 15 July 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Animals use a stereotypical set of developmental
genes to build body architectures of varying sizes and organi-
zational complexity. Some genes are critical to developmental
patterning, while other genes are important to physiological
control of growth. However, growth regulator genes may not
be as important in small-bodied “micro-metazoans” such as
nematodes. Nematodes use a simplified developmental strat-
egy of lineage-based cell fate specifications to produce an
adult bilaterian body composed of a few hundreds of cells.
Nematodes also lost the MYC proto-oncogenic regulator of
cell proliferation. To identify additional regulators of cell pro-
liferation that were lost with MYC, we computationally
screened and determined 839 high-confidence genes that are
conserved in bilaterians/lost in nematodes (CIBLIN genes).
We find that 30 % of all CIBLIN genes encode transcriptional
regulators of cell proliferation, epithelial-to-mesenchyme tran-
sitions, and other processes. Over 50 % of CIBLIN genes are
unnamed genes in Drosophila, suggesting that there are many
understudied genes. Interestingly, CIBLIN genes include
many Myc synthetic lethal (MycSL) hits from recent screens.
CIBLIN genes include key regulators of heparan sulfate pro-
teoglycan (HSPG) sulfation patterns, and lysyl oxidases in-
volved in cross-linking and modification of the extracellular
matrix (ECM). These genes and others suggest the CIBLIN
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repertoire services critical functions in ECM remodeling and
cell migration in large-bodied bilaterians. Correspondingly,
CIBLIN genes are co-expressed with Myc in cancer
transcriptomes, and include a preponderance of known deter-
minants of cancer progression and tumor aggression. We pro-
pose that CIBLIN gene research can improve our understand-
ing of regulatory control of cellular growth in metazoans.
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Introduction

Genetic screens have been successful in identifying develop-
mental regulators of patterning, axis formation, and cell fate
specification in animals and most of these are both conserved
across and specific to animals (Chen et al. 1996; Haffter et al.
1996; Kane et al. 1996; Kelsh et al. 1996; Mullins et al. 1994;
Mullins et al. 1996; Mullins and Nusslein-Volhard 1993;
Nusslein-Volhard and Wieschaus 1980). A clinical approach
accelerated by genomic and transcriptomic studies of diseased
tissues has also identified key developmental regulators of cell
growth and replication, many of which must be more easily
identified when mutated in a restricted population of somatic
cells contributing to tumors and metastatic cancers (Ben-
Porath et al. 2008; Beroukhim et al. 2010; Cancer Genome
Atlas Research Network 2008; Dalgliesh et al. 2010; Ding
et al. 2008; Jones et al. 2008; Parsons et al. 2008; Pece et al.
2010; Pleasance et al. 2010). Genetic screens based on short
hairpin RNAs (shRNAs) and small interfering RNAs
(siRNAs) have emerged as technological improvements to
mutational screens (Berns et al. 2004; Moffat et al. 2006;
Ngo et al. 2006; Paddison et al. 2004). Multiplexing these
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screens with a library of diverse expression drivers (i.e., librar-
ies of different regulatory DNAs) would make these ap-
proaches more systematic. However, such regulatory
multiplexing is limited by the coverage or complexity of cur-
rent expression libraries, as well as the burden of needing
redundancy in the library to reduce the number of false-posi-
tives. Thus, a complete expression library by shRNA library
screen would be too prohibitive in terms of time and resources
required. Thus, until these challenges are addressed, sShRNA/
siRNA screens are most productive with carefully designed
synthetic lethal or synthetic sick phenotype as has been done
around the Myc proto-oncogene frequently amplified in many
cancers (Cermelli et al. 2014; Kessler et al. 2012; Toyoshima
etal. 2012).

Well-designed shRNA/siRNA genetic screens sometimes
rely on a synthetic phenotype caused by abnormal interactions
with a previously known regulator. To address the limited
scope of such synthetic screens, one could make use of the
multiple sequenced genomes now available for entire phyla
and subclades of animals. A comparative genomics approach
would be unaffected by issues of genetic penetrance, tissue
specificity, lethality, and might be more open-ended.
Furthermore, a robust comparative “systems genetics” ap-
proach emerges when comparative genomics is coupled with
transcriptomic, proteomic, and subcellular localization data.
Using this approach, we recently identified genes that are
conserved in eukaryotes but missing in animals (Erives and
Fassler 2015). We refer to these as conserved in eukaryotes/
lost in animals (CIELIM) genes. Analysis of the CIELIM
repertoire shows that they encode many chaperones and am-
yloid disaggregases (Hsp78, Hsp104, and New1/EF3) and
that their loss in animals could be connected to the loss of
many of their client metabolic enzymes (Erives and Fassler
2015). This study resolved what has been described as the
baffling absence of Hsp104 in Metazoa, where it could play
a role in ameliorating many types of polyglutamine-induced
neural degeneration disorders if it were only present
(Cushman-Nick et al. 2013). Thus, the comparative systems
genetics approach can be exploited in unprecedented ways to
identify cohorts of genes associated with specific disease pro-
cesses in unexpected ways.

Here, we apply the comparative systems genetic approach
to cancer by identifying conserved in bilaterians/lost in
nematodes (CIBLIN) genes. The basis for this computational
genomic screen is that nematodes represent a derived
bilaterian phylum characterized by an evolutionary reduction
in body size and adoption of cell fate determinative mecha-
nisms based on short, well-defined cell division lineages, the
majority of which are homologous across the phylum
(Houthoofd et al. 2003; Schierenberg 2006). Furthermore, at
the completion of nematode embryogenesis, cellular divisions
cease in all somatic organs and tissues (Hyman 1940). The
number of somatic cells (or nuclei in the case of syncytial
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tissues) is subsequently held constant throughout the adult
worm’s life span without cellular replenishment. For example,
Caenorhabditis elegans is a typical nematode from the class
Chromadorea, and as an adult body is composed of only 959
somatic cells. This extremely small bodied lifestyle and reli-
ance on cell fate determinative mechanisms based on cell lin-
eage is an evolutionary derived condition that is atypical of
most bilaterians, including deuterostomes (e.g., humans, as-
cidians, and echinoderms) and protostomes from either
Ecdysozoa (e.g., fly and nematode) or Lophotrochozoa (e.g.,
molluscs and polychaetes). Even other clades that have inde-
pendently evolved cell fate determinative mechanisms based
on short cell lineages (e.g., the ascidian tadpole) still build and
pattern relatively large bodied adults after metamorphosis
using cell signaling induction mechanisms to exert control
of local cell proliferation and differentiation (Satoh 1994).
Nonetheless, almost all major developmental pathways (e.g.,
EGF, FGF, Hedgehog, Notch, and Wnt pathways) are main-
tained in nematodes (Kolotuev et al. 2009; Minor et al. 2013;
Schmid and Hajnal 2015). Furthermore, even components of
the Hippo pathway, which is intimately connected to regula-
tion of organ size, are mostly conserved in nematodes (Yang
and Hata 2013).

