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Zingiber o�cinale (ZO) is a traditional food condiment. The essential oils of Z.

o�cinale (ZOEOs) are known to have multiple bioactivities. In this study, gas

chromatography mass spectrometer (GC-MS) analytical method was used to

identify active ingredient present in ZOEOs. A total of 41 compounds were

identified in ZOEOs. Major components in ZOEOs were zingiberene (19.71%),

(+)-β-cedrene (12.85%), farnesene (12.17%), α-curcumene (10.18%) and

β-elemene (3.54%). Experimental results of 12-O-tetradecanoylphorbol-13

acetate (TPA) induced ear swelling validation mice model showed that

ZOEOs treatment has better anti-inflammatory e�ect compared with

ibuprofen (positive control) at high concentrations. Histological and

immunohistochemical analysis showed that ZOEOs significantly decreased

COX-2, IL-6 and NF-κB expression in a dose dependent manner. The mRNA

levels of COX-2 and NF-κB were also down regulated by the application

of ZOEOs. This indicated that ZOEOs exhibited positive e�ects in ear skin

protection. Antibacterial experimental results showed that EOZOs had

anti-bacterial e�ects on Escherichia coli, Pseudomonas aeruginosa, and

Staphylococcus aureus. DPPH radical scavenging, A549 cell line and LNCaP

cell line inhibition results indicated that ZOEOs exhibited potential antioxidant

and anti-tumor properties. The findings of these study provide scientific basis

on therapeutic use of ZO in food, cosmetic and pharmaceutical industries.
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Zingiber o�cinale, edible spices, essential oil, anti-inflammation, anti-bacterial
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GRAPHICAL ABSTRACT

The essential oils of Z. o�cinale exhibited anti-inflammatory e�ects on TPA induced ear swelling in mice, antibacterial e�ects on di�erent

bacteria, anti-oxidant e�ect on DPPH free radical scavenging and anti-tumor property on human lung cancer A549 and human prostate cell

lines LNCaP.

Introduction

Zingiber officinale (ZO), has been used as a table condiment

since ancient times and can be used for both meat and

vegetables. ZO plays an important role in food safety, flavoring,

and deodorization (1). In addition to that, ZO is reported

to exhibit bioactive effects, such as antioxidation, weight loss,

cold treatment, antiemetic effects, phlegm elimination, coughing

relief and other health benefits properties (2–5). Additionally,

ZO is mainly found in subtropical and tropical Asia, Africa,

Far East Asia, China, and India (6, 7). The extracts of ZO

have complex and diverse chemical compositions, among

which, more than 400 compounds have been reported, mainly

including carbohydrates, lipids, terpenoids and phenols (8).

ZOEOs extract has large amounts of chemical compositions.

A total of 43 ingredients have been previously reported in

ZOEOs, and their skin protective effects were investigated

(9). In addition to that, several previous studies have been

carried out on the investigation of biological activities of

ZOEOs (10–12). It was also found that ZOEOs exhibited

DPPH radical scavenging capacities (13), anti-tumor effects

(14), and antibacterial effects (15). However, ZOEOs derived

from different extraction methods led to a variety of biological

effects against varying pathologies (11, 16, 17). Inflammation

is a driving factor of multiple diseases. ZO also confers a

crucial inflammatory effect. It was reported that ginger essential

oil extract could reduce the pro-inflammatory molecules to

attenuate arthritis by lowering rheumatoid arthritis factor, C-

reactive protein, and erythrocyte sedimentation rate level in

the blood (18). Additionally, Cakir et al. (10) reported that

ZOEOs showed positive effects on treatment and prevention

of necrotizing enterocolitis via inhibiting inflammatory factors

such as IL-6, P65 and COX-2. However, these activities are

attributed to the active ingredients isolated from ZOEOs,

which work synergistically to confer variety biological activities,

and other special substances. Additionally, different extraction

methods would lead to variety components of ZOEOs.

