
INTRODUCTION

Although the incidence and mortality rates of gastric cancer 
have decreased in recent years, gastric cancer is still prev-
alent worldwide [1]. In particular, gastric cancer has been 
reported as the second most common malignancy in Korea 
[2]. Although resection is a method of treating gastric cancer, 
it is often difficult to detect gastric cancer in an early stage be-
cause there are no symptoms. In the case of more advanced 
gastric cancer, even if detected, the effect of resection is 
insignificant, and the prognosis is poor [3]. The major causes 
of gastric cancer are Helicobacter pylori, gastric ulcer and Ep-
stein-Barr virus, and in addition, genetic and environmental 
factors are also known to affect it [1]. However, recent studies 
have reported that the occurrence of gastric cancer is closely 
related to epithelial-mesenchymal transition (EMT) [3]. EMT 
promotes metastasis and recurrence of gastric cancer. EMT 
is the process by which epithelial cells are transformed into 
mesenchymal cells, and often accompanied by changes such 
as loss of cellular adhesion and polarity, and gain of mobility 
and invasive features [3]. Therefore, it is important to control 

EMT in order to suppress the gastric tumorigenesis.
 In gastric cancer, EMT has been known to be regulated 
by various growth factors and differentiation factors such 
as TGF-β, Wnt or Notch [4]. Among them, TGF-β has been 
attracting attention as a major signaling molecule [5]. Treat-
ment with TGF-β has been reported to change epithelial cell 
morphology, reduce the expression of epithelial markers, 
and increase the expression of mesenchymal markers [6]. 
In addition, the TGF-β signaling pathway is well known as 
a major regulator of metastasis through EMT activation in 
various forms of cancer [5]. Indeed, upregulated TGF-β sig-
naling leads to lymph node metastasis, reduced survival, and 
poor prognosis in gastric cancer [6]. Therefore, inhibition of 
EMT through regulation of the TGF-β signaling pathway is an 
effective way to inhibit the onset and progression of gastric 
cancer.
 Trefoil factor (TFF) 1, which has a trefoil domain, is syn-
thesized and released by mucous secreting epithelial cells 
lining the gastrointestinal tract [7]. In the stomach, TFF1 
is expressed with mucins and helps maintain mucosal in-
tegrity [8]. TFF1 has been studied in various malignancies 
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such as breast cancer, pancreatic cancer, colon cancer, and 
gastric cancer [9]. In particular, it has been reported that 
TFF1-knockout mice exhibit abnormal gastric mucosa and 
may cause gastric cancer [10]. In addition, the treatment with 
recombinant TFF1 has been reported to inhibit cell prolifera-
tion in vitro and decrease the expression of TFF1 in human 
gastric adenoma and carcinomas [11,12]. Moreover, recent 
studies have shown that TFF1 inhibits EMT in the epithelium 
of pancreatic cancer [13]. It has also been shown that TFF1 
inhibits inflammation caused by Helicobacter pylori during 
gastric cancer progression [14]. Although there are many re-
ports on the gastrointestinal protective effect of TFF1, studies 
on the association between TFF1 and EMT/metastasis are 
still insufficient. In particular, the relationship between TFF1 
and TGF-β, which plays an important role in EMT progres-
sion, has not yet been fully understood. In the present study, 
we found that TFF1 inhibits EMT activation through regulation 
of TGF-β signaling pathways, thereby suppressing the meta-
static potential in gastric cancer AGS cells.

MATERIALS AND METHODS

Cloning and expression vectors
Human TFF1 cDNA was amplified from human gastric can-
cer KATOIII cells using the specific primers: HindIII tailed (5’-
ATG CAA GCT TAT GGC CAC CAT GGA GAA CAA-3’) and 
BamHI tailed (5’-ATG CGG ATC CGC AAA TTC ACA CTC 
CTC-3’). The PCR product was ligated to HindIII and BamHI 
digested vector pEGFP-N1 using Quick Ligation Kit (New 
England Biolabs, Ipswich, MA, USA) following the manufac-
turer’s instruction. Then, the products were transformed into 
competent Escherichia coli DH5α cells and inoculated into 
Luria-Bertani culture media (BD Bioscience, Franklin Lakes, 
NJ, USA) containing kanamycin (Sigma-Aldrich, St. Louis, 
MO, USA). The following day, one colony was selected and 
incubated overnight at 37°C in Luria-Bertani media contain-
ing kanamycin, DNA was extracted using a Exprep Plasmid 
SV (GeneAll Biotechnology, Seoul, Korea), and the TFF1 
sequence was confirmed.