In contrast, C. elegans and all other nematodes lost the
MYC proto-oncogene despite its astonishing conservation in
all other animals and their closest non-animal relatives
(Brown et al. 2008; Young et al. 2011). The role of Myc in
cell proliferation can be understood in part by its regulation of
ribosome biogenesis genes, but it has so many effects that its
exact role is still debated (Brown et al. 2008; Grewal et al.
2005). The loss of the MYC gene in the small-bodied nema-
todes indicates that they may have lost many other such reg-
ulators of cell proliferation and related processes absent the
need to surveil, control, and coordinate large populations of
cells in bulky tissues and organs. These losses would have
evolved alongside increasing developmental reliance on de-
terminate cell lineage specifications. In principle, diverse
nematode genomes can be exploited to identify genes that
are CIBLIN genes. Thus, CIBLIN regulators would include
Myc and perhaps many other important developmental regu-
lators of cell proliferation.

Here, we show that there are 839 human CIBLIN orthology
groups with homologs in the genomes of mouse, fly
(Drosophila melanogaster), and beetle (Triboleum
castaneum) but not in nematode genomes corresponding to
five Caenorhabditis species (C. elegans Sequencing
Consortium 1998; Stein et al. 2003), Pristionchus pacificus
(Dieterich et al. 2008), Brugia malayi (Ghedin et al. 2007),
Loa loa (Desjardins et al. 2013), Onchocerca volvulus
(Desjardins et al. 2013; Unnasch and Williams 2000), or the
enoplean nematode Trichinella spiralis (Mitreva et al. 2011),
which serves as an outgroup to all the other nematodes. These
genes are overwhelmingly associated with developmental
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processes and encode transcriptional regulators and other sig-
naling proteins. The list of CIBLIN genes includes many hits
from different Myc synthetic lethal screens. Furthermore, we
find that CIBLIN genes include many regulators of cell pro-
liferation, epithelial-to-mesenchyme transition, and cell mi-
gration. Last, CIBLIN regulators are co-expressed with MYC
in cancer transcriptomes, and many have already been identi-
fied as drivers and/or markers of aggressive cancer types.
These findings validate the comparative genomic “screening”
approach as a robust and efficient complement to conducting
new genetic screens based on synthetic phenotypes in select
tissues and cells. We propose that the CIBLIN repertoire con-
stitutes the core proto-oncogenic genomic compartment
targeted during human cancer progression. Furthermore, the
joint loss of the CIBLIN genes in nematodes suggests that
these genes should be studied concurrently to identify the
ways in which they interact with each other in organogenesis,
in the surveillance and maintenance of cell number, and in the
attenuation of disease.

Materials and methods

Comparative genomic analyses. Orthology relationships
were determined by iterative cross-checking between species
using EnsemblCompara data (Vilella et al. 2009) and the
BioMart database query and filtering tool (Guberman et al.
2011; Haider et al. 2009) using Excel spreadsheets and con-
ditional sorting to collect a desired homology class (e.g.,
highlighting and keeping only the “one-to-one” homology
calls) before retrieving the next set of genes based on the
Ensembl gene IDs and filtering for protein-coding genes
(Table 1). This strategy was used previously to identify the
CIELIM genes (Erives and Fassler 2015). CIBLIN orthology
relationships were re-rechecked for nematodes in both the
Metazoa Ensembl data sets and the Ensembl Genes 78 data
sets (Birney et al. 2004; Vilella et al. 2009) as indicated in
Table 1 and for reasons described in the text. Omega (dN/
dS) values were obtained via BioMart retrieval of the human,
mouse, and rat values relative to human Ensembl gene IDs.

Phylogenetic analyses. The MUItiple Sequence Comparison
by Log-Expectation (MUSCLE) alignment algorithm and
MEGAG6 were used to generate alignments of the Med12
and Med15/Mdtl5 sequences (Edgar 2004a; Edgar 2004b;
Tamura et al. 2013). Phylogenetic analysis was conducted
using Bayesian MCMC, and mixed amino acid models were
tested via MrBayes (Huelsenbeck and Ronquist 2001;
Ronquist and Huelsenbeck 2003; Ronquist et al. 2012).
Sufficient generations were run for the average standard devi-
ation of split runs to be less than 1 %. The numbers on the
nodes in the tree in Fig. 1 represent posterior probabilities.

GO correlations. Gene Ontology (GO) attribution term en-
richment analysis was conducted using FuncAssociate 2.1
using ordered and unordered rankings as described in the text
(Berriz et al. 2009; Berriz et al. 2003). Some GO term results
were removed from the tables shown if they were redundant
with other terms on the list in terms of attribution name and in
terms of gene identities. Some terms are also abbreviated so
that they fit in the tables. Human Ensembl gene IDs were used
for the name space for all GO analyses (see Tables S1, S2, S3,
and S4).

Interactome and gene co-expression analyses. The
GeneMania system was used to identify network interactions
using the associated human gene names (Montojo et al. 2014;
Mostafavi et al. 2008; Warde-Farley et al. 2010; Zuberi et al.
2013). The GeneMania analysis of Fig. 2a was restricted to the
101 input genes identified via BioMart filter (Guberman et al.
2011; Haider et al. 2009) using the GO attribution indexes
G0O:0003700 (sequence-specific DNA binding transcription
factor activity) or GO:0016592 (Mediator complex). The fol-
lowing data types, but not all of these, are shown for better
clarity: physical interaction, shared protein domains, predict-
ed, pathway, co-expression, and co-localization. The
GeneMania analysis of Fig. 2b was restricted to the 56 input
genes shown and the co-expression datasets based on the
genes having direct connections to MYC, MYCN, MYCL,
MNT, or at least two or more connections to these genes and
direct connections. The transcriptomic studies out of 287
available meta-studies that contributed the most to the corre-
lations of this set of genes are ranked by weight in
Supplementary Table S5.