As we all known, ZO is widely used in food, cosmetics,

and health products. However, the comprehensive investigation

of bioactivity properties exhibited by ZOEOs are still unclear

and the mechanisms of action remain unknown. This limits

the utilization of ZOEOs. Therefore, in this study, the

mechanism underlying the effects of essential oil of fresh

ZO obtained by steam distillation on TPA induced ear

inflammation mice were investigated. Although the photo aging

skin protective effects of essential oil obtained from Ginger

was illustrated, the effects of ZOEOs on ear skin inflammation

was rarely reported. Furthermore, the antibacterial property

was also determined by investigating the inhibitory effects of

ZOEOs on five bacteria: Staphylococcus aureus, Pseudomonas

aeruginosa, Escherichia coli, Bacillus subtilis, and Candida

albicans. Additionally, antioxidant and anti-tumor capacities
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were also studied. Thus, we assumed that ZOEOs may represent

a novel alternative agent for the alleviation of ear inflammation,

and possesses multi-functionality applied in food, cosmetics

and pharmaceuticals.

Materials and methods

Plant materials and chemicals

ZO, a plant material used in this research, was obtained

fromGuangzhou tongrentang pharmaceutical Co., Ltd (location

23◦N and 118◦E). ZOwas processed in a series of ways, and then

essential oil was extracted and used as the experimental material.

12-O-Tetradecanoylphorbol-13-Acetate (TPA) and DPPH were

purchased from Shanghai Aladdin Biochemical Technology Co.,

Ltd. (Shanghai, China); 3,3’-Diaminobenzidine (DAB), Anti-

TNF-α Rabbit pAb, Anti-IL-6 Rabbit pAb, Anti-NF-κB Rabbit

pAb, Anti-COX-2 Rabbit pAb, HRP conjugated Goat Anti-

Rabbit IgG (H + L) were purchased from Wuhan Servicebio

Technology Co., Ltd. (Wuhan, China).

Extraction of essential oil

ZO was already dried and sliced. The plant material was

crushed and sieved using a sieve (with the aperture size of

0.45mm). ZO was then extracted by steam distillation, and

the whole extraction process took 3.5 h (19). After extraction,

essential oil was separated from the oil-water mixture, dried

with anhydrous sodium sulfate, and placed in a dark test tube

to protect it from sunlight. The oil was stored was refrigerated at

4◦C for further experiments (20, 21).

GC-MS analysis

GC-MS analysis of ZOEOs was carried out using Focus

GC model (Thermo Electron Corporation, USA). ADB-5

capillary column (Agilent, Santa Clara, CA, USA) of 30m

× 0.25mm in size and 0.25mm in thickness was used for

analysis. Equipment operating conditions were as follows: oven

temperature program: the initial temperature was set at 4◦C, a

constant temperature was maintained for 1min, and gradually

increased to 280◦C at a rate of 5◦C/min; injector and splitter

temperature was: 220◦C; with He used as the carrier gas. The

split ratio was set as 1:10, and the flow rate was 1.0 mL/min.

1 µL sample was diluted in n-hexane with a volume ratio

of 1:10. Results obtained were further analyzed to identify

each compound. Identification methods were as follows: results

were compared with a homologous series of n-alkanes (C6-

C40); compared with data from literature and further compared

with data presented in the National Institute of Standards and

Technology (NIST) Chemistry Web Book (22, 23).

TPA induced ear swelling validation mice
model

Mice administration

Mice (6-8 weeks old, 18-20 g body weight) were purchased

from Guangdong Experimental Animal Center. Animal studies

were approved by animal experimental center of Sun yat-

sen university. All procedures used in this study followed

relevant ethical and institutional guidelines (SCXK/20130002,

Guangzhou). Mice were grouped and raised in different cages

and fed on a standard laboratory diet. The feeding period

was at least 7 days. The feeding environment was a room

with controlled conditions. Temperature was set at 23◦C, air

humidity was set at 60%, and the day-night cycle was 12 h. Mice

were divided into 6 groups (n = 15): control group, model

group (TPA treated group, 50 ng/mL), positive control group

(TPA+ ibuprofen 100 mg/kg), ZOEOs-L group (TPA+ ZOEOs

25 mg/kg), ZOEOs-M group (TPA + ZOEOs 50 mg/kg) and

ZOEOs-H (TPA + ZOEOs 100 mg/kg). Among them, TPA-

acetone was applied to the ear surface of mice fully and evenly.

