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Abstract

DEAD-box RNA helicases play various, often critical, roles in all processes where RNAs are involved. Members of this family of
proteins are linked to human disease, including cancer and viral infections. DEAD-box proteins contain two conserved
domains that both contribute to RNA and ATP binding. Despite recent advances the molecular details of how these
enzymes convert chemical energy into RNA remodeling is unknown. We present crystal structures of the isolated DEAD-
domains of human DDX2A/eIF4A1, DDX2B/eIF4A2, DDX5, DDX10/DBP4, DDX18/myc-regulated DEAD-box protein, DDX20,
DDX47, DDX52/ROK1, and DDX53/CAGE, and of the helicase domains of DDX25 and DDX41. Together with prior knowledge
this enables a family-wide comparative structural analysis. We propose a general mechanism for opening of the RNA
binding site. This analysis also provides insights into the diversity of DExD/H- proteins, with implications for understanding
the functions of individual family members.
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Introduction

DExD/H-box RNA helicases, from virus and bacteria to

eukaryotes, play important roles in processes including ribosome

biogenesis, RNA processing and folding, ribonucleoprotein (RNP)

remodeling, RNA nuclear export, the regulation of RNA

translation and transcription, and nonsense-mediated RNA decay.

DExD/H-box RNA helicases have multiple functions in these

processes: They can act as RNA chaperones, ATP-dependent

RNA helicases and unwindases, as RNPases by mediating RNA-

protein association and dissociation [1–4] or as co-activators and

co-repressors of transcription ([5–7] and refs. therein). Cancer cell

lines often feature deregulated expression or impaired functioning

of RNA helicases [5,8]. In addition, several family members are

captured and regulated by viral proteins [9], are involved in viral

RNA maturation [10], or mediate antiviral host defense [11,12].

Inhibition of individual RNA helicases as a therapeutic route is

currently being explored (e.g., [13–17]).

DExD/H-box proteins often contain accessory regulatory

domains and localization modules, but their cores consist of two

RecA-like domains joined by a short flexible linker. The N-

terminal domain is commonly referred to as conserved domain-1,

or DEAD-domain, and the C-terminal domain as conserved

domain-2, or helicase domain [3,4,18]. Both domains contribute

to the binding site for RNA substrates and both contribute to ATP

hydrolysis. These activities are coupled to one another by allostery

throughout the protein molecules. Consequently, a detailed

understanding of how these proteins convert chemical energy into

RNA remodeling requires knowledge of the structures of the two

conserved domains independent of each other and interacting in

the closed active state. To date, crystal structures of tandem

domains are available for several DExD/H-box helicases, also in

complex with RNA substrates [19–22]. To understand the RNA

remodeling event and the underlying structural rearrangements, it

is important to compare these structures with those of each

domain in isolation.
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We have solved crystal structures of single domains from eleven

human DExD/H-box helicases of the DEAD-motif subfamily. A

comparative analysis of these structures uncovered not only

isoform specific features, but also nucleotide specific positioning of

flexible elements that are common to several proteins. We suggest

a structural mechanism for the linkage between binding of ATP

and activation of the RNA binding site.

Results and Discussion

We used X-ray crystallography to determine the structures of the

DEAD-domains of DDX2A, DDX2B, DDX5, DDX10, DDX18,

DDX20, DDX47, DDX52, and DDX53, as well as the helicase

domains of DDX25 and DDX41. While the physiological roles of

these proteins are diverse (Table 1) all structures show the RecA-like

fold. Superposition of the DEAD-domain structures gives root mean

square deviations of Ca-atom positions between 0.6 and 1.9 Å for

proteins with sequence identity between 86 and 27%. The two

helicase domains have a sequence identity of 23% and their

structures superimpose with an r.m.s.d. of 3 Å. Details of the

synchrotron data collection, structure determination, and refine-

ment statistics are presented in Table 2.

Superpostition of the different crystal structures illustrates the

location of flexible regions (Figure 1A, 1B). In general, regions of

high sequence conservation (the conserved motifs in particular)

contribute to the binding sites for nucleotide and for RNA, and

these sites coincide with the highest structural similarity (Figure 2).