Results

An upper-bound of 839 CIBLIN orthology groups,
including MYC and MNT

We use the term “orthologs” to include genes that may have
duplicated in any one single lineage, but not homologous
genes that are members of more distantly-related paralogy
groups established prior to bilaterian diversification. To iden-
tify and/or enrich for CIBLIN genes (conserved in bilaterians,
lost in nematodes), we took the approach of identifying
orthologs conserved in two mammalian deuterostomes (hu-
man and mouse) and two insect protostomes (fly
D. melanogaster and the beetle 7. castaneum). We did not
see the justification for using additional bilaterian gene sets
from non-nematode genomes for the following two reasons.
First, both insects and nematodes are ecydozoan protostomes
and this gave us representatives in a clade that encompasses the
desired gene losses. Second, we did not want to miss genes
because of incomplete assemblies and these four genomes
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Table 1

The 839 conserved in bilaterians/lost in nematodes (CIBLIN) genes

Set®  Orthology groups checked ~ Orthologs NOT called in:

Data system No. of distinct ~ No. of distinct

and identified in: fly genes human genes
1 Drosophila melanogaster, Caenorhabditis brenneri, C. briggsae, Metazoa EnsemblCompara 3009 n.d.
Tribolium castaneum C. elegans, C. japonica, C. remanei, (invertebrates)
Brugia malayi, Loa loa, Onchocerca
volvulus, Pristionchus pacificus,
Trichinella spiralis
2 D. melanogaster, C. elegans Ensembl Genes 78 (vertebrates 1197 1389
H. sapiens, +D. melanogaster,
M. musculus® C. elegans, S. cerevisiae)
(839 orthology groups)
3 D. melanogaster S. cerevisiae Ensembl Genes 78 968 1158
4 Three-way strict orthology ~ N/A Ensembl Genes 78 881 971

across H. sapiens,
M. musculus, and
R. norvegicus

Gene sets identified and analyzed in this study. Rows in yellow represent three CIBLIN gene lists. Set 1 is from a precursor step. Set 2 includes all
CIBLIN genes, including those duplicated in any one lineage and regardless of whether they are present outside of Bilateria. Other sets are used for

specific analyses described in the text
n.d. not determined, N/4 not applicable

* Each numbered set describes a subset of genes identified from the previous set

® Human-mouse many-to-many relationships (independent duplications) were removed. This predominantly removes multi-copy genes such as histone-

encoding genes

have been assembled to near completion more so relative to
other genomes. At the same time, we eliminated genes com-
puted to be orthologs in any nematode genome for which
orthology data has been computed genome-wide for a set of
genomes. Thus, while we kept bilaterian orthologs that are
present in the four non-nematode genomes (human, mouse,
fly, beetle), we eliminated all orthologs if they were called even
once in any one of ten diverse nematode genomes (see phylo-
genetic tree in Fig. 1a, which is based on Med12, which is a
conserved co-activator subunit of Mediator that is not lost in
nematodes). Thus, our list of CIBLIN genes represents genes
that truly have been lost early in nematode evolution or else
have diverged so far that they are not reliably detectable with
confidence in any one of the examined nematode genomes.
We began with the maximum likelihood (ML)-based
EnsemblCompara orthology calling data computed for inver-
tebrate genomes to identify all orthologs present in fly and
beetle but absent in the ten nematode genomes (gene set #1
in Table 1, and “Materials and methods”). Once sorted, these
genes amount to 3009 unique genes in Drosophila. We next
took these fly genes and identified the subset with orthologs in
the human and mouse genomes. This second step was con-
ducted using the orthology calls for Ensembl Genes 78, which
is based on the application of the same Ensembl ML pipeline
applied to a large set of vertebrate genomes along with just a
few genomes from model genetic systems (fly, worm, yeast).
Because orthology determination on such large data sets are
influenced by the genomes used, we also removed a few genes
at this step that were called as orthologs to C. elegans in the
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Ensembl Genes 78 Compara data. This second step produced
the CIBLIN genes corresponding to 1197 unique fly genes
and 1389 unique human genes (gene set #2 in Table 1 and
Supplementary Table S1). These 1389 human genes corre-
spond to 496 genes maintained as single-copy genes in both
humans and flies, 231 orthology groups that duplicated in the
human lineage specifically, 58 orthology groups that duplicat-
ed in the fly lineage specifically, and 54 genes that duplicated
in both human and fly lineages (Supplementary Table S1).
These genes correspond to only 839 different orthology
groups in humans.

To understand the difference between metazoan-specific
CIBLIN genes and more ancient eukaryotic CIBLIN genes,
we also produced a third set of genes that are not computed to
have orthologs in the yeast S. cerevisiae. However, this re-
moved only 229 fly genes, which were orthologous to 178
yeast genes, leaving 1158 human genes and 968 fly genes
(gene set #3 in Table 1 and Supplementary Table S2).

To better understand the evolutionary rates of the CIBLIN
genes, we identified 971 human CIBLIN genes that are main-
tained as single-copy genes in both the mouse and rat ge-
nomes (gene set #4 in Table 1 and Supplementary Tables S3
and S4), and plotted the omega (w) ratios (dN/dS) for both the
human/mouse and human/rat alignments of each gene
(Fig. 1b). This is a ratio of the number of nonsynonymous
substitutions per non-synonymous site (d/N) to the number of
synonymous substitutions per synonymous site (dS). If the rat
and mouse w values are quite different, this would indicate
that this gene is either under positive or relaxed selection in
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Fig. 1 Identification of CIBLIN genes. a Sufficient genomes and
comparative genomic resources exist to attempt a screen for genes
conserved in bilaterians/lost in nematodes (CIBLIN). Tree is based on
the phylogenetic analysis of the Med12 protein sequence, which is not
lost (see “Materials and methods”). Tree shows only the species whose
genomes were used to search for genes lost in the stem-nematode lineage,
during which the genes encoding the Myc and Mnt bHLH transcription
factors were lost. The identification of genes lost in the stem-nematode
lineage might correspond to general cell proliferation programs used by
animals. Image of nematode is of an adult C. elegans, which has only 959
somatic cells in the adult (image adapted from Bob Goldstein, UNC
Chapel Hill, CC-BY-A 2006). b Plot of evolutionary rates for 971

one lineage, or else is poorly annotated in one genome. This
plot shows that the majority of CIBLIN genes are under ex-
treme negative or purifying selection (avg. w is ~0.14 for both
rat and mouse genes relative to humans) and are evolving
slowly at similar clock-like rates in each rodent genome (see
majority of points along identity line in Fig. 1b).