Cell culture
Human gastric cancer AGS cells were acquired from the 
American Type Culture Collection (ATCC, Rockville, MD, 
USA) and maintained in RPMI 1640 medium supplemented 
with 10% FBS and 100 U/mL penicillin and 100 U/mL strep-
tomycin at 37°C in a humidified 5% CO2 atmosphere. The 
cells were plated at an appropriate density according to each 
experiment.

Wound-healing assay
AGS cells (1 × 105) were seeded in a 6-well plate. On the 
following day, each plate was scraped with a pipette tip 
and transfected with TFF1. After additional incubation for 
24 hours, the progression of wound closure was visualized 

under the microscope (Eclipse 50i; Nikon Inc., Melville, NY, 
USA).

Transwell invasion assay
The invasion assay was conducted using the Transwell sys-
tem (Corning Inc., Corning, NY, USA). The inside of the tran-
swell plates was treated with 0.1% gelatin (Sigma-Aldrich). 
AGS cells were transfected with TFF1, and cells were har-
vested 6 hours later, 1 × 104 cells were placed in 0.2 mL se-
rum-free media (transwell top chamber), and 0.5 mL of media 
containing 10% FBS was added to the lower chamber. After 
48 hours, the cells were fixed with 95% ethanol and stained 
with 0.2% crystal violet (Sigma-Aldrich) for 30 minutes, 
washed with phosphate-buffered saline and visualized under 
a microscope. Data were recorded from three random fields 
of the lower membrane surface and analyzed in triplicates.

Transient transfection and the luciferase 
reporter gene assay
AGS cells were transfected with TFF1, E-cadherin, 
Smad-binding element (SBE) and CAGA promoter-driven lu-
ciferase reported plasmid using Lipofectamine® 2000 Trans-
fection Reagent (Invitrogen, Waltham, MA, USA) following 
the manufacturer’s protocols. Cells were lysed 24 hours after 
transfection, and the luciferase assay was performed accord-
ing to the manufacturer’s protocol (Promega, Madison, WI, 
USA). Each experiment was performed in triplicates.

Western blot assay
AGS cells were collected with cell lysis buffer containing 
protease inhibitor (Roche Applied Science, Mannheim, Ger-
many). The cells were centrifuged for 15 minutes at 13,000 
rpm. The concentration of protein was determined using 
a Pierce BCA Protein assay kit (Thermo Fisher Scientific, 
Rockford, IL, USA). The protein was loaded 10% SDS-PAGE 
and transferred to polyvinylidene fluoride membranes, which 
were incubated with the primary antibodies (diluted 1:1,000). 
Then, membranes were washed and incubated with perox-
idase-conjugated secondary antibodies. Membranes were 
rewashed, and then were visualized using an enhanced che-
miluminescence system (Thermo Fisher Scientific, Waltham, 
MA, USA). The primary antibodies used for the Western 
blot analysis are as follows: E-cadherin from BD Bioscience 
(Franklin Lakes, NJ, USA). TGF-β receptor I (TGF-βRI), 
N-cadherin, vimentin, snail, Twist, Zinc finger E-box binding 
homeobox (ZEB) 1, ZEB2 (also known as Smad interacting 
protein 1) , TFF1, matrix metalloproteinase (MMP)-2, MMP-7 
and MMP-9 from Santa Cruz Biotechnology (Santa Cruz, CA, 
USA). p-Smad2, p-Smad3, Smad2/3 and Smad7 from Cell 
Signaling Technology (Danvers, MA, USA).

