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Abstract
Talimogene Laherparepvec (T-VEC) is a first-in-class oncolytic virotherapy ap-
proved for the treatment of unresectable melanoma recurrent after initial sur-
gery. Biodistribution data from a phase II study was used to develop a viral 
kinetic mechanistic model describing the interaction between cytokines such as 
granulocyte-macrophage colony-stimulating factor (GM-CSF), the immune sys-
tem, and T-VEC treatment. Our analysis found that (1) the viral infection rate has 
a great influence on T-VEC treatment efficacy; (2) an increase in T-VEC dose of 
102 plaque-forming units/ml 21 days and beyond after the initial dose of T-VEC 
resulted in an ~12% increase in response; and (3) at the systemic level, the ratio 
of resting innate immune cells to the death rate of innate immune impact T-VEC 
treatment efficacy. This analysis clarifies under which condition the immune sys-
tem either assists in eliminating tumor cells or inhibits T-VEC treatment efficacy, 
which is critical to both efficiently design future oncolytic agents and understand 
cancer development.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
T-VEC is a first-in-class oncolytic virotherapy approved for the treatment of un-
resectable melanoma recurrent after initial surgery. However, there is a lack of 
a comprehensive quantitative approach that systematically evaluates T-VEC 
efficacy.
WHAT QUESTION DID THIS STUDY ADDRESS?
This analysis (i) developed a viral kinetic mechanistic model in melanoma pa-
tients leveraging T-VEC clinical data, (ii) identified model parameters that influ-
ence T-VEC treatment efficacy and immune response, and (iii) quantified the 
correlation between a T-VEC dose/dosing regimen and the time course of anti-
melanoma tumor response.
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INTRODUCTION

Oncolytic viruses are an emerging class of immunothera-
pies that promote tumor regression by attacking and in-
fecting cancerous cells and stimulate the host antitumor 
immunity. However, depending on the degree of sever-
ity of the viral infection, the host immune system can 
act both as a barrier and facilitator.1–4 Thus, one of the 
challenges when designing oncolytic virotherapy is how 
to optimize the complex dynamic between antiviral re-
sponses, viral clearance, and immune-mediated tumor 
destruction. Granulocyte-macrophage colony-stimulating 
factor (GM-CSF) is a white blood cell growth factor re-
sponsible for stimulating granulocyte production and is 
known to have a variety of effects on the immune system, 
including the activation of T cells and the maturation of 
dendritic cells.5–8 Talimogene Laherparepvec (T-VEC) 
is a first-in-class oncolytic virotherapy approved for the 
treatment of unresectable melanoma recurrent after ini-
tial surgery.3 T-VEC is a genetically engineered herpes 
simplex virus type 1 that selectively replicates in tumor 
tissue and lyses tumor cells while promoting antitumor 
immunity.3 To further enhance T-VEC immunogenicity, 
two copies of the human GM-CSF gene were inserted into 
the virus genome to enhance the influx of dendritic cells 
into the tumor and their activation.3,9 Initial tolerability of 
T-VEC has been established in a phase I trial of 30 patients 
with refractory cutaneous or subcutaneous metastases 
from melanoma, breast cancer, gastrointestinal adeno-
carcinoma, or squamous cell carcinoma of the head and 
neck.10 Local reactions were found to be dose limiting at 
107 plaque-forming units (pfu)/ml, but did not influence 
T-VEC efficacy. Pfu is a metric measuring the quantity of 
viruses that are capable of lysing host cells and forming a 
plaque. Numerous studies exist in the literature that as-
sess and review T-VEC efficacy and safety.10–13 Andtbacka 
et al.11 evaluated T-VEC DNA biodistribution, shedding, 
and its potential transmission during and after comple-
tion of therapy in adults with advanced melanoma using 
data from a phase II, single-arm, open-label study. Their 