Conversely, unconserved regions in the DEAD-domains deter-

mined here show a higher r.m.s.d. in their Ca-atom positions.

Some of the unconserved regions in the structures are flexible, as

documented by high B-factors and partially missing electron

density.

Diverse surface properties among DEAD domains
We compared the surface charge distributions of the DEAD-

domain structures (Figure 1E, 1H). All DEAD-domains feature a

conserved patch that constitutes the nucleotide binding site and

part of the RNA binding site. This patch forms a negatively

charged channel between a-helices 8 and 210 that extends to the

Mg2+-binding site. The negative charges originate from the side

chains of the two helices, including the DEAD-motif on a-helix 8.

As expected, the RNA binding cleft is positively charged in all

DEAD domains, but the charged patches differ in size. The

remainder of the DEAD-domain surfaces differs in electrostatic

surface properties among the family members.

ATP binding site: The flexible P-loop
Conserved motifs I (the P-loop), Ia, II, and the Q-motif

participate in nucleotide binding [3,23]. The P-loop and motif II

coordinate the nucleotide phosphates and the magnesium ion,

whereas residues of the Q-motif bind and recognize the adenine

moiety. The side chains that participate in nucleotide and

magnesium binding are highly conserved (Figure 2). The

nucleotide phosphates interact with backbone atoms, a conserved

lysine, and the divalent cation. Superposition of the DEAD-

domains shows that the structures of the P-loop and motif III are

determined by the state of nucleotide hydrolysis. The P-loop is in a

wide-open conformation when ATP is bound, as seen in DDX20

as well as in the previously published structures of DDX19 [22]

and eIF4AIII [19]. In the crystal complexes with either ADP or

AMP the loop closes up, resulting in a shift in Ca-atom positions

by up to 3.5 Å between the ATP- and the AMP-states, or by up to

2.5 Å between the ADP- and the AMP-state (Figure 3A). Thus the

conformation of the P-loop is determined by the nucleotide

phosphates, and longer phosphate tails result in a more open loop.

Table 1. Summary of previously established roles and functions for the RNA helicases covered in this study.

Helicase Function

DDX2A DDX2A (eIF4A1) is essential for translation initiation. It is part of the eIF4F complex that consists of eIF4G, eIF4E and eIF4A [51–53]. Its activity is
strongly enhanced by eIF4G, eIF4B and eIF4H [54]. The eIF4F complex and eIF4A are potential targets for anti cancer drugs [55–57].

DDX2B Also known as eIF4A2, an isoform of DDX2A.

DDX5 DDX5 is a co-regulator of different transcription factors including ERa, p53, MyoD and Runx2, but ATPase/helicase activity is not required for
transcriptional co-regulation. DDX5 also participates in pre-RNA processing, alternative splicing, microRNA and ribosomal RNA processing
(reviewed in ref. [6]).

DDX10 DDX10 is probably involved in ribosome assembly. Fusion of the nucleoporin gene NUP98 with the DDX10 gene leads to the NUP98-DDX10 gene
product. This fusion protein is involved in leukemogenesis [58,59].

DDX18 DDX18 (Myc-regulated DEAD-box protein, or MrDP; [60]) is a nucleolar protein that is specifically upregulated in highly proliferating cells [61].

DDX20 DDX20 (Gemin3) is a component of the SMN (Survival of Motor Neurons) complex that is involved in assembly and reconstruction of different RNP
(ribonucleoprotein) complexes [62]. DDX20, Gemin4 and eIF2C2 form a separate complex that contains numerous miRNAs [63]. DDX20 also binds
to the Epstein-Barr Virus Nuclear Proteins EBNA2 and EBNA3C. The poliovirus-encoded proteinase 2Apro cleaves DDX20 resulting in DDX20
inactivation and reduced snRNP assembly [64].

DDX25 DDX25 (GRTH) is a testis specific, gonadotropin and androgen regulated protein that is essential for completion of spermatogenesis [65]. DDX20
acts as a shuttling protein in the gene-specific nuclear export of RNA messages. Furthermore it regulates the translation of specific genes in germ
cells [66].