After 30min, different concentrations of essential oil solution

were applied to the TPA-treated ear surface.

Determination of ear inflammatory level

After 6 h, mice were via cervical dislocation, and 6mm

diameter ear tissue was harvested, perforated, and weighed. The

weights were recorded and the inhibition rate (%) was calculated

according to the following formula (24).

Inhibition (%) = [1−

(Wdrug group −Wcontrol)/(WTPA group −Wcontrol)]× 100

where Wdrug group = weight of the ear with the sample or

TPA treatment, W control = weight of the ear in control group,

WTPA group = weight of the ear with the TPA treatment.

Histology and immunohistochemistry

Ear tissue of the mice was fixed with formaldehyde, then

embedded in paraffin, and prepared into paraffin-embedded

sections (4µm). After dewaxing and rehydration, hematoxylin-

eosin (HE) was used for staining. For immunohistochemical

analysis, tissue sections were incubated overnight at 4◦C with

primary antibodies (1:200) diluted in PBS. Antibodies used in

this experiment included cyclooxygenase 2 (COX-2), tumor

necrosis factor (TNF-α), interleukin 6 (IL-6) and nuclear

factor κB (NF-κB/P65). Tissues were sliced and incubated

with biotin horseradish peroxidase antibodies (diluted 1:2,000)

under 25◦C for 1 h. After 1 h, sections were developed with

3,3′-diaminobenzidine. Immunolabeled sections were observed

using a fluorescence microscope (Olympus, Japan) and the
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number of positive cells was determined using ImageJTM, NIH,

Bethesda, MD, USA.

RNA isolation and gene quantification by
RT-qPCR

RT-qPCR was applied to quantify the transcription gene

levels of inflammatory cytokines (COX-2 and NF-κB/p65).

Briefly, total RNA of tissues was extracted by using Trizol

reagent according to manufacturer’s protocol. The c DNA was

synthesized by reverse transcription reaction, and then amplified

by real-time fluorescence quantitative PCR and thermal cycler.

Real-time PCR was measured by SYBR Premix Ex Taq on

gene amplifiers in Hema Medical Instrument Co., Ltd (Zhuhai,

Guangdong, China). The forward and reverse primers used

were as follows: COX-2 (5′-TTCAACACACTCTATCACTGG

C-3′ and 5′-AGAAGCGTTTGCGGTACTCAT-3′); NF-κB(p65)

(5′-AGGCTTCTGGGCCTTATGTG-3′ and 5′-TGCTTCTCTC

GCCAGGAATAC-3′); and GADPH (5′-AGGTCGGTGTGAA

CGGATTTG-3′ and 5′-TGTAGACCATGTAGTTGAGGTCA-

3′). The mRNA expression was calculated as a fold change of

gene expression.

Antimicrobial assay

Antibacterial activity of ZOEOs was evaluated by disc

diffusion method (25). Strains used to study antibacterial effect

were: S. aureus (ATCC6538), P. aeruginosa (ATCC15442), E.

coli (ATCC25922), B. subtilis (ATCC6633), and C. albicans

(ATCC10231). The five strains were first cultured under the

same conditions, then the same amount of essential oil was

added to each, then cultured under appropriate conditions.

After culturing, colonies obtained from the treatment were

photographed, observed, and analyzed to assess antibacterial

effect of ZOEOs.

Inhibition zone

Around 100 µL of each bacterial (108 CFU/mL) or fungal

suspensions for fungi (104 spore/mL) was inoculated on the

nutrient agar media (NA) or potato dextrose agar media (PDA).