RNA isolation and RT-PCR
Total mRNA was isolated from AGS cells using TRIzol® re-
agent (Invitrogen, Carlsbad, CA, USA) according to the man-
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ufacturer’s protocol. cDNA was synthesized using a Super-
Script® II Reverse Transcriptase kit (Invitrogen, Waltham, MA, 
USA) according to the manufacturer’s protocol. The mRNA 
levels were analyzed by reverse transcription PCR (RT-PCR). 
The relative quantities of target genes were analyzed from 
triplicates after normalization by 18s rRNA. The cDNA was 
amplified in sequential reactions: 95°C for 1 minute, 58°C for 
30 seconds, and 72°C for 1 minute, for 32 cycles of E-cad-
herin; 95°C for 1 minute, 58°C for 30 seconds, and 72°C for 
1 minute, for 35 cycles of N-cadherin and vimentin; 95°C for 
1 minute, 58°C for 30 seconds, and 72°C for 1 minute, for 40 
cycles of Twist, ZEB2, MMP-2, MMP-7 and MMP-9; 95°C for 
1 minute, 60°C for 30 seconds, and 72°C for 1 minute, for 35 
cycles of TFF1; 95°C for 1 minute, 60°C for 30 seconds, and 
72°C for 1 minute, for 28 cycles of 18s rRNA. The primers 
used for the RT-PCR reactions are as follows (forwards and 
reverse, respectively): TFF1, 5’-GCA AAT AAG GGC TGC 

TGT TTC-3’ and 5’-GAA GCG TGT CTG AGG TGT CC-3’; 
E-cadherin, 5’-GAA CTG CAA AGC ACC TGT GAG-3’ and 
5’-TCG ACC GGT GCA ATC TTC AA-3’; N-cadherin, 5’-GAC 
AAT GCC CCT CAA GTG TT-3’ and 5’-CCA TTA AGC CGA 
GTG ATG GT-3’; vimentin, 5’-GAG AAC TTT GCC GTT GAA 
GC-3’ and 5’-TCC AGC AGC TTC CTG TAG GT-3’; Twist, 5’-
GGA GTC CGC AGT CTT ACG AG-3’ and 5’-TCT GGA GGA 
CCT GGT AGA GG-3’; ZEB2, 5’-TTC CTG GGC TAC GAC 
CAT AC-3’ and 5’-GCC TTG AGT GCT CGA TAA-3’ ; MMP-
2, 5’-GCG ACA AGA AGT ATG GCT TC-3’ and 5’-TGC CAA 
GGT CAA TGT CAG GA-3’; MMP-7, 5’-GTG GTC ACC TAC 
AGG ATC GT-3’ and 5’-ACC ATC CGT CCA GCG TTC AT-
3’; MMP-9, 5’-CGC AGA CAT CGT CAT CCA GT-3’ and 5’-
GGA TTG GCC TTG GAA GAT GA-3’; and 18s rRNA, 5’-CCC 
AAC TTC TTA GAG GGA CAA GT-3’ and 5’-TAG TCA AGT 
TCG ACC GTC TTC TC-3’. Amplification products were an-
alyzed in 1.5% agarose gel electrophoresis, stained with red 

Figure 1. Trefoil factor 1 (TFF1) inhibits epithelialmesenchymal transition (EMT) in AGS cells. (A) AGS cells were transfected with TFF1 for 24 
hours. Western blot analysis was conducted for measuring the expression of E-cadherin, N-cadherin, vimentin, Snail, Twist, ZEB1 and ZEB2. (B) AGS 
cells were transfected with TFF1 for 24 hours. Reverse transcription PCR (RT-PCR) was conducted to measure the mRNA transcripts of E-cadherin, 
N-cadherin, vimentin, Twist and ZEB2. (C) AGS cells were transiently transfected with TFF1 and E-cadherin plasmids for 24 hours. Cell extracts were 
harvested, and the luciferase assay was performed. ZEB, Zinc finger E-box binding homeobox. *P < 0.05, **P < 0.01, and ***P < 0.001, significantly 
different compared with control.
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safe, and photographed under ultraviolet light.

Statistical analysis
All data are expressed as means ± SD. Each experiment was 
performed a minimum of three times. Statistical analysis was 
performed using one-way ANOVA. Statistical significance 
was accepted at P < 0.05.