DDX41 DDX41 (Abstrakt) post-transcriptionally regulates the expression levels of the insc protein that is essential for control of cell polarity and spindle
orientation [67].

DDX47 DDX47 is involved in pre-rRNA processing. It interacts with NOP132 which recruits pre-rRNA processing proteins to the region within the nucleolus
were rRNA is transcribed [68].

DDX52 DDX52 (Rok1) is required for the release of snR30 (small nucleolar RNA-30) from pre-ribosomes. snR30 is one of three snoRNAs that are critical for
pre-rRNA processing in yeast. DDX52 ATPase activity is important for optimal pre-ribosomal RNA processing, but not essential for release of snR30
[69].

DDX53 DDX53 (CAGE) is expressed in testis and various tumors, but not in other tissues. Expression of the CAGE-gene is determined by its methylation
status [70].

doi:10.1371/journal.pone.0012791.t001
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This observation agrees with previous results [24]. Motif III

follows the P-loop transition and its position changes by up to 3 Å

toward the P-loop. Motifs Ia, Ib and II seem unaffected by the

state of ATP hydrolysis, and their conformations remain

unchanged even in the crystal structures in which the nucleotide

binding site is not occupied.

Two of the structures show unique P-loop conformations. The

DDX2B structure features an a-helix 4 that is longer than in other

helicases, and leads into an unusually closed P-loop conformation

(Figure 3C). As a consequence, the ATP binding site is not visible

on the surface of the DDX2B structure. This conformation is most

likely induced by a crystal contact in this region.

The AMPPNP-bound DDX20 structure contains no metal ion

(Figure 3B). Lack of c-phosphate coordination by a metal ion leads

to a shift in the position of the b- and c-phosphates, which bind

where the a- and b-phosphates are bound in other ATP

complexes. Since the adenine base is coordinated in the usual

fashion the a-phosphate and the sugar moiety are tilted out of the

expected positions. This illustrates that DDX20 (and presumably

other helicases) can bind ATP also in the absence of divalent

cation. However, a divalent cation is needed to allow coordination

of three phosphates in the correct geometry for catalysis.

Diversity in ATP coordination
Some of the side chains that interact with the nucleotides are

not conserved, and most of these are found in the Q-motif. Three

hydrogen bonds between the adenine ring and the protein ensure

specific binding of adenosine nucleotides. These are formed by the

conserved glutamine and the backbone carbonyl five residues

upstream of the glutamine (Figure 3). The 6th residue upstream of

the conserved glutamine is an aromatic residue in most DEAD-

box helicases. Its side chain stacks with the nucleotide base,

stabilizing it in its position. Interestingly this residue is not

conserved: While phenylalanine is most common, DDX10 has a

tyrosine and DDX47 has a tryptophan in the corresponding

position. Moreover, an aromatic residue in this position is not

obligatory: DDX53 features an isoleucine, with weaker van-der-

Waals interactions with the adenosine ring than the base stacking

interactions with the aromatic side chains (Figure 3D). We

analyzed the protein-nucleotide binding interfaces in these crystal

structures using the PISA server [25]. This analysis showed that,

while the overall ligand interface areas are similar in the different

nucleotide complexes, the contribution by the base stacking

residues vary considerably. The variability in the stacking residue

position may reflect different needs for conformational flexibility in

this region of the DEAD-domains.

Helicase domain variation
The helicase domain contributes to nucleotide coordination via

motifs V and VI. From the closed state DDX19 structure [22] it is

apparent that four side chains are of particular importance: The

aspartate of motif V coordinates the O39 of the ribose. The second

arginine side chain of motif VI (HRxGRxGR) interacts with the c-

phosphate. The third arginine, which is also the putative arginine

finger during ATP hydrolysis, coordinates all three ATP

phosphates. The variable residue that follows this arginine

coordinates the adenosine ring by different means. In the

DDX19 helicase domain a phenylalanine stacks with the

adenosine rings. A superposition of DDX19 with the DDX25

and DDX41 helicase domains shows that in the latter two

structures part of motif VI is not visible in the electron density,

indicating its flexibility. The conserved motifs IV and VI

superpose well, whereas motif V shows different conformations

in all three structures (Figure 1B).