analysis confirmed that T-VEC can be administered safely 
to patients with advanced melanoma and is unlikely to be 
transmitted to close contacts with the appropriate use of 
occlusive dressings. T-VEC response rate was reported to 
be 35%, including 15% with complete response (CR) and 
20% with partial response. Furthermore, 17% of patients 
were reported with stable disease (SD) and 26% with pro-
gressive disease (PD). A further detailed T-VEC response 
rate was evaluated in the Oncovex(GM-CSF) Pivotal 
Trial in Melanoma (OPTiM) clinical trial and reported in 
Andtbacka et al.13 To our best knowledge, no mechanis-
tic model that robustly quantifies T-VEC viral kinetic and 
describes the complex interactions between immune re-
sponse and T-VEC treatment efficacy has been developed 
to date. Therefore, the aims of the current analysis were 
to (1) develop a viral kinetic mechanistic model in mela-
noma patients leveraging T-VEC clinical data, (2) identify 
model parameters that influence T-VEC treatment effi-
cacy and immune response, and (3) quantify the correla-
tion between dose/dosing regimen and the time course of 
melanoma.

Several mathematical models are published in the liter-
ature that describe the dynamics of oncolytic viruses and 
tumor cells.14–21 Mahasa et al.14 developed a mathematical 
model describing the interactions between the oncolytic 
virus, tumor cells, normal cells, and antitumoral and an-
tiviral immune responses. Their analysis suggested that 
designing an oncolytic virus that is not 100% tumor spe-
cific can increase virus particles, which in turn can infect 
more tumor cells. Storey et al.15 developed a mathemat-
ical model to describe the interactions between distinct 
populations of immune cells by incorporating both innate 
and adaptive immune responses to oncolytic viral therapy 
treating glioblastoma. Their analysis found that a stron-
ger innate immune system leads to less effectiveness due 
to more rapid viral clearance by macrophages and natu-
ral killer cells. None of the existing mathematical models 
considers how the interaction between GM-CSF and both 
innate and adaptive immune responses influence onco-
lytic viral therapy.

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
This platform model adequately captures the well-known, complex, multifaceted 
mechanism of action of T-VEC and identifies under which condition the immune 
system either assists in eliminating tumor cells or inhibits T-VEC efficacy.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
This mechanistic platform model can be used as quantitative knowledge based 
to efficiently inform clinical trials and for the design of future oncolytic agents.
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T-VEC has a complex life cycle starting from manufac-
turing to clinical application compared with traditional 
small molecules or protein therapies. These factors pose 
great challenges in applying traditional pharmacometrics 
modeling and simulation approaches to evaluate T-VEC 
treatment efficacy. Here, T-VEC biodistribution data from 
a phase II study (NCT02014441) were used to quantify its 
response profile using a nonlinear mixed-effect model.

METHODS

Summary of clinical data

The modeling dataset was based on biodistribution 
data from a phase II, single-arm, open-label study 
(NCT02014441) that evaluated the biodistribution and 
shedding of T-VEC in patients with unresected stage IIIB 
to IVM1c melanoma. The primary objective of the study 
was to estimate the proportion of patients with detectable 
T-VEC DNA in the blood and urine. Key eligibility criteria 
included men or women aged ≥ 18 years with a histologi-
cally confirmed diagnosis and unresected stage IIIB, IIIC, 
IVM1a, IVM1b, or IVM1c melanoma regardless of prior 
line of therapy. Further details on inclusion/exclusion 
are reported elsewhere.12 In this study, 60 patients were 
injected with T-VEC intralesional with an initial dose of 
106 pfu/ml (up to 4 ml total injection volume based on le-
sion size) on study Day 1 followed by 108 pfu/ml (up to 
4 ml total injection volume based on lesion size) 21 days 
after the initial dose and every 14 (±3) days thereafter. 
The injected lesions were covered with occlusive dress-
ings for ≥1 week. Patients were treated with T-VEC until 
the achievement of CR or the disappearance of all inject-
able tumors. Samples from blood, urine, the exterior of 