0.4 0.5 0.6 0.7 0.8

Human-Mouse

dN/dS

CIBLIN orthologs present as single-copy genes in mammals. Graph
plots each gene using the w values (dN/dS) computed between the
human and mouse genes (x-axis) or the human and rat genes (y-axis),
and shows that these genes predominantly evolve at clock-like rates,
indicating negative (purifying) selection. The red dot represents the
average rates for the 971 mammalian CIBLIN genes (~0.14) indicating
that most of these are diverging only slowly. The box in yellow encloses
the most conserved ~490 mammalian CIBLIN genes, which correspond
to the ranked set at which “developmental process” is most significant of
all ranked sets (167 N genes/top 490 M genes; see Table 3). Thus, the GO
attribute for “developmental process” is significantly overrepresented in
the most conserved CIBLIN genes

CIBLIN genes encode regulators of transcription, cell
proliferation, and cell migration

To identify the types of biological functions associated with

the CIBLIN gene repertoire, we conducted an analysis for
statistically significant enrichment of GO attributions (see
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Fig. 2 Interaction network for human CIBLIN transcriptional regulators.
a Of the 1158 human CIBLIN genes (set 3, Table 1), 101 have GO
attributes associated with either “sequence-specific DNA binding
transcription factor activity” (GO:0003700) or “Mediator complex”
(GO:0016592). The top panel shows the interaction network for the
human genes based on physical interaction interactome data, shared
protein domains, predicted based on other species (e.g., studies in
mouse and others); and pathway interactome. The bottom panel shows
a subset of 56 genes that are most closely expressed with MYC (big yellow
halo), MYCN (small yellow halo), MYCL (small yellow halo), or MNT
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(small pink halo) based on all available human transcriptome studies. The
percent contribution of each study to the expression association map is
predominantly associated with cancer transcriptomes (see Table 4). b Co-
expression network for 52 regulator genes (a subset of genes in Fig. 2a)
co-expressed with MYC, MYCN, MYCL, and MNT (highlighted gene
nodes in each corner) over 287 transcriptomic studies using human
cells. The specific studies that contributed the most to the Pearson
correlations between these genes are listed in Table S5 and ranked by
weight
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“Materials and methods™). We first took the single-copy mam-
malian CIBLIN genes and conducted a test on an unordered
list of the 971 human genes. Four of the ten total GO terms
were for similar functions connected to transcriptional regula-
tion: “regulation of gene expression,” “transcription from
RNA polymerase II promoter,” “sequence-specific DNA
binding transcription factor activity,” and “nucleic acid bind-
ing transcription factor activity” (Table 2). These four terms
were associated with 299 genes, which represent ~31 % of the
971 genes. Thus, 1/3 of the CIBLIN genes are transcriptional
regulators.

Remarkably, five of the six remaining significantly
enriched GO terms correspond to three distinct functions, all
of which are connected to cell migration and/or the remodel-
ing of the extracellular matrix (ECM). First, 17 genes were
connected to sulfotransferase activities, many of which are
known to be important in regulating the interactions between
tumorous cells and their microenvironment via their control of
sulfation patterns on heparan sulfate proteoglycans (HSPGs)
in the ECM (Solari et al. 2014). Second, all of the genes
encoding the LOX, LOX2, LOX3, and LOX4 enzymes ap-
pear to be missing. These are secreted by tumors and are
involved in cancer progression through their role in the post-
translational oxidative deamination of peptidyl lysine residues
on fibrous collagen and elastin (Barker et al. 2012). Last,
seven of the human CIBLIN genes encode highly conserved
orthologs within the dynein heavy and light chain families
involved in “cilium or flagellum-dependent cell motility.”
Thus, CIBLIN genes predominantly contain transcriptional

regulators, as well as important enzymatic systems and cellu-
lar components responsible for cell migration and ECM
remodeling.

The most conserved CIBLIN genes encode transcriptional
regulators of development

To identify the functions of the most conserved 971 mamma-
lian CIBLIN genes, we ran a GO enrichment analysis config-
ured to consider the ranked order at which a term is the most
significant using the average w values to order genes from
slowest to fastest evolving (among mammals). This alternate
analysis would identify significant GO terms associated with
the genes under the greatest amount of purifying selection.
This second GO analysis shows that the vast majority of
enriched terms are associated with gene regulation and the
control of developmental processes such as “embryonic mor-
phogenesis,” “organ morphogenesis,” “tissue development,”
“positive regulation of stem cell proliferation,” and “regula-
tion of multicellular organism development,” validating the
basic CIBLIN screen premise (Table 3). Thus, for example,
the term for “developmental process” is most significant when
the first 489 genes are considered (i.e., the 489 most conserved
genes in the 971 list based on divergence rates in rodents). Of
these 489 top genes, 167 genes, or ~34.1 %, are connected to
developmental processes. Various terms connected to tran-
scriptional regulation continue to be overrepresented
(Table 3).

EEINT3

Table 2 Transcriptional regulators are overrepresented in the 971 mammalian CIBLIN orthologs

N X P Py Attrib. ID Gene Ontology (GO) attribution name

16 53 3.3E-09 <0.001 GO0:0008146 Sulfotransferase activity

17 64 9.4E-09 <0.001 GO0:0016782 Transferase act., transferring sulfur-containing groups
259 4010 1.7E-06 0.004 GO:0010468 Regulation of gene expression

45 431 2.3E-06 0.005 GO:0006366 Transcription from RNA polymerase II promoter

85 1025 2.5E-06 0.005 GO0:0003700 Sequence-specific DNA binding transcription factor act.
85 1026 2.6E-06 0.006 GO0:0001071 Nucleic acid binding transcription factor activity