The only part of motif IV that is not flexible is the histidine-

arginine pair, and it superposes in all three crystal structures. The

arginine points to a negatively charged pocked formed in part by

side chains from motifs IV and V in the inside of the helicase

domain. The aliphatic part of the arginine side chain makes a

hydrophobic contact with the phenylalanine of motif IV. In the

two-domain closed state structures the histidine interacts with the

SAT motif from the helicase domain. Therefore, the SAT motif is

indirectly linked to the ATP binding site as well as to the RNA

binding sites of both domains. This explains the central

importance of this motif in the coupling of ATP hydrolysis and

RNA unwinding [26]. In SAT-motif mutants of eIF4A the

ATPase and helicase activities were uncoupled [27]: SAT-to-AAA

mutant protein is capable of binding RNA in an ATP dependent

manner, but lacks RNA unwinding activity.

Conserved and variable parts constitute the RNA binding
site

The available atomic resolution structures of DEAD-box

helicases with bound RNA [19–22] show that the DEAD-domain

contributes to RNA binding through two conserved and one

variable structural element: (i) Motif Ia; (ii) a-helix 7, with its

conserved motif Ib; and (iii) the variable loop connecting b-sheets 3

and 4. These interactions are illustrated for DDX19 in Figure 4A:

While the variable loop clamps the RNA substrate in a specific

conformation, motifs Ia and Ib each coordinate an RNA-backbone

phosphate and induce a tilt of one or more RNA bases.

Conserved motifs Ia and Ib of DDX19 and all DEAD-domain

structures described here superimpose perfectly (Figure 4). This

leads us to conclude that RNA substrates are bound in a similar

conformation by the conserved motifs of all these DEAD-domains.

The variability in part of the RNA binding sites (Figure 4D), on

the other hand, implies that different helicases could stabilize

specific RNA conformations. In addition, variable side chain

contribution may also reflect optimal recognition of specific

nucleotide sequences.

Inspection of the RNA complexes of DDX19, vasa, and

eIF4AIII [19–22] shows that the conserved motif that makes the

most extensive contacts with the RNA-backbone phosphates is

motif Ib. In two of our DEAD-domain crystal structures, anions

from the crystallization buffers are bound to motif Ib (a sulfate in

DDX5, and a phosphate in DDX47) highlighting the ability of this

motif to bind polyanions.

Figure 1. Crystal structures of DEAD-box conserved domains-1 and -2. (A) Superposition of the DEAD-domains of DDX2A (green), DDX2B
(brown), DDX5 (red), DDX10 (turquoise), DDX18 (grey), DDX47 (dark blue), DDX52 (yellow), and DDX53 (dark yellow). The positions of conserved
motifs I–III (black) are indicated. (B) Superposition of the helicase domains of DDX19 (light blue), DDX25 (grey) and DDX41 (orange). The positions of
conserved motifs IV–VI (black) are indicated. (C) Cartoon representations of the DDX5 helicase domain in the same orientations as in the following
two panels. (D) Conserved surface patches (green), projected onto the DDX47 DEAD-domain surface. (E) Electrostatic surface representation of DEAD-
domains. Negative charges are shown in red and positive charges in blue. (F) Cartoon representations of the DDX41 helicase domain in the same
orientation as in the following two panels. The RNA and AMPPNP (sticks representation) of the superposed DDX19 structure mark the RNA and
nucleotide binding sites. (G) Conserved surface patches (green), projected onto the DDX25 helicase-domain surface. (H) Electrostatic surface
representation of helicase domains.
doi:10.1371/journal.pone.0012791.g001
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Figure 2. Sequence alignments of the two RecA-like domains of the DEAD-box proteins described in this study. Conserved sequence
motifs are indicated. Secondary structural elements are given for DDX19 (PDB entry 3G0H) above the alignment. Asterisks mark the terminal aspartate
of the DEAD motif and the arginine of motif V, the interaction of which is central to positioning of a-helix 8 (see also Figure 5C, D). Sequences shown
are human DDX19B (gene accession number: 13177688); DDX10 (13514831); DDX18 (38327634); DDX20 (23270929); DDX25 (29792166); DDX41
(21071032); DDX47 (45786091); DDX5 (16359122); DDX52 (27697141); DDX53 (45709415); eIF4A1/DDX2A (16307020); and eIF4A2/DDX2B (45645183).
doi:10.1371/journal.pone.0012791.g002
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Mechanism for unblocking of the RNA binding site
Our crystal structures of both DEAD-domains and helicase