occlusive dressings, and the surface of injected lesions 
were collected at multiple timepoints. Specifically, during 
Cycle 1 samples were collected on Day 1 before and ap-
proximately 1, 4, and 8 h after T VEC administration and 
on Days 2, 3, 8, and 15. During Cycle 2 samples were col-
lected on Day 1 before and approximately 1, 4, and 8 hours 
after T-VEC administration and on Days 2, 3, and 8. During 
Cycle 3 samples were collected on Day 1 (before T-VEC 
administration) and Day 8. During Cycle 4 samples were 
collected on Day 1 (before T-VEC administration). Finally 
samples were collected at 30-day safety follow-up visit (see 
also Figure S1). The collected samples were used to evalu-
ate the biodistribution and shedding of T-VEC during the 
treatment period and safety follow-up. The biodistribu-
tion of T-VEC in blood and all other tissues was evaluated 
using a validated quantitative polymerase chain reaction 
assay. Only T-VEC biodistribution data on the surface of 
injected lesions were used in this analysis as T-VEC DNA 
on the surface of the injected lesions was found to be max-
imally correlated with T-VEC exposure at the lesion level 
(site of action).12 Efficacy end points included best overall 
response, objective response rate (CR or PR, according to 
modified World Health Organization criteria), and dura-
ble response rate (CR or PR for ≥6 months). The protocol 
was approved by the institutional review boards at each 
site, and all patients provided written informed consent 
before the start of any study-related procedures.12

Model structure

The viral kinetic mechanistic model includes the well-
known multifaceted mechanisms of action of oncolytic viral 
therapy14,15 and incorporates specific characteristics of T-
VEC, such as the interaction between GM-CSF and innate 

F I G U R E  1   Structural model. δT, death rate of infected tumor cells, δYV, death rate of virus-specific adaptive immune cells; δYT, death 
of tumor-specific adaptive immune cells; dg, GM-CSF clearance; G, total number of granulocyte-macrophage colony-stimulating factor; 
I, infected tumor cells; KI, killing rate of infected cells by innate immune cells; KIA, killing rate of infected cells by virus-specific adaptive 
immune cells; KTA, killing rate of tumor cells by tumor-specific adaptive immune cells; KVA, killing rate of T-VEC virions by virus-specific 
adaptive immune cells; KVZ, killing rate of T-VEC virions by innate immune cells; V, talimogene laherparepvec virions; ω, viral clearance 
rate; and Z, innate immune cells.
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and adaptive immune responses to T-VEC therapy. The 
final structural model, as shown in Figure 1, includes seven 
compartments that describe the longitudinal change of total 
number of (1) susceptible tumor cell population (T), (2) in-
fected tumor cell population (I), (3) T-VEC virions (V), (4) 
GM-CSF (G), (5) innate immune cells (Z), (6) tumor-specific 
immune cells (YT), and (7) virus-specific immune cells (YV). 
The interaction between the different compartments is as 
follows: the susceptible tumor cells grow logistically at the 
rate intrinsic tumor cell growth rate until they reach their 
capacity tumor cell carrying capacity. Susceptible tumor 
cells get infected by the oncolytic virus with the viral infec-
tion rate β, transforming tumor cells from the susceptible 
population to the infected population. Following success-
ful viral replication within the infected cells, apoptotic in-
fected tumor cells lyse and release tumor-derived antigens. 
GM-CSF proliferates after encountering the virus from the 
infected cells. GM-CSF then activates innate immune cells, 
consisting of both macrophages and natural killer cells. 
Innate immune cells target and kill both viral particles and 
infected cells. The innate immune cells recruit the adap-
tive immune system that contains tumor-specific immune 
cells, and virus-specific immune cells. The tumor-specific 
immune cells, inhibit tumor and infected cells, whereas the 
virus-specific immune cells, inhibit both the T-VEC virion 
and infected tumor cells. Details about the model equations 
can be found in the supplemental material. The inclusion 
of the immune response component in the current viral ki-
netic model led to a highly nonlinear and overparametrized 
model, making the estimations of all model parameters 
practically impossible with the available T-VEC biodistri-
bution data. The longitudinal tumor volume measurements 
were not available for the model development. A dual ap-
proach was used to evaluate the model parameters. Most 
of the model parameters describing intrinsic properties of 
the immune system were taken from the literature (see 
Data  S1: Table A1). The remaining parameters related to 
T-VEC treatment efficacy were estimated using nonlinear 
mixed-effects modeling to account for the inherent variabil-
ity of the T-VEC biodistribution data.