The sterile filter paper disc (6mm diameter) was impregnated

with 3 µL of each ZOEOs, and then aseptically placed on

inoculated plates. After 24 (for bacteria) or 72 h (for fungi) of

incubation at 37◦C, the inhibition zones against tested strains

were measured according to the inhibition halo formed around

the disc (21).

Scanning electron microscopy (SEM) evaluation

The scanning electron microscopy (SEM) was performed

as reported by Bismelah et al. (26) with some modifications.

The bacteria suspensions were then centrifuged at 10,000×g for

10min and the supernatant was removed to obtain the pellet.

The bacteria pellet was then fixed with 2.5% glutaraldehyde

in 0.1M phosphate buffer pH 7.2 for a minimum of 2 h. The

centrifugation was repeated three times. After centrifugation,

the pellet was suspended in distilled water before undergoing

the dehydration process for 10min using two rounds of 30, 50,

70, 90, and 100% ethanol. The cells were then allowed to dry at

25◦C before being mounted onto SEM stub and sputter-coated

with gold. The samples were prepared according to the method

and then examined under the SEM (Hitachi TM3000 Tabletop

Scanning Electron Microscope).

Antioxidant activity

Antioxidant activity of ZOEOs was determined by

DPPH assay (27). Essential oils of different concentrations

were mixed evenly with DPPH methanol solution and

incubated for 0.5 h at room temperature. Absorbance

of the mixture was then measured using a uv-300

spectrophotometer at a wavelength of 517 nm. Absorbance

values obtained were analyzed using GraphPad Prism

7.0 software to identify essential oil concentration

corresponding to the 50% free radical elimination rate

(IC50). Free radical scavenging activity of ZOEOs was

calculated as a percentage of radical inhibition using the

following formula:

DPPH radical scavenging activity (%) =
[

1 −
(

Aessential oil − Ablank
)

/Acontrol
]

× 100

where Aessential oil = absorbance of the mixture of the essential

oils sample and DPPH solution, Ablank = absorbance of the

essential oils without the DPPH solution, Acontrol = absorbance

of the DPPH solution.

E�ects of ZOEOs on A549 and LNCaP
cells

Cell culture and treatment

The human lung cancer A549 cell line was purchased

from the Type Culture Collection of the Chinese Academy

of Sciences, Shanghai, China. A549 cells were cultured in

DMEM supplemented with 10% fetal bovine serum (FBS)

and penicillin (100 U/mL)/streptomycin (100 U/mL) at 37◦C

in a humidified atmosphere with 5% CO2. The human

prostate cell lines LNCaP was obtained from the American

Type Culture Collection. LNCaP cells were cultured in RPMI

1,640 supplemented with 10% fetal bovine serum (FBS),

100 mg/mL streptomycin, and 100 units/mL penicillin. Cells
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TABLE 1 Chemical composition, retention index (RI) and relative content (%) of Z. o�cinale essential oil.

No. Compounds i RI ii Exp.RI Ref. Relative content (%)