4 4 6.1E-06 0.022 G0:0004720 Protein-lysine 6-oxidase activity

6 12 1.1E-05 0.032 GO:0048484 Enteric nervous system development

6 12 1.1E-05 0.032 GO0:0070286 Axonemal dynein complex assembly

7 18 1.5E-05 0.040 GO:0001539 Cilium or flagellum-dependent cell motility

Functions associated with cell migration or remodeling of extra cellular matrix are highlighted in green. Functions associated with transcriptional
regulation are highlighted in red and correspond to exactly 299 genes with these terms (~1/3 of the genes). Functions associated with development
are highlighted in yellow. For context, the human Gene Ontology database is composed 19,452 genes with 17,658 attributes

N number of genes in the tested set that match the number of genes with the given GO Attribution. X the total number of genes in the genome with that
attribute, P the “single hypothesis one-sided P value of the association between attribute and query based on Fisher’s exact test” (Berriz et al. 2009; Berriz
etal. 2003), P, an empirically adjusted P value, which is the “fraction of 1000 null-hypothesis simulations having attributes with this single-hypothesis

P value or smaller” (Berriz et al. 2009; Berriz et al. 2003)
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Table 3  Developmental regulatory processes are most overrepresented in the most conserved CIBLIN orthologs

N M? X P Pygi Attrib. ID Gene Ontology (GO) attribution name

13 66 384 4.2E-10 0.000 G0O:0048598 Embryonic morphogenesis

16 785 53 1.5E-10 0.000 GO0O:0008146 Sulfotransferase activity

17 785 64 3.6E-10 0.000 GO:0016782 Transferase act., transferring sulfur-con. groups
18 136 407 4.8E—-10 0.000 GO:0009887 Organ morphogenesis

15 260 179 1.8E-08 0.000 GO0:0030278 Regulation of ossification

27 248 550 2.1E-09 0.000 G0O:0009888 Tissue development

27 212 666 3.9E-09 0.000 GO0:0048731 System development

49 128 2675 3.2E-12 0.000 GO:0048856 Anatomical structure development

41 204 1273 7.7E-11 0.000 GO:0009653 Anatomical structure morphogenesis

39 320 789 8.0E-10 0.000 GO0:0043565 Sequence-specific DNA binding

50 298 1290 9.3E-10 0.000 GO0:0045595 Regulation of cell differentiation

55 407 1025 1.1E-10 0.000 GO:0003700 Sequence-specific DNA binding txn. factor activity
55 407 1026 1.1E-10 0.000 GO:0001071 Nucleic acid binding transcription factor activity
59 318 1502 1.8E-10 0.000 GO:0006357 Reg. of txn. from RNA polymerase 1l promoter
69 343 1778 2.2E-10 0.000 GO:0050793 Regulation of developmental process

100 320 3294 1.3E-10 0.000 GO:0006355 Regulation of transcription, DNA-templated

101 320 3424 5.1E-10 0.000 GO0O:0051252 Regulation of RNA metabolic process

108 320 3716 2.2E-10 0.000 GO:0010556 Reg. of macromolecule biosynthetic process
110 320 3928 1.3E-09 0.000 G0:0009889 Regulation of biosynthetic process

91 433 2234 5.0E-09 0.000 GO:0048869 Cellular developmental process

108 320 3895 3.5E-09 0.000 GO:0031326 Regulation of cellular biosynthetic process

139 411 4010 1.5E-10 0.000 GO:0010468 Regulation of gene expression

156 488 3994 9.0E-10 0.000 GO0:0044767 Single-organism developmental process

167 489 4456 4.6E—09 0.000 G0:0032502 Developmental process

35 559 431 3.3E-08 0.001 GO:0006366 Transcription from RNA polymerase II promoter
153 411 4917 3.0E-08 0.001 GO:0060255 Regulation of macromolecule metabolic process
8 305 34 4.1E-08 0.002 GO0:0032570 Response to progesterone

47 318 1230 4.0E-08 0.002 GO:1902680 Positive regulation of RNA biosynthetic process
48 318 1273 43E-08 0.002 G0O:0010628 Positive regulation of gene expression

9 128 115 6.5E-08 0.003 GO:0061448 Connective tissue development

26 316 474 6.5E-08 0.003 GO:0008134 Transcription factor binding

42 387 861 7.2E-08 0.003 GO0:0045944 Pos. reg. of txn. from RNA pol. II promoter

45 318 1172 7.1E-08 0.003 G0:0045893 Pos. regulation of transcription, DNA-templated
47 318 1251 6.7E—08 0.003 GO:0051254 Positive regulation of RNA metabolic process
51 318 1405 5.1E-08 0.003 GO:0010557 Pos. reg. of macromolecule biosynthetic process
150 320 6382 6.8E—08 0.003 G0:0044260 Cellular macromolecule metabolic process

133 320 5472 1.0E-07 0.006 GO0:0031323 Regulation of cellular metabolic process

5 40 60 1.4E-07 0.008 G0O:2000648 Positive regulation of stem cell proliferation

46 295 1336 1.2E-07 0.008 G0O:2000026 Reg. of multicellular organismal development
53 318 1534 1.3E-07 0.008 G0:0009891 Positive regulation of biosynthetic process

31 204 1062 2.0E-07 0.012 GO:0048513 Organ development

35 311 840 2.1E-07 0.012 GO0O:0051094 Positive regulation of developmental process

Gene Ontology (GO) attributes related to developmental processes, stem cell proliferation, and organogenesis are predominantly associated with the
CIBLIN repertoire (yellow highlighted rows). GO attributes related to DNA-binding transcriptional regulators are also overrepresented (light red
highlighted rows.) The 167 CIBLIN genes with the GO term for developmental process (dark yellow highlight) are highlighted in Fig. 1b

P single hypothesis one-sided P value of association between attribute and query based on Fisher’s exact test, P,q; is an empirically adjusted P-value
given by the fraction of 1000 null-hypothesis simulations having attributes with this single-hypothesis P value or smaller

 Genes ordered by average human/mouse and human/rat dN/dS ratios from slowest to fastest rates. In this context, M corresponds to the first M genes in
the ranked list producing the most significant P value for any significant attribute among 17,658 attributes
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Inspection of the most conserved CIBLIN genes shows that
most are regulators of cell proliferation during development
while others are regulators of epithelial-to-mesenchyme tran-
sitions. Many of the top conserved CIBLIN genes (e.g.,
BZWI1, LMO4, OTP, PRRX1, TADA3, MAD2L2, SHOX2,
PTOV1, and SOX10) have already been implicated in promot-
ing aggressive cancers of many types (see Table 4 for refer-
ences). Thus, it appears that the CIBLIN genes are predomi-
nantly a proto-oncogenic repertoire of developmental
regulators.