RESULTS

TFF1 inhibits EMT in human gastric cancer 
AGS cells
TFF1 has been reported to reduce inflammation in the stom-
ach and inhibit gastric cancer progression [15,16]. In addition, 
recent studies have also reported that TFF1 can inhibit EMT 
[13]. In order to figure out the relevance of TFF1 to EMT, we 
investigated the expression of EMT markers and E-cadherin 
promoter activity. As a result, the expression of E-cadherin 
was significantly increased in TFF1-transfected cells, where-
as EMT-inducing factors such as N-cadherin, vimentin, Snail, 
Twist, ZEB1 and ZEB2 were significantly downregulated 
(Fig. 1A). In parallel with elevated expression of proteins, the 
mRNA transcript of EMT markers were also decreased by 
transfection with TFF1 in gastric cancer AGS cells. As shown 
in Figure 1B, TFF1 induced the mRNA expression of E-cad-
herin, whereas TFF1 suppressed that of N-cadherin, vimen-
tin, Twist and ZEB2. In particular, Western blot analysis and 

RT-PCR showed significant downregulation of Snail, ZEB1, 
and ZEB2, which are well known repressors of E-cadherin 
expression, while the epithelial marker E-cadherin was signifi-
cantly upregulated. Next, we determined the effects of TFF1 
on the promoter activity of E-cadherin. Elevated TFF1 levels 
enhanced E-cadherin luciferase activity (Fig. 1C). 
 To verify the role of TFF1 in the regulation of EMT, we 
performed wound-migration and invasion assays in AGS 
cells transfected with TFF1. TFF1 transfection for 24 hours 
reduced the migrative capability of AGS cells (Fig. 2A). To 
further understand the role of TFF1 in invasiveness and EMT 
switching, we performed the transwell invasion assay. We 
found that the invasive property of AGS cells was significantly 
decreased by transfection with TFF1 (Fig. 2B). 

TFF1 inhibits the expression of metastatic 
markers in human gastric cancer AGS cells
In cancer cells, the progression of EMT is well known to 
induce metastasis [17]. We observed that TFF1 inhibited 
EMT, migration, and invasiveness in AGS cells in Fig. 2. This 
prompted us to examine the effects of TFF1 on the expres-
sion of metastatic markers, MMPs, which degrade extra-
cellular matrix as a prerequisite for cellular invasion and is 
involved in several types of cancer metastasis. Transfection 
of AGS cells with TFF1 significantly reduced the expression 
of MMP2, MMP-7, and MMP-9 (Fig. 3A). and their mRNA 
transcripts (Fig. 3B).

Figure 2. TFF1 suppresses migra
tion and invasion in AGS cells. (A) 
AGS cells were transfected with TFF1 
for 24 hours. After transfection, the 
cell migration was analyzed for 24 
hours in scratched AGS cells. (B) Cell 
invasion was analyzed after 48 hours 
post transfection with TFF1 to allow for 
the permeabilization of the transwell 
membrane. The membrane was stained 
with 0.2% crystal violet. Scale bar, 100 
mm. TFF1, Trefoil factor 1. *P < 0.05, **P 
< 0.01, and ***P < 0.001, significantly 
different compared with control.
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TFF1 inhibits the TGF-ββ signaling pathway
The TGF-β/Smad signaling pathway has been reported to 
play a crucial role in the EMT and to promote metastasis in 
gastric cancer [18]. Therefore, we measured the activity of 
Smad-binding element (SBE) and CAGA, known as TGF-β 
responsive motifs, in AGS cells overexpressing TFF1. As a 
result, upregulation of TFF1 significantly reduced the SBE 
and CAGA promoter activities in AGS cells transfected with 
TFF1 (Fig. 4). Next, we measured the protein expression of 
molecules related to the TGF-β signaling pathway by Western 
blot analysis. Treatment of AGS cells with TGF-β significantly 
induced the expression of TGF-βRI, phospho-Smad2 and 
phospho-Smad3. However, transfection with TFF1 significant-
ly inhibited the increased levels of TGF-βRI, phospho-Smad2 
and phospho-Smad3 activated by TGF-β treatment in AGS 
cells (Fig. 5). On the other hand, Smad7, which was reduced 
by TGF-β treatment, was recovered in TFF1-transfected AGS 
cells. Taken together, these findings indicate that TFF1 has 
the inhibitory effect on the TGF-β/Smad signaling pathway in 
gastric cancer AGS cells.