Z. officinale Roscoe

1. Cineole 1,059 1,044 a 1.06

2. Linalool 1,082 1,082 a 1.43

3. (–)-Borneol 1,138 1,160 b 2.73

4. (–)-Terpinen-4-ol 1,137 1,160 c 0.37

5. α-Terpineol 1,143 1,179 d 1.98

6. Neral 1,174 1,207 a 2.40

7. Citral 1,174 1,240 e 2.68

8. L-Bornyl acetate 1,277 1,288 e 1.23

9. 2-Undecanone 1,251 1,291 f 1.04

10. (+/–)-δ-Elemene 1,377 1,331 g 0.40

11. DL-citronellol acetate 1,302 1,354 e 0.65

12. (+)-Cyclosativene 1,125 1,369 h 0.75

13. α-Copaene 1,221 1,372 i 0.87

14. Acetic acid geranyl ester 1,352 1,360 j 1.73

15. β-Elemene 1,398 1,403 g 3.54

16. (–)-α-Cedrene 1,403 1,433 j 0.79

17. (–)-(7S)-Germacrene D 1,515 1,485 i 0.37

18. (+)-γ-Cadinene 1,435 1,497 j 0.25

19. o-Menth-8-ene,4-isopropylidene-1-vinyl 1,431 1,434 k 1.94

20. β-Sesquiphellandrene 1,446 1,524 g 1.51

21. (+)-Aromadendrene 1,386 1,439 l 0.98

22. (R)-β-Himachalene 1,528 1,499 m 1.66

23. α-Curcumene 1,524 1,472 g 10.18

24. Zingiberene 1,451 1,489 g 19.71

25. Farnesene 1,458 1,497 g 12.17

26. (+)-β-Cedrene 1,398 1,418 m 12.85

27. (–)-Thujopsene 1,416 1,447 j 0.37

28. Hedycaryol 1,694 1,530 e 1.15

29. Nerolidol 1,564 1,552 b 2.46

30. (+)-Viridiflorol 1,530 1,587 n 0.64

31. (–)-Globulol 1,530 1,590 e 0.27

32. α-Bisabolol 1,625 – – 1.44

33. γ-Eudesmol 1,626 1,593 e 0.32

34. Guaiol 1,614 1,600 b 0.49

35. 12-Isopropyl-1,5,9-trimethyl-4,8,13-cyclotetradecatriene-1,3-diol 2,400 2,955 o 1.84

36. β-Eudesmol 1,593 1,649 f 2.01

37. 4-Methyl-1-(6-methylhept-5-en-2-yl)cyclohex-3-en-1-ol 1,619 1,643 p 0.41

38. α-Bisabolol 1,625 1,664 j 0.33

39. 2-Dehydrolinalool 1,090 1,068 j 1.13

40. Geranyllinalool 2,046 2,444 e 1.14

(Continued)
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TABLE 1 (Continued)

No. Compounds i RI ii Exp.RI Ref. Relative content (%)

Z. officinale Roscoe

41. α-Bergamotene 1,430 1,434 q 0.25

Total identified/% 99.52

Total monoterpenoids/% 14.93

Oxygenated monoterpenes/% 12.82

Total sesquiterpenoids/% 72.29

Oxygenated sesquiterpenes/% 8.61

Others/% 12.3

iCompound listed in the order of elution from methyl silicone capillary column (30m× 0.25mm, 0.25 µm film thickness).
iiRetention indices (RIs) relative to n-alkanes (C6-C40) on the same methyl silicone capillary column.
aHoskovec et al. (29); bEkundayo et al. (30); cOrav et al. (31); dHarangi (32); eMunda et al. (33); fAdams et al. (34); gAngel et al. (35); hLucero et al. (36); iSzafranek et al. (37); jTudor

(38); kMohammed et al. (39); lRezazadeh et al. (40); mAdams (41); nHazzit et al. (42); ◦Tao et al. (43); pSenatore and Rigano (44); qViswanathan et al. (45).

were maintained in a humidified incubator at 37◦C with

5% CO2.

In vitro cytotoxic activity

The proliferation rates of lung cancer A549 cells and

prostate cancer cells (LNCaP) in the presence of essential

oils were determined by the colorimetric MTT assay

according to previous study (28). Briefly, the cells (2.5 ×

104 cells/well) were seeded into 96-well microplates, and

then essential oils with various concentrations (from 0 to

1 mg/mL) were added into the plates and incubated at

37◦C for 24 h. After cells were incubated with MTT and

maintained in a CO2 incubator for 3 h at 37◦C in the dark,

the absorbance was measured at 570 nm by a microplate

reader. The inhibition ratio (I %) was evaluated using

formula below,

I % =
[(

A blank − A sample
)

/A blank
]

× 100

where solution without essential oil was used as blank (Ablank)

and the solution containing essential oils was used as the sample

(Asample). The IC50 value of MTT assay was defined as the

concentration of essential oils resulting in a 50% reduction of

absorbance compared with blank.