Model-building process

The viral kinetic mechanistic model was built using a 
nonlinear mixed-effect modeling approach in NONMEM 
version 7.4 (ICON Development Solutions). To capture 
the interindividual variability of T-VEC biodistribution, 
an exponential variability model was used. This was im-
plemented by testing interindividual variability for each 
model parameter followed by an inspection of the correla-
tions among the random-effect values to guide the develop-
ment of a parsimonious covariance matrix structure. The 

predictive performance of the final population model was 
assessed using a visual predictive check approach. A total 
of 500 simulated data sets were generated using the final 
model. The observed biodistribution data were graphically 
overlaid with the median values and the 5th and 95th per-
centiles of the simulated biodistribution–time profiles. The 
performance of the model was deemed adequate if the ob-
served biodistribution data were appropriately distributed 
within the 5th and 95th percentiles of the simulated data.

Global sensitivity analysis

Global sensitivity analysis was performed using the Latin 
hypercube sampling (LHS) and partial rank correlation 
coefficient (PRCC) analysis described by Chalom et al.22 
and implemented in R software package pse.23 The first 
step of the algorithm was to determine the distribution of 
each model parameter. This is achieved by using follow-
ing steps: (1) for model parameters that are fixed, their 
distribution was obtained by uniform sampling using the 
ranges provided in Data S1: Table A1; (2) for those that 
are estimated without interindividual variability, their 
distribution was generated by uniform sampling in a rea-
sonable range based on biological information; and (3) for 
those that are estimated with interindividual variability, 
their distribution was obtained by sampling from normal 
distribution with the population mean and variance of the 
estimated model parameters. The second step was to gen-
erate a simulated virtual population treated with T-VEC. A 
total of 500 virtual patients, each with distinct tumor sizes 
and immune characteristics, were treated with T-VEC for 
1, 2, and 4 months and sampled from the described dis-
tributions. The different T-VEC treatment durations were 
chosen to evaluate if and which model parameters de-
pend on the length of the clinical trial. In each of the three 
simulated clinical trials (i.e., 1, 2 and 4 months), virtual 
patients were dosed 106 pfu/ml (up to 4 ml total injection 
volume) on study Day 7, followed by 108 pfu/ml (up to 
4 ml total injection volume) on Days 21 and 28. The final 
step was to perform the sensitivity analysis using LHS/
PRCC as implemented in the R software package pse.22

Simulations predicting T-VEC 
treatment efficacy

Monte Carlo–based clinical trial simulations were per-
formed to showcase the ability of the current viral kinetic 
mechanistic model to predict T-VEC treatment efficacy. 
Virtual populations of 250, 500, and 1000 patients were 
generated to reflect both patient variability and the het-
erogenous nature of patient cohorts. Virtual individuals 
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were created by sampling each model parameter from dis-
tributions obtained from NONMEM estimations or from 
the literature for those parameters that were not estimated. 
To assess T-VEC efficacy, one clinical trial was simulated 
with a “lower dose” and one with a “higher dose” regimen 
in which each virtual patient was treated for 6 months: (1) 
the lower dose regimen consisted of an initial dose of 106 
pfu/ml (up to 4 ml total injection volume) on study Day 
7, followed by additional doses of 106 pfu/ml 21 days after 
the initial dose and on Days 33, 49, 63, 77, 91, 105, 119, 
133, 147, and 161; (2) the “higher dose” regimen consisted 
of an initial dose of 106 pfu/ml (up to 4 ml total injection 
volume) on study Day 7, followed by 108 pfu/ml (up to 
4 ml total injection volume) 21 days after the initial dose 
and on Days 33, 49, 63, 77, 91, 105, 119, 133, 147, and 161. 
Simulated tumor burden was defined as the sum of all in-
fected cells in the tumor scaled by 10−6, that is, (T + I) * 
10–6, assuming that 1 mm3 of tumor burden contains 106 
tumor cells.3 Percentage change from baseline (defined 
as tumor burden measurement at Day 7) was calculated, 