domains in isolation reveal that the RNA binding site on each

domain is in a conformation that is incompetent to bind RNA

substrate. In the free helicase domain structures motif V, an

important RNA backbone interaction site [19–22] is in a

binding incompetent conformation. In the closed state, an

RNA binding competent conformation is stabilized by the

interaction of the conserved arginine of motif V with the C-

terminal aspartic acid of the DEAD-motif (Figure 5C). In all

single DEAD-domain structures, a-helix 8 has adopted a

position that would block the RNA binding site. By contrast,

upon cleft closure in the two-domain ATP analog and RNA

complexes, a-helix 8 has moved out of the RNA binding site

(Figure 5).

Thus, superposition of single DEAD-domain structures onto

the closed state structures of DDX19 and eIF4AIII suggests

involvement of a-helix 8 in the formation of a competent RNA

binding site. How is a-helix 8 displaced to allow access to the

RNA substrate binding site? No direct interaction between a-

helix 8 and the RNA have been observed; thus displacement of

a-helix 8 by the RNA substrate itself seems unlikely. Also,

binding of ATP itself cannot cause a-helix 8 rotation out of the

RNA site: The DEAD-motif is the only link between the

nucleotide and a-helix 8, but the state of nucleotide hydrolysis

does not influence the conformation of the DEAD motif (motif

II; Figure 1A, 3A).

Instead, we propose direct involvement of the helicase domain

in the activation of the RNA binding site on the DEAD-domain:

In the complex structures, the conserved arginine of motif V in

the helicase domain forms a salt bridge with the C-terminal

aspartic acid of the DEAD-motif, which is also the terminal

residue of a-helix 8 (Figure 5C, 5D). This interaction stabilizes a

conformation where a-helix 8 is rotated out of the RNA binding

site (Figure 5D). We propose that ATP binding primes the

helicases for RNA substrate binding by bringing the domains

together to allow motif V to push a-helix 8 out of the RNA site

on the DEAD-domain. RNA binding to the DEAD-domain then

completes cleft closure to allow formation of an active ATPase

site (Figure 6).

This model of cleft closure and helicase activation through

regulation of a-helix 8 can reconcile published data. Moreover, it

can explain how substrate release in the post-hydrolysis state is

achieved. DEAD-box helicases typically bind ADP with higher

affinity that ATP [28–31], and binding of ATP and RNA are

cooperative [31–35]. Thus, the binding energy of the RNA-

protein interaction likely stabilizes a strained conformation that is

competent for ATP hydrolysis. Conversely, relief of this strain

upon ATP hydrolysis and phosphate release likely drives RNA

substrate remodeling [36]. According to our comparative

structural analysis, ATP hydrolysis and phosphate release would

allow a-helix 8 to move back into its original position, releasing the

RNA substrate and switching back to a binding incompetent RNA

site on the DEAD domain.

Figure 3. Details of the ATP binding sites. (A) Superposition of multiple DEAD-domains to illustrate variability in P-loop (Motif I) conformations.
P-loops in DEAD-domain structures with bound phosphate (yellow), with bound AMP (orange), with bound ADP (red), DDX19 P-loop with bound
AMPPNP and Mg2+ (blue), DDX20 P-loop with bound AMPPNP (magenta), and P-loop in nucleotide-free eIF4A/DDX2A (green) are shown. Motifs I, II
and III are indicated. (B) Two different conformations of the b- and c-phosphates in the DDX20-AMPPNP complex. Side chains that interact with the
AMPPNP are shown as balls-and-sticks. (C) DDX2B with a closed P-loop. The a-helix that follows the P-loop starts one turn earlier compared to other
DEAD-domain structures shown. (D) Variability of interactions with the adenosine nucleotide. The adenosine moiety is coordinated through p-
stacking interactions or hydrophobic interactions. Numbers denote the interaction surface, in Å2, between the nucleotide and the stacking side chain,
as determined using the PISA server [25].
doi:10.1371/journal.pone.0012791.g003
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DExH-box RNA helicases differ in some aspects from the