Statistical analysis

Data were obtained from at least three independent

experiments. SPSS 19.0 (Chicago, USA) software was

used to analyze data. ANOVA was used for continuous

data to explore differences between groups. Standard

error and significant differences were determined by

Duncan’s test. P-values < 0.05 or 0.01 were considered

statistically significant.

Results and discussion

Chemical components of ZOEOs by
GC-MS

Chemical constituents of ZOEOs were qualitatively analyzed

by GC-MS, and 41 chemical constituents were obtained.

Among the 41 components, sesquiterpenoids were the most

abundant, accounting for 72.29% of the total content, with about

19 components. Monoterpenoids were the second abundant

components, accounting for 14.93% of the total components,

with 10 components. The yield of chemical composition

analysis was 99.52%, and the main chemical components were:

Zingiberene (19.71%), (+)-β-Cedrene (12.85%), Farnesene

(12.17%), α-Curcumene (10.18%), β-Elemene (3.54%) and

(–)-Borneol (2.73%). Some of the chemical components are

shown in Table 1. Zingiberene, the most abundant compound

among the six active ingredients, exerted effects against in vitro

and in vivo human colon cancer cell growth via autophagy

induction (46). Notably, (+)-β-Cedrene and α-Curcumene were

reported to have significant antibacterial effect (47), which were

considered as effective bacteriostatic components. Although

the proportion of (–)-Borneol in ZOEOs was relatively low,

studies report that this component has good bacteriostatic

effect (48). The effects of these active ingredients show that

ZOEOs has inhibitory effect against both bacteria and tumor,

therefore further studies should be carried out to explore

these effects.
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FIGURE 1

Inhibitory rate of mice ear weight in di�erent groups. **ZOEOs

vs. Model, P ≤ 0.01.

E�ects of ZOEOs on ear weight of TPA
induced mice ear

Treatment of mouse ear tissue with TPA for 6 h resulted

in severe ear edema (Figure 1). As shown in Figure 1, ZOEOs

showed good weight inhibitory rate. Especially, the high dose of

ZOEOs (56.15%) reached a similar inhibitory rate of Ibuprofen

(54.44%) at the same concentration. This indicated that ZOEOs

treatment could reverse the ear inflammation induced by TPA.

E�ects of ZOEOs on histology of
TPA-induced ear morphological changes

According to the results of Figure 2, TPA treated mice

showed a severe inflammation in ear which could be observed

by HE staining (Figure 2A) and the ear thickness (Figure 2B;

P < 0.01). Obviously, the treatment Ibuprofen significantly

reduced the ear thickness, alleviating ear swelling response. A

dose dependent manner and reduction of ear thickness were

observed among the ZOEOs treatment groups. However, only

ZOEOs-H exhibited remarkably inhibitory effects which was

consistent with the preceding results (Figure 1). It could be seen

that ZOEOs exhibited anti-inflammation effects in TPA induced

ear inflammation.

E�ects of ZOEOs on
immunohistochemistry of TPA-induced
inflammation in ear

Inflammation was accompanied by production of

inflammatory cytokines, such as TNF-α, IL-6, and COX-2,

which can all be activated by TPA (49, 50). Expression of

inflammatory cytokines is a biomarker indicating severity of

inflammation. Therefore, immunohistochemical analysis was

used to determine its expression levels of these cytokines.

TPA treatment significantly increased expression levels of

COX-2, TNF-α, IL-6, and NF-κB (P65) (P < 0.01), which

could be reversed by the application of ibuprofen (Figure 3).

Additionally, treatment with ZOEOs could significantly reduce

the expression of NF-κB (P65) in a dose dependent manner

(P < 0.01, Figure 3D). Especially, the alleviation effects of

ZOEOs-M/H were better than that of ibuprofen. Whereas

ZOEOs-M and ZOEOs-H application could remarkably inhibit

the expression of COX-2 (Figure 3A) and IL-6 (Figure 3C; P <

0.01) except for ZOEOs-L. However, the significant alleviation

effects of ZOEOs on TNF-α could not be observed.