and the ability of the model to predict T-VEC treatment 
efficacy was evaluated by comparing the percentage of 
virtual patients falling into each Response Evaluation 
Criteria in Solid Tumors (RECIST) category:24 that is, re-
sponders including CR/PR, SD, and PD for each dose regi-
men (i.e., lower dose and higher dose). According to the 
RECIST criteria, PD was defined as a percentage change 
from baseline in tumor burden ≥20%, SD was defined as 
a >20% percentage change from baseline in tumor burden 
≥−30%, and PR/CR were defined as a −30% > percentage 
change from baseline in tumor burden.24

RESULTS

In total, 360 T-VEC DNA samples based only on biodis-
tribution data from the surface of injected lesions were 
analyzed. Incidence of quantifiable T-VEC DNA on the 
surface of injected lesions was found to be highest during 
Cycles 1 and 2 with peak DNA observed on Day 7 and Day 

F I G U R E  2   Global sensitivity analysis. aAI, rate of infected cell mediated proliferation of virus specific adaptive immune cells; aAT, rate 
of tumor cell mediated proliferation of tumor specific adaptive immune cells; aTZ, activation rate of tumor specific adaptive immune cells 
via immune cells; aZV, virus mediated activation rate of resting innate immune cells; aZZ, activation of resting innate cells by previously 
activated innate immune cells; bT, burst size of infected cells; β, viral infection rate; CT, tumor cells carrying capacity; dg, GM-CSF clearance; 
δT, death rate of infected tumor cells; δYT, death rate of tumor specific adaptive immune cells; δYV, death rate of virus specific adaptive 
immune cells; δZ, death rate of innate immune cells; δZR, death rate of resting innate immune cells; GM-CSF, granulocyte-macrophage 
colony-stimulating factor; hI, half saturation constant of infected tumor cells; hT, half saturation constant of tumor cells; I, infected tumor 
cells; KI, killing rate of infected cells by innate immune cells; KIA, killing rate of infected cells by virus specific adaptive immune cells; KTA, 
killing rate of tumor cells by tumor specific adaptive immune cells; KVA, killing rate of T-VEC virions by virus-specific adaptive immune 
cells; KVZ, killing rate of T-VEC virions by innate immune cells; rT, intrinsic tumor cell growth rate; Sg, GM-CSF proliferation rate; SZR, 
source of the resting innate immune cells; V, Talimogene Laherparepvec virions; and ω, viral clearance rate.
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22. Figure S1 describes the viral kinetics of T-VEC on the 
surface of injected lesions.

Seven model parameters from which five were linked 
to the dynamics of tumor burden (i.e., tumor cell growth 
rate, viral infection rate, death rate of infected tumor 
cells, and viral clearance rate) and two related to the 
immune system (i.e., killing rate of viruses by virus-
specific immune cells and killing rate of viruses by in-
nate immune cells) could be estimated. Interindividual 
variability could be assessed on tumor cell growth rate, 
viral infection rate, death rate of infected tumor cells, 
and viral clearance rate. Exploration of various residual 
variability models led to the selection of the combined 
residual error model on the log-scale, as this optimally 
characterized the distribution of residuals across the T-
VEC biodistribution range. The final model was stable 
on perturbation of initial parameter estimates. The es-
timated model parameters are shown in Table  S1, and 
model validation and goodness-of-fit plots are provided 
in Figures S2 and S3. It is noteworthy to mention that the 
scatter plots of population predicted versus observed T-
VEC DNA concentrations shown in Figure S2B exhibit a 
bias, and the visual predictive check shown in Figure S3 
suggests underprediction at the high percentiles of T-
VEC DNA. These model-fitting challenges could be at-
tributed to the fact that only the T-VEC distribution data 
were available for the development of the model.