MYC and MNT are part of a gene regulatory network
of CIBLIN cell proliferation regulators

To better understand the nature of this CIBLIN regulatory
repertoire, we identified 101 human CIBLIN genes having
the GO attributions for either “sequence-specific DNA bind-
ing transcription factor activity” (GO:0003700) or “Mediator
complex” (GO:0016592). We then used these 101 CIBLIN
gene regulators in an interactome analysis to identify and rank
the types of interconnections over several data types (e.g.,
physical interaction data sets, genetic interaction data sets,
co-expression, co-localization, shared protein domain, and

predicted based on interactions in orthologs of other species;
see Fig. 2 and “Materials and methods”).

We find that nearly every major DNA binding domain is
evenly represented among the 101 CIBLIN regulators includ-
ing zinc finger domains (ZF), bHLH, bZIP, homeodomain
(HD), rel homology domain (RHD), and nuclear hormone
receptors (NHR) (Fig. 2a). Importantly, Myc is ranked as hav-
ing the most interactions for any regulator outside of the lost
Mediator subunits for this set of top ranked interactions. Myc
also has the only physical contacts with Mediator subunits.
Figure 3 summarizes the Mediator complex (red subunits in
Fig. 3) in nematodes in relation to their undetectable CIBLIN
subunits (blue subunits in Fig. 3). It should be noted however
that the Mediator complex in nematodes has not been bio-
chemically purified and that many of the putative subunits
are based solely on the best alignments, many of which are
admittedly weak and the basis for using the “Mdt” names in
C. elegans and “Med” names in all other organisms including
yeast (Blazek et al. 2005). Many alignments of these putative
homologs with bona fide Mediator subunits are poor and
based on short peptide sequences embedded in otherwise flex-
ible or intrinsically disordered protein regions (Taubert et al.
2006). A good example is Med15/Mdt-15, which is not a
CIBLIN gene because it is detected in Trichinella despite the

Table 4 Examples of conserved CIBLIN genes with roles in development and/or cancer

RANK Avg. Human Human gene description Roles in development and/or cancer progression
dN/dS* gene [source: HGNC]
1 0.000 BZW1 Basic leucine zipper and Proliferation regulator, in salivary mucoepodermoid carcinoma
W2 domains 1 (Li et al. 2009)
2 0.000 ENY2 Enhancer of yellow 2 Insulator/barrier regulator, binds CTCF (Maksimenko et al. 2014)
homolog (Drosophila)
3 0.000 LMO4 LIM domain only 4 Proliferation and epithelial-to-mesenchyme regulator; neuroblastomas;
mammary stem cells and breast tumorigenesis (Ferronha et al. 2013;
Salmans et al. 2014)
7 0.001 OTP Orthopedia homeobox Breast cancer; pulmonary carcinoids (Kim et al. 2012; Swarts et al. 2013)
11 0.006 PRRX1 Paired related homeobox 1 Gioblastoma invasiveness (Sugiyama et al. 2014); gastric cancers,
regulator of epithelial-to-mesenchyme transitions (Guo et al. 2015)
14 0.008 TADA3 Transcriptional adaptor 3 Embryonic progression, cell cycle checkpoint (Mohibi et al. 2012); p53
acetylation, cellular senescence (Nag et al. 2007; Sekaric et al. 2007);
cervical carcinomas, inactivation by HPV (Kumar et al. 2002)
15 0.008 MAD2L2 MAD?2 mitotic arrest Mitotic check point (Cahill et al. 1999); chromosome instability, renal
deficient-like 2 (yeast) carcinomas, breast cancers, other cancers
28 0.014 SHOX2 Short stature homeobox 2 Embryoid bodies, hepatocellular carcinoma, breast cancer, lung cancers
(Schneider et al. 2011)
31 0.015 PTOV1 Prostate tumor Epithelial ovarian cancers, prostate cancers, high grade malignant tumors
overexpressed 1 (Alana et al. 2014)
33 0.015 GBX2 Gastrulation brain Promotes pluripotent cell fates (Tai and Ying 2013)
homeobox 2
34 0.015 SOX10 SRY-box 10 Melanoma progression (Shakhova et al. 2012)

See Supplementary tables for complete list

# Average dN/dS values are the average of the human/mouse and human/rat alignments
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Fig. 3 Reduction of Mediator complex accompanied loss of CIBLIN
regulators in nematodes. a The head, middle, and tail subcomplexes, as
well as the kinase module of Mediator is shown, along with the subunits
that are not detectable in nematode genomes (specifically the genomes for
species shown in Fig. 1a). The undetectable subunits, which are likely lost
or else under relaxed selection and fast-evolving are indicated in blue with
a delta symbol (“deleted”). Conserved subunits are indicated in fuchsia.
Subunits in purple are putatively present as extremely divergent forms
and have been given suggestive names Mdt-15 and Mdt-11. Med27 was
only detected in the enoplian species of Trichinella. Human Myc is
known to physically contact human Medl and Med16 (vertical and
horizontal lines, from Fig. 2a). b An alignment of the Med15 protein

lack of a well-defined protein domain and the presence of
many insertions (see Fig. 3b). Putative Mediator orthologs
are proposed to exist as Mdtl.1 and Mdt1.2 for Med1, Mdt-
24 (LIN-25) for Med24, Mdt29 for Med19, Mdt-9 for Med9,
Mdt-28 for Med28, and Mdt-30 (PQN-30) for Med30 (Grants
et al. 2015). However, no orthologs have been have been
found for the “lost” Mediator subunits (Med16 and Med25)
and at least these have been proposed to be absent (Grants
et al. 2015). Nonetheless, Fig. 3 accurately reflects Mediator
subunits that can be confidently assigned for nematodes ver-
sus those that are definitively lost or for which extremely
divergent homologs have been tentatively proposed based
on sequence alignment and some genetic studies of their
function.