DISCUSSION 

Gastric cancer is one of the most common malignancies in 
the world [1]. Invasion and metastasis are the main causes of 
death from gastric cancer [19]. There are multiple lines of ev-
idence supporting the importance of EMT, which transforms 
epithelial cells into mesenchymal forms [20]. EMT appears 
in various lesion processes such as inflammation and fibro-
sis, mainly characterized by a decrease in epithelial markers 
with an concomitant increase in mesenchymal markers [21]. 
During EMT, E-cadherin, a cell adhesion protein, is converted 

to N-cadherin which is accompanied by the increase in the 
levels of vimentin [20]. The decrease in E-cadherin is caused 
by various major EMT-induced transcription factors including 
Snail1, Snail2, Twist, ZEB1, ZEB2, forkhead box C2, E47, 
and so on. These transcription factors influence one another 
and have been known to be downstream of TGF-β, Wnt, 
Notch, signal transducer and activator of transcription-3, epi-
dermal growth factor and NF-kB [22,23]. In this study, we in-
vestigated the effect of TFF1 on the expression of major EMT 
markers and EMT-related promoter activity.
 TGF-β has been recognized as a major effector promot-
ing EMT and metastasis [5,7]. In cancer cells, the activity of 
TGF-β promotes EMT and imparts invasion to cells [5]. The 
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TGF-β signal occurs through two types of receptors: I and II 
complexes [24]. Of these, the receptor that plays an import-
ant role in EMT induction has been reported as type I, and 
therefore, inhibition of TGF-βRI in cells also blocks EMT and 
increases the manifestation of the epithelial phenotype [25]. 
It has also been reported that inhibiting the function of TGF-
βRI suppresses EMT and blocks mesenchymal differentiation 
in vivo [26]. TGF-βRI induces the activation of Smad2 and 
Smad3 [5]. Smad2/3 is phosphorylated and translocate to 
the nucleus together with Smad4 to regulate the expression 
of target genes such as E-cadherin, N-cadherin, Snail, Slug 
and Twist, thereby increasing EMT [5]. On the other hand, 
Smad6 and Smad7 inhibit the phosphorylation of Smad2/3 
mentioned above [24]. Regarding gastric cancer, treatment 
with compounds that inhibit TGF-β signaling has been report-
ed to prevent EMT and metastasis [27], and also to inhibit 
metastasis induced by TGF-β [28]. It has been reported that 
the expression of TFF1 is decreased while the expression 
of TGF-β is increased in gastric cancer [29]. However, there 
are few studies on how TFF1 interacts with TGF-β. TFF1 has 
been found to be highly related to the estrogen receptor (ER) 
[30] and ER activation suppresses the transcriptional activity 
of TGF-β [31]. Therefore, the association between TFF1 and 
TGF-β cannot be excluded. Therefore, more in-depth studies 
on TFF1 and TGF-β are needed.
 TFF protein is a small molecule peptide with a trefoil do-
main, and there are three isoforms: TFF1, TFF2 and TFF3 
[32]. TFF1 and TFF3 have a single trefoil domain, and TFF2 
has two trefoil domains [32]. It is known that the TFF protein 
primarily plays a role in healing wounds in the gastrointestinal 
tract [32]. All TFFs are highly resistant to proteolytic enzymes, 
so they can survive in the strong acidic conditions of the 
stomach [33]. In particular, TFF1 is expressed in the mucous 
cells of the fundus and antrum in the stomach, TFF2 is ex-
pressed in the mucosal cervical cells of the fundus and the 
basal cells of the pylorus, and TFF3 is expressed in the small 