Global sensitivity analysis

The heatmap presented in Figure 2 summarizes the over-
all degree of sensitivity between model outputs and model 
parameters after 4 months of treatment. The PRCC values 
range from −1 to 1, in which negative values characterize 
a negative effect and positive values denote a positive ef-
fect. The color in the vertical strip represents the degree of 
sensitivity, and an absolute value of PRCC above 0.5 was 
considered clinically significant. T-VEC viral infection 
rate β had the strongest sensitivity on susceptible tumor 
cells, whereas the death rate of infected tumor cells had 
the strongest sensitivity on both infected tumor cells and 
GM-CSF levels. These findings suggest that an increase 
of infection of susceptible tumor cells by T-VEC can in-
duce an antiviral immune response that could eliminate 
tumor cells and hence improve T-VEC treatment efficacy 
(see Figure 3b). The sensitivity of all model parameters on 
the susceptible tumor cell population based on different 
trial durations (i.e., 1 month, 2 months, and 4 months) is 
shown in Figure  3a. The burst size of infected cells, bT, 
and the rate at which new resting innate immune cells ar-
rive in the tumor microenvironment source of the resting 
innate immune cells (SZR) gain significance as the duration 
of the clinical trial increases. The sensitivity coefficient of 
both bT and SZR were not deemed to be clinically signifi-
cant as their absolute values were <0.5.

F I G U R E  3   Model parameters affecting tumor burden. (a) Model parameter sensitivity affecting the susceptible tumor cell population based on a 
trial duration of 1 month, 2 months, and 4 months; (b) impact of viral infection rate β on tumor burden. aAI, rate of infected cell mediated proliferation 
of virus specific adaptive immune cells; aAT, rate of tumor cell mediated proliferation of tumor specific adaptive immune cells; aTZ, activation rate of 
tumor specific adaptive immune cells via immune cells; aZV, virus mediated activation rate of resting innate immune cells; aZZ, activation of resting 
innate cells by previously activated innate immune cells; bT, burst size of infected cells; β, viral infection rate; CT, tumor cells carrying capacity; dg, GM-
CSF clearance; δT, death rate of infected tumor cells; δYT, death rate of tumor specific adaptive immune cells; δYV, death rate of virus specific adaptive 
immune cells; δZ, death rate of innate immune cells; δZR, death rate of resting innate immune cells; hI, half saturation constant of infected tumor cells; 
hT, half saturation constant of tumor cells; KI, killing rate of infected cells by innate immune cells; KIA, killing rate of infected cells by virus specific 
adaptive immune cells; KTA, killing rate of tumor cells by tumor specific adaptive immune cells; KVA, killing rate of T-VEC virions by virus-specific 
adaptive immune cells; KVZ, killing rate of T-VEC virions by innate immune cells; PRCC, partial rank correlation coefficient; rT, intrinsic tumor cell 
growth rate; Sg, GM-CSF proliferation rate; SZR, source of the resting innate immune cells; and ω, viral clearance rate.



256  |      AHAMADI et al.

On the systemic level, the source of the resting innate im-
mune cells, SZR, and the death rate of innate immune cells, 
δZ, strongly impact the total number of available T-VEC 
viruses and the immune system with the strongest impact 
on the innate immune system. We have used the ratio be-
tween SZR/death rate of innate immune cells (δZ) as metric 
to assess if the innate immune system plays an inhibiting or 
stimulatory role on T-VEC treatment efficacy. If SZR/δZ > 1 
(i.e., SZR > δZ), the rate at which new resting innate immune 
cells arrive in the tumor microenvironment is higher than 
the death rate of innate immune cells, indicating a well-
functioning innate immune system. To showcase how the 
ratio SZR  >  δZ could influence T-VEC treatment efficacy, 
simulations of a subject administered with 106 pfu/ml of T-
VEC at Day 7 followed by 108 pfu/ml at Days 21 and 33 were 
performed with and without a twofold increase of the SZR/δZ 
ratio. Figure 4 illustrates the findings. Figure 4a shows how 
an increase of SZR > δZ by twofold increases the number of 
innate immune cells. A high number of innate immune 
cells reduces the total number of available T-VEC viruses in 
the system as shown in Figure 4b and hence reduces T-VEC 
ability to reduce tumor burden (see Figure 4c). This result 
agrees with Eftimie and Eftimie,16 who found a strong cor-
relation between the total number of innate immune cells 
and tumor elimination. SZR was also found to be sensitive 
to both YT and YV, however the sensitivity coefficients were 
<0.5 and therefore not deemed clinically significant.