When we look at co-expression of CIBLIN regulators, we
find that over one-half of the 101 human CIBLIN regulators
are tightly co-regulated with MYC, MYCN, MYCL, or MNT
based on hundreds of transcriptomics studies (Fig. 2b). The
vast majority of these are co-expressed with MYC to a greater
degree than with MNT or the other MYC paralogs MYCN or
MYCL (Fig. 2b). We then inspected which particular
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from human (H. sap.), fly (D. mel.), and the nematode Trichinella (T.
spi.) and Mdt-15 from C. elegans (C. ele.), which is most likely Med-
15, is highlighted here to make several points about the threshold
sensitivity of the CIBLIN repertoire. The EnsemblCompara pipelines
are able to make the call for Med15 in Trichinella (Ensembl Metazoa
EnsemblCompara) but not in C. elegans (both Metazoan Ensembl
Compara and the main Ensembl Genes 78 computation). Med15
protein sequence does not feature any major domains and at no place is
there more than a single amino acid residue conserved twice in a row in all
four species. Insertions and deletions predominate, and few residues are
conserved across all taxa (yellow highlight). Med15/Mdt15 is not a
CIBLIN gene because of its detection in Trichinella

transcriptomic studies were responsible for the correlations
in the co-expression network of Fig. 2b and found that the
vast majority (67 %) were from transcriptomic studies of di-
verse cancer types or cancer-related experimental designs
(Supplementary Table S5).

Altogether, we see that Myc can be placed within an
interacting network of lost CIBLIN genes regulating cell pro-
liferation, differentiation, and apoptosis. A perfect example of
other pleotropic proto-oncogenes connected to Myc are the
genes in the proto-oncogenic fos family important in cell
transformation (FOS, FOSB, FOSLI, and FOSL?2 in Fig. 2a,
b) (Durchdewald et al. 2009). We thus conclude that the loss
of Myc in nematodes can be understood as the loss of a com-
plex gene network functioning in surveillance and control of
cell proliferation during bulk organogenesis.

The set of CIBLIN genes overlaps significantly with gene
hits from MycSL screens

Cells from many cancers overexpress Myc, and this basic
cancer signature has been exploited to identify synthetic lethal
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interactors of hyperactive Myc levels relative to wild-type
Myc levels with shRNA/siRNA libraries (Cermelli et al.
2014; Kessler et al. 2012; Liu et al. 2012; Toyoshima et al.
2012). If the pleiotropic Myc regulator is critical to establish-
ing states of gene expression conducive to cellular prolifera-
tion, some CIBLIN genes might be co-expressed with Myc
and also turn up as MycSL hits. Alternatively, little overlap
between CIBLIN and MycSL genes might be helpful for
thinking about the coverage and specificity of such screens
and the relative balance of proto-oncogenes versus tumor sup-
pressors identified.

To determine whether the CIBLIN repertoire includes
MycSL genes, we looked for overlap with the 397 MycSL
hits from a screen in human mammary epithelial cells
(HMECs) (Kessler et al. 2012), 11 MycSL kinome hits from
an HMEC screen (Liu et al. 2012), and 101 MycSL druggable
hits from a screen in human foreskin fibroblasts (HFFs)
(Toyoshima et al. 2012). The latter two MycSL screens each
have only one gene in common with the first screen (GSK3B
or BRD4, respectively) suggesting that the experimental de-
sign is sensitive to cell-type (HMECs vs HFFs), to different
ectopic levels of Myc (inducible Myc-ER vs retrovirus
expressed Myc), and/or to the efficacy of knockdown method
(shRNA vs siRNA libraries).

We find that 31 CIBLIN genes (or 6.1 % of 1389 CIBLIN
genes) are MycSL hits from all three screens (Fig. 4, and

1,389 CIBLIN genes

Supplementary Table S6). Highlighting the unique nature of
the nematode gene reduction, six of these 31 genes are also
present in yeast: CDK2, KATNAL2, TRPS1, TSEN2,
ZCCHC?7, and ZNF146 [We note that while there is a gene
“named” cdk-2 in C. elegans, cdk-2 orthologs are identified
computationally only in other nematodes. Furthermore, this
nematode cdk-2 gene is understood to be the closest gene to
CDK2 other than nematode cdk-1/CDK 1, which appears to be
more similar to bilaterian CDK-2 than nematode cdk-2 (Liu
and Kipreos 2000)].

In addition to containing MY C and many MycSL hits from
different screens, the CIBLIN list contains an astonishing
number of known proto-oncogenes first discovered for their
roles in cancer and/or cellular transformation. These include
mutated in colorectal cancers (MCC) (Kinzler et al. 1991);
migration and invasion enhancer 1 (MEINI) (Evans et al.
2006); melanoma inhibitory activity MIA2/3/CTAGE family
members (Blesch et al. 1994); papillary renal cell carcinoma,
translocation-associated (PRCC) (Sidhar et al. 1996); many
genes connected to ras proto-oncogenic signaling such as
RREBI, ras responsive element binding protein 1
(Thiagalingam et al. 1996); the RET proto-oncogene
(Takahashi et al. 1985); UV radiation resistance associated
(UVRAG) (Iida et al. 2000); Wilms tumor 1 associated protein
(WTAP) (Gessler et al. 1990; Pritchard-Jones et al. 1990); and
many others. In summary, the CIBLIN repertoire is enriched

..FOS, INO80, INO80B/C, MCC,
MIA2/3, MEIN1, MFI2, MYC, PRC1,
PRCC, PRDM5/8, RET, RIF1, RREB1,

TP53INP1/2, UVRAG, WTAP, ZYMNDS, ...

NADK

ADAT1 KBTBD11 RSPH1

BAIAP2L1 KEAP1  SLC24A3
CHST14  LYZL4 TLR6
DNAH11  MED30 TRPS1
GCm1 NMBR TSEN2
GNS PHF1 ZCCHC7
IRF9 RLF ZNF146

11 MycSL genes
(tMyc-ER in HMECs)

397 MycSL genes
(tMyc-ER in HMECs)

KATNAL2 RNF17

HPS1

Fig. 4 Human CIBLIN genes include Myc synthetic lethal hits from
several screens. A Venn diagram of overlap between human CIBLIN
genes and Myc synthetic lethal (MycSL) hits identified by screening
small hairpin RNA (shRNA) or siRNA libraries. The list of 1389
human CIBLIN genes were cross-checked with the 11 MycSL kinome
hits in a screen using human mammary epithelial cells (HMECs), 397
MycSL hits found in an HMEC screen, and 101 MycSL hits from a
screen in human foreskin fibroblasts (HFFs) (Kessler et al. 2012; Liu
et al. 2012; Toyoshima et al. 2012). The first two studies produced
ectopic Myc using an inducible Myc-ER fusion, while the third screen