Cytokines are involved in many biological processes

including inflammation, including pro-inflammatory (TNF-α,

IL-6, and IL-1β) and inflammatory cytokines (NF-kB, COX-

2). Due to the key role in regulation and expression of pro-

inflammatory cytokines, such as IL-6 and TNF-α, NF-κB is

pivotal in initiating and amplifying inflammation response (51).

According to the results, these findings implied that ZOEOs

could attenuate TPA induced ear edema in mice via through

reduction of TNF-α, IL-6, NF-κB, and COX-2. It was reported

that eriocitrin and resveratrol could also relieve TPA-induced

mouse ear edema through decreasing the levels of the pro-

inflammatory cytokines TNF-α and IL-1β (52). Zhang et al.

(53) investigated bioactivity of Curcuma phaeocaulis Valeton,

indicating that essential oils derived from it showed markedly

down-regulation effects of the expression of COX-2 and TNF-α.

In addition, essential oil fromZO extracted with the same hydro-

distillation method, was reported to be effective in ameliorating

UVB-induced skin inflammation and inhibited IL-1β and TNF-

α expression in skin tissues (9). These might all due to the anti-

inflammation components of essential oils which might benefit

its ear skin damage.

E�ects of ZOEOs on mRNA expression
levels of inflammatory cytokines

In this study, real-time quantitative PCR was used to

determine mRNA levels of various inflammatory factors

(Figure 4). Inflammatory factors evaluated include COX-2 and

NF-κB (p65). Results showed that TPA application could

significantly upregulated the mRNA levels of COX-2 and NF-κB

(p65). Both ibuprofen and ZOEOs treatment could significantly

downregulated the expression levels. Intriguingly, the ZOEOs-

M and H exhibit similar effects when compared with those

of ibuprofen in the mRNA expression regulation of COX-2.

Notably, reduction effect of essential oil treatment group on

NF-κB (p65) was dose-dependent and inhibitory rate of both

types of inflammations wasmore than 50%. Similarly, decursinol

angelate was also reported to exert the same anti-inflammatory
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FIGURE 2

Histological sections of mice ear tissues in di�erent mice groups (A) and the ear thickness (B). ##Control vs. Model, P ≤ 0.01; **ZOEOs vs.

Model, P ≤ 0.01.

effects via regulating the expression of inflammatory cytokines

(54). These findings show that ZOEOs have a good anti-

inflammatory effect. Anti-inflammatory drugs have limitations

such as gastrointestinal distress, kidney failure and heart failure.

Therefore, several studies have been carried out to explore

safe and effective anti-inflammatory drugs. ZOEOs provide a

basis for the development of anti-inflammatory drugs for ear

skin protection.

Anti-bacterial e�ects ZOEOs

The antimicrobial activities of ZOEOs were evaluated

according to previous method (53). As shown in Table 2, the

antibacterial effects of ZOEOs on gram-negative bacteria (E. coli

and P. aeruginosa) and Gram-positive bacteria (S. aureus) was

0.56 ± 0.02, 0.42 ± 0.03, and 0.21 ± 0.02mm, respectively.

Unfortunately, no antimicrobial activities have been observed

against B. subtilis (gram-posotive) and C. albicans (Fungus).

In addition, it could be seen that the bacterial inhibitory

effects of Z. officinale was not excellent according to the

inhibition zone experiment. Beristain-Bauza et al. reported that

monoterpenoids, sesquiterpenoids, phenolic compounds, and

its derivatives, aldehydes, ketones, alcohols, esters et al. from

ginger essential oils provided a broad antimicrobial spectrum

against different microorganisms (11). This was in consistent

with the GC-MS results of ZOEOs. The anti-bacterial effects

of ZOEOs might be attributed to two main reasons: (a) the

disruption of membrane and isolated mitochondria integrity

and function; (b) the leakage of critical molecules and the

inhibition of respiration and ion transport (11, 55, 56). This

could be partially confirmed by the bacteria morphologic

changes evaluated via scanning electron microscope (SEM). As

shown in Figure 5, It was observed that for the bacteria (E. coli,

P. aeruginosa, and S. aureus), each of them showed an intact

cell wall and well-defined membrane and typical morphological

appearance before exposure to ZOEOs. After the treatment

of ZOEOs, some cells showed morphological destruction with

blisters and craters on the surface of the cells. Some cells

appeared as distressed revealing cell membrane indentations.