Simulations to quantify the dose–efficacy 
relationship of T-VEC

One of the objectives of developing the current viral ki-
netic mechanistic model was to develop a model to be used 
as a quantitative knowledge platform to accurately predict 

T-VEC treatment responses in future clinical trials. This was 
evaluated by assessing both the ability and the robustness 
of the viral kinetic model to predict realistic dose–efficacy 
relationships at the population level. The waterfall plot in 
Figure 5a and the table in Figure 5b show the distribution 
of responders according to RECIST categories19 in a virtual 
population of 500 patients who were given the higher dose 
T-VEC regimen described previously. To assess the stabil-
ity of the obtained distribution of the responders, 250 and 
1000 virtual patients treated with T-VEC were simulated 
using the higher dose regimen. The distribution of percent 
of responders from 250, 500, and 1000 virtual patients were 
compared between the different populations and with ob-
served data from the phase II single-arm, open-label study 
that evaluated the biodistribution and shedding of T-VEC 
in patients with unresected stage IIIB to IVM1c melanoma 
described previously and in the literature.12 Figure 6a and 
Table S2 summarize these findings. Overall, the prediction 
of percentage of responders using RECIST criteria was sta-
ble and in agreement with the published values reported by 
Andtbacka et al.12 Figure 6b presents the dose–response re-
lationship between 500 virtual patients treated with T-VEC 
with the higher dose and lower dose regimens as described 
previously. Overall, the relationship between T-VEC doses 
and its efficacy suggests that an increase of ~102 pfu/ml 
21 days and beyond after the initial dose of T-VEC resulted 
in an ~12% increase in response to T-VEC treatment in the 
patient population receiving the higher dose regimen com-
pared with the lower dose regimen.

DISCUSSION

Common clinical pharmacology concepts that evaluate 
the safety and efficacy of small or large molecules cannot 

F I G U R E  4   Impact of the innate immune system on tumor burden. (a) A twofold increase of sZR/δZ triggers strong innate immune 
system responses; (b) the reduction of Talimogene Laherparepvec (T-VEC) virion cells as result of a strong innate immune system response; 
and (c) the increase of tumor burden due to a reduction of T-VEC virion cells in the system. SZR/δZ, metric assessing the role of innate 
immune system on T-VEC treatment efficacy.
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be applied to T-VEC.25,26 Based on our best knowledge, 
a comprehensive quantitative approach that system-
atically evaluates the T-VEC treatment efficacy has not 
been developed yet. The current analysis aims to address 
this scientific gap by developing a viral kinetic mechanis-
tic model that systematically evaluates T-VEC treatment 

efficacy. The developed viral kinetic mechanistic model 
adequately captures the well-known, complex, multi-
faceted mechanism of action of oncolytic viral therapy 
and incorporates specific characteristics of T-VEC, such 
as the interaction between GM-CSF, innate and adap-
tive immune responses, and the impact on treatment 

F I G U R E  6   Simulation for patients given the higher dose regimen stratified by Response Evaluation Criteria in Solid Tumors category.22 
(a) Robustness of simulation platform. Observed data are as reported in Andtbacka et al.12 Note that the “Observed” category responders 
and stable disease patients do not have 95% confidence intervals as these were not provided in Andtbacka et al.12 Please see Table S1 for the 
distribution of patients in each category. (b) Comparisons of dose–response relationships between patients given high dose and low dose 
regimens. In all plots, progression is defined as percentage change from basline in tumor burden ≥20%, stable disease is defined as a 20% > 
percentage change from baseline in tumor burden ≥−30%, and response is defined as −30% > percentage change from baseline in tumor 
burden. Baseline is the tumor burden measurement at Day 7.