DEAD-motif containing helicases. The hepatitis C virus DExH-

box helicase NS3 binds RNA in the absence of ATP [37]. DExH

helicase NPH-II unwinds RNA in a processive fashion [38] and

thus stays bound to the RNA after each unwinding step. Our

model for the role of a-helix 8 in cleft closure of DEAD-proteins

is consistent also with these properties of DExH-box RNA

helicases. Whereas a-helix 8 is conserved in all DEAD-box

proteins, it is missing in the DExH-box proteins (refs. [37,39–42]

and references therein). Moreover, the DEAD-motif aspartic acid

side chain that mediates opening of the RNA binding site

(Figure 5) is replaced by the histidine of the DExH-motif. Thus

apparently, in the absence of a-helix 8 that may block the RNA

site, this terminal aspartic acid is redundant, and the histidine

that substitutes it fulfills a different function [42]. We conclude

that DEAD- and DExH-box helicases differ significantly in the

coupling of the RNA binding event to the conformational cycle of

the two RecA domains.

Materials and Methods

All proteins were expressed in Escherichia coli as N-terminally

hexahistidine tagged fusion proteins, and purified by nickel affinity

chromatography and gel filtration. Proteins were crystallized in

sitting drops at 4uC or 20uC. X-ray diffraction data were collected

at the APS (Chicago, USA), the BESSY (Berlin, Germany), the

Diamond (Oxfordshire, UK), the ESRF (Grenoble, France), and

the MaxLab (Lund, Sweden) synchrotron radiation facilities. Data

were indexed and integrated using XDS [43], MOSFLM [44], or

DENZO [45], and scaled using XSCALE [43], SCALA [46] or

SCALEPACK [45]. Structures were solved by molecular replace-

ment using PHASER [47] or MOLREP [48], and refined using

Figure 4. RNA binding cleft on DEAD domains. (A) DDX19 (light blue; PDB entry 3G0H) with bound RNA (light orange). RNA-interacting side
chains are shown. (B) Flexible regions in DDX2B, DDX10 and DDX53 for which the electron density was not visible. (C) Sequence conservation in the
RNA binding cleft, mapped onto the DDX47 structure (red, conserved; orange, partly conserved). (D) RNA binding sites of selected DEAD-domains to
illustrate their sequence variation.
doi:10.1371/journal.pone.0012791.g004
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Figure 5. Details of the RNA binding cleft. (A) DDX19 closed state structure (PDB entry 3G0H). DDX19-bound RNA, Mg2+-ion and AMPPNP are in
orange. (B) Superposition of several DEAD domain structures showing a conserved conformation of a-helix 8. (C) Interactions between the DEAD and
helicase domains of DDX19. (D) ‘‘Top-down’’ view of the open and closed RNA binding cleft. DDX5 (red), the ATP-state of DDX19 (blue) and DDX41
(orange) are shown. RNA (superposed from the DDX19 complex structure) is shown in light orange. (E) Surface representation of the DDX19-RNA
complex. Note that a-helix 8 does not come in contact with the RNA substrate. (F) Surface representation of DDX5 and the superposed RNA from the
DDX19 complex structure. Note that a-helix 8 would clash with the RNA substrate.
doi:10.1371/journal.pone.0012791.g005
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REFMAC [49]. Refinement rounds were complemented with

manual rebuilding using COOT [50].

Detailed Materials and Methods can be found in Table S1.

Accession codes
The coordinates have been deposited in the Proteins Data Bank

with accession codes 2G9N, 3BOR, 3FE2, 2PL3, 3LY5, 3B7G,

2RB4, 2P6N, 3BER, 3DKP, and 3IUY.

Supporting Information

Table S1 Materials and methods detailing protein expression

and purification, crystallization, X-ray data processing.

Found at: doi:10.1371/journal.pone.0012791.s001 (0.15 MB

PDF)
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