Apparently, disruption of the membrane integrity was observed.

It was reported that Cassia fistula Linn. stem bark extracts

showed antibacterial effects on E. coli and P. aeruginosa. Lee

et al. (1) investigated the antibacterial effect of extracts from

different parts of ZO on S. aureus (S. aureus), showed that

leaf, stem, and root extracts had 3, 3, and 2mm clear zones,

respectively. Similarly, our results illustrated that EOZOs had

anti-bacterial effects on E. coli, P. aeruginosa, and S. aureus.

This was also found in essential oils from Curcuma. phaeocaulis

Valeton rhizomes (53).

Antioxidant activity of ZOEOs

The scavenging rate of ZOEOs against free radicals was

determined by DPPH method to show the antioxidant activity

of ZOEOs. Data obtained from the experiments were analyzed

and were presented in Figure 6.

DPPH radical clearance rate of ZOEOs increased with

increase in concentration, DPPH clearance rates of ZOEOs

within the experimental concentration range, were all higher

than 45%. Data analysis showed that free radical scavenging
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FIGURE 3

Immunohistochemical staining of mice ears of COX-2, TNF-α, IL-6 and NF-κB (P65) and the determination of levels for COX-2 (A), TNF-α (B),

IL-6 (C) and NF-κB (P65) (D). ##Control vs. Model, P ≤ 0.01; **ZOEOs vs. Model, P ≤ 0.01.

rate reached 50% when the concentration of ZOEOs was at

0.01%. With the increase of concentration, the scavenging

rate increased significantly, up until 0.1%. During the range

between 0.1 and 0.25%, the rate reached a plateau. At the

concentration of 0.25%, it showed the highest free radical

clearance rate at ∼95%, which almost achieved complete free

radical scavenging effect. ZOEOs at a concentration of 0.01%

showed the lowest scavenging rate, at about 46%. The difference

between the highest and lowest scavenging effect was about

49%. These results indicated that ZOEOs exhibited excellent
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FIGURE 4

E�ects of ZOEOs on mRNA level [(A): COX-2, (B): NF- NF-κB (P65)] of inflammatory factors of mice ear tissues for di�erent groups. ##Control

vs. Model, P ≤ 0.01; **ZOEOs vs. Model, P ≤ 0.01; *ZOEOs vs. Model, P ≤ 0.05.

TABLE 2 The diameter of inhibition zone of ZOEOs on di�erent bacteria.

Essential oils Diameter of inhibition zonea (mm)

Gram-negative Gram-positive Fungus

E. coli P. aeruginosa S. aureus B. subtilis C. albicans

ZOEOs 0.56± 0.02c 0.42± 0.03 0.21± 0.02 –b –b

aThe diameters of the inhibition zones excludes the diameters of disks (6 mm).
bNo efficient antimicrobial activities against tested bacteria or fungus.
cDate are means± SD of three replications.

antioxidant capacity. This was in line with results studied by Li,

who made comparisons of antioxidant activities among fresh,

dried, stir-frying, and carbonized ginger. The highest DPPH

radical scavenging rate was 90.12% which was observed in dried

ginger (6), and lower than that in our study. Additionally,

Camargo reported that different extractionmethods, like solvent

(?methanol and ethanol), ratio ( 70:30 and 95:5) and temperature

(40 and 80◦C) led to varied DPPH radical scavenging rate. The

variation range was 40–96%. The different results were resulted

from different extraction method (hydrodistillation was applied

in our study), which would result in different components (12).

Therefore, the bioactivity changes as the components vary. The

specific effects of ZOEOs in oxidative stress of certain health-

related model should be further investigated.

Anti-tumor e�ects of ZOEOs on A549
and LNCaP cells