F I G U R E  5   Distribution of Talimogene Laherparepvec responders based on 500 virtual patients given the higher dose regimen. (a) 
Waterfall plot illustrating the distribution of tumor burden of simulated patients. Progression (progressive disease) is defined as a percentage 
change from baseline in tumor burden ≥20%, stable disease is defined as a 20% > percentage change from baseline in tumor burden ≥−30%, 
and response (partial or complete response) is defined as a −30% > percentage change from baseline in tumor burden. Baseline is defined 
as the tumor burden measurement at Day 7. (b) Table showing the proportion of patients in each category as shown in the waterfall plot (a). 
CI, confidence interval.
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efficacy, significantly extending previously published 
models.12,13,27

Global sensitivity analysis was performed to identify 
model parameters that could significantly influence T-
VEC treatment efficacy. The results from the global sen-
sitivity analysis suggested that viral infection rate β is one 
of the key parameters that drive treatment efficacy, which 
agrees with previously published literature.14,15 On the 
systemic level, our global sensitivity analysis found that 
the dynamic interaction between T-VEC and innate im-
mune system plays an important role. Specifically, a high 
ratio between the rate at which new resting innate im-
mune cells arrive in the tumor microenvironment and the 
death rate of innate immune cells results in a strong in-
nate immune system that reduces the amount of T-VEC in 
the system and in return reduces treatment efficacy. These 
findings are in alignment with the current understanding 
of the dynamic interactions between virotherapy and the 
immune system.16

Findings from OPTiM, a randomized, phase III, open-
label trial,12 demonstrated an increase of survival for pa-
tients with early metastatic melanoma (stage IIIB–IVM1a) 
treated with T-VEC compared with those treated with 
GM-CSF alone. Interestingly, several studies confirm that 
an overexpression of GM-CSF leads to severe inflamma-
tion.28–30 Currently, no quantitative understanding on how 
the activation of GM-CSF could impact T-VEC treatment 
efficacy exists. To address this knowledge gap, correlations 
between parameters related to GM-CSF activation and re-
sponders to T-VEC treatment were quantified. Our simu-
lation results found that T-VEC responders have a lower 

GM-CSF activation rate compared with nonresponders 
(see Figure 7a). This finding suggests that the overexpres-
sion of GM-CSF could negatively impact T-VEC treatment 
efficacy, which is in line with the current understanding 
of the immunobiology of GM-CSF in T cell responses.5 
Figure 7b quantifies at which degree the increase of GM-
CSF activation rate would affect tumor burden. Our simu-
lation has shown that an increase of greater that ~10-fold 
of the value of the activation rate could increase tumor 
burden, although the clinical significance of this change 
is doubtful.

Finally, findings from a series of clinical trial simula-
tions assessing the robustness and precision in quantify-
ing the relationship between two different T-VEC dosing 
regimens and T-VEC treatment efficacy confirmed our 
confidence in the developed model to be used as a quan-
titative knowledge-based platform for future oncolytic 
molecules.

One of the limitations of the current analysis was 
the limited clinical biodistribution data available for the 
model development. Implementation of additional biodis-
tribution data together with longitudinal tumor volume 
in the future could improve the prediction of the current 
analysis. Furthermore, most of the systematic model pa-
rameters were borrowed from animal models (see the 
Data S1), and it is not clear how these parameters trans-
late to humans. However, our detailed analysis and simu-
lations confirmed that our findings are strongly correlated 
with the current understanding of the T-VEC mechanism 
of action and confirm the validity of the values of the 
model parameters that being used in the current model.

F I G U R E  7   Impact of granulocyte-macrophage colony-stimulating factor (GM-CSF) activation rate on tumor burden. (a) Correlation 
between distribution of GM-CSF activation rate with responders/nonresponders. Note that here “responders” included patients with 
progression or stable disease as defined by Response Evaluation Criteria in Solid Tumors category.22 (b) Impact of a 10-fold increase of GM-
CSF activation rate on tumor burden. Sg, GM-CSF proliferation rate
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In summary, this platform model adequately captures 
the well-known, complex, multifaceted mechanism of ac-
tion of oncolytic viral therapy and identifies under which 
condition the immune system either assists in eliminating 
tumor cells or inhibits T-VEC efficacy, which is critical to 
both efficiently design future oncolytic agents and under-
stand cancer development.
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