BOK PRC1
BTK  SULT1A2
CDK2 TXK

101 MycSL genes
(tMyc in HFFs)

used a retroviral vector to drive expression of ectopic levels of Myec.
Thirty-one or ~6.1 % of human CIBLIN genes were found to be
MycSL hits in one of the three MycSL screens as indicated. Thus, there
is more overlap between the CIBLIN genes and any one MycSL screen
than overlap between the MycSL screens themselves. In addition, the list
of human CIBLIN genes include many important factors connected to
cancer progression but not directly connected to Myc-related pathways
(list of genes in red includes a small sample of relevant genes not listed in
other figures). See also Supplementary Table S6 for a breakdown of genes
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for many proto-oncogenic developmental regulators of cell
proliferation, cell migration, ECM remodelers, and stem cell
maintenance. This suggests that the CIBLIN set of genes
should be taken seriously as a linked set of developmental
regulators controlling bulk cellular quantity during organo-
genesis (Supplementary Tables S1, S2, S3, and S4).

What these analyses do not yet address is whether the
CIBLIN gene list is significantly enriched or depleted for tu-
mor suppressors as well. At first glance, it seems that these
types of genes are not as prominent as homologs of human
proto-oncogenes. It is possible that this reflects a fundamental
difference between the molecular functions of such genes.
Tumor suppressors that implement check points or damage
surveillance of various types might still be required in nema-
tode cells, and many such genes (e.g., p53, PTEN) have been
studied for their roles in DNA damage checkpoints and apo-
ptosis (Derry et al. 2001; Liu and Chin-Sang 2015;
Schumacher et al. 2001). Indeed, both apoptosis and autoph-
agy are required throughout C. elegans development (Borsos
et al. 2011).

Discussion

Here, we identified a maximum of 839 orthology groups
(orthologs that may have duplicated in any one lineage) that
are CIBLIN genes using methods similar to the identification
of 25 CIELIM genes conserved in eukaryotes/lost in
metazoans (Erives and Fassler 2015). The majority of
CIELIM genes lost in the stem-metazoan lineage pertain to
the gradual reduction of biosynthetic pathways, which ex-
plains the requirement in animals for dietary sources of essen-
tial amino acids and many vitamin co-factors. In contrast,
CIBLIN genes correspond to developmental regulators of cell
proliferation, cell migration and ECM remodeling, apoptosis,
stem cell maintenance, cell cycle checkpoints, and Mediator
co-activator subunits. The preponderance of genes related to
cell migration likely indicates that these functions are as equal-
ly impacted by the evolutionary reduction in body size as are
cell proliferation regulators. These are interesting losses given
the substantial number of canonical developmental pathways
(e.g., EGF, FGF, Hedgehog, Notch, and Wnt pathways) main-
tained in nematodes (Kolotuev et al. 2009; Minor et al. 2013;
Schmid and Hajnal 2015). However, even components of the
Hippo pathway, which is intimately connected to regulation of
organ size, are mostly conserved (Yang and Hata 2013).

The answer to whether some of the CIBLIN genes are
actually present in nematodes and only fast evolving and un-
detectable by the methods used here does not address why cell
proliferation and cell migration genetic functions are predom-
inantly enriched in the set of genes presented here. For this
reason, we propose that the CIBLIN genes were under relaxed
selection given nematode developmental evolution and that
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the majority were eventually lost early in nematode evolution.
Below, we explain why CIBLIN gene deletions might actually
have been under positive selection.

We speculated previously that the evolution of gastrulation
and endodermal tissues in Metazoa might be intricately linked
with the loss of the CIELIM genes. Genes required for em-
bryonic development and patterning of a multicellular high-
throughput filter feeding organism could have been favored
over genes encoding enzymes for producing molecules that
could now be derived as nutrients from dietary sources via the
endodermal tissues of gastrulation (Erives and Fassler 2015).
While it is difficult to disentangle the causes and effects of
CIELIM gene losses and the evolutionary adaptations of
proto-animals, a brief discussion on the loss of CIBLIN genes
in nematodes may be clinically relevant in one other way
besides cancer progression.

The immediate explanation for the loss of the CIBLIN
genes is that they were no longer required by these small-
bodied animals to regulate large populations of somatic cells.
These developmental genetic functions might have served at
the level of tissue induction or homeostatic control of organ
size maintenance. Alternatively, these genetic functions might
have served to canalize developmental processes, a role which
may have been rendered superfluous by the evolution of strict
cell fate determinative mechanisms based on well-defined cell
lineages.

Many nematodes (Brugia, Loa, Onchocerca) are filarial
parasites afflicting humans and other mammals via transmis-
sion in dipterans (black flies and mosquitoes). Trichinella is a
nematode parasite that causes trichinosis in humans, but mem-
bers of this ancient clade affect all vertebrate groups and many
have complex life cycles through multiple hosts. Furthermore,
parasitic nematodes are known to exert effective
immunomodulation of their hosts via excretory-secretory mol-
ecules (Hewitson et al. 2009; Jex et al. 2014). Nonetheless,
most if not all non-parasitic (free-living) nematodes are also
closely associated with specific animals (Kiontke and
Sudhaus 2006; Schulte 1989). Pristionchus is associated with
scarab beetles. Caenorhabditis remanei, C. elegans, and
C. briggsae are found together and are thought to use snails,
slugs, millipedes, mites, and pill bugs to transport the dormant
dauer stage. C. japonica is associated specifically with shield
bugs and stink bugs. In this context, it is interesting that many
of the lost proteins are transcriptional activators and co-
activators with interaction domains that allow them to aggre-
gate into large regulatory complexes. Thus, an interesting
question is whether loss of such proteins ever facilitated com-
mensalism or parasitism because of a reduced antigenic
footprint.

We conclude by pointing out that the CIBLIN genes might
constitute a high priority genomic platform to be studied to-
gether. In other words, it may be useful to think about their
joint loss and how they work together to control cell
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proliferation. While the normal roles of such genes can be
studied in flies, mice, and humans, studies in nematodes might
be useful for highlighting how conserved developmental gene
regulatory networks operate in the absence of CIBLIN gene
regulatory networks (Brown et al. 2008).
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