and large intestine [32]. TFF1 is generally known to interact 
with soluble gastric mucosa MUC5AC and is upregulated 
after mucosal injury, and it has been reported that TFF1 pro-
tects the gastric mucosa of transgenic mice with trefoil pep-
tide uptake and TFF1 overexpression [34-37]. 
 TFF1 is a well-known tumor suppressor gene [33]. It has 
been reported that TFF1 null mice develop adenomas, and 
about 30% of these progress to gastric adenocarcinoma [10]. 
In addition, the protein expression of TFF1 was found to be 
reduced by about 50% in the tissues of gastric cancer pa-
tients [38], and the mRNA expression of TFF1 was reported 
to be significantly reduced in human gastric cancer compared 
to the normal gastric mucosa [39]. Therefore, we thought 
that inhibition of TFF1 could control gastric cancer based on 
the fact that the gastric mucosa is protected by TFF1 and 
that loss of TFF1 cause gastric cancer. In fact, we found that 
TFF1 did inhibit EMT and metastasis in gastric cancer. 
 Recently, Yamaguchi et al. [13] confirmed that inhibition 
of TFF1 suppressed the expression of E-cadherin and in-
creased the expression of Twist and Snail in pancreatic epi-
thelial carcinoma. This suggests that TFF1 can inhibit EMT, 
consistent with our findings. TFF1 has also been reported as 
an estrogen-related receptor gene. As Estrogen-related re-
ceptor gamma is activated, TFF1 increases, followed by en-
hancement of mesenchymal-to-epithelial transition, and this 
led to the inhibition of the growth of breast cancer [40]. On 
the other hand, a recent study has demonstrated that TFF1 
promotes EMT through an auto-induction mechanism in gas-
tric cancer [41]. However, according to the previous studies, 
TFF1 mutations rather increase the invasion of gastric cancer  
[33], so it is thought that upregulation of TFF1 plays a positive 
role in the treatment of gastric cancer. 
 Studies on TFF1 and its gastric protective effects have 
been steadily increasing, but TFF-binding molecules have 
not been identified yet [42]. Recent findings have shown that 
TFF2 is involved in immune cell recruitment by regulating 

Figure 5. TFF1 inhibits TGFββ si
gnaling in AGS cells. AGS cells 
were transfected with TFF1 and were 
treated TGF-β for 48 hours. Western 
blot analysis was conducted for 
measuring the expression of TGF-β 
receptor I (TGF-βRI), phosphorylation 
of Smad2 and Smad3, total Smad2/3, 
and Smad7. TFF1, Trefoil factor 1. *P 
< 0.05, **P < 0.01, and ***P < 0.001, 
significantly different compared with 
control; ##P < 0.01 and ###P < 0.001, 
significantly different compared with 
TGF-β-treated cells.
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extracellular signal-regulated kinases 1/2 signaling through 
chemokine receptor (CXCR) 4 [42,43]. It has also been 
reported that TFF2 affects mucosal therapy through prote-
ase-activated receptor 4 [44]. It was also found that TFF3 
affects cell migration through CXCR4 and CXCR7 [43], and 
that TFF3 suppresses the expression of pro-inflammatory cy-
tokines through protease-activated receptor 2 [45]. However, 
it remains still unknown how TFF1 affects cells. In this study, 
we confirmed that TFF1 can inhibit TGF-β signaling pathway. 
However, the molecular details how TFF1 inhibits TGF-β sig-
naling need to be substantiated by further studies. Through 
the present study, we speculate that TGF-β has potential as a 
binding molecule for TFF1.
 In conclusion, our results show that the overexpression of 
TFF1 inhibits EMT through regulation of TGF-β signaling in 
gastric cancer cells. In addition, the overexpression of TFF1 
also reduced migration and invasiveness of gastric cancer 
cells as well as the expression of cancer metastasis markers 
such as MMP-2, MMP-7 and MMP-9. These findings suggest 
that the assessment of TFF1 status in gastric cancers might 
be useful during anticancer treatment. Strategies for upreg-
ulation of TFF1 levels may influence the effectiveness of 
anticancer treatment of advanced stage cancers with a high 
probability of metastasis. Further studies will be necessary to 
clarify the role of TFF1 and TGF-β in the gastric cancer me-
tastasis and EMT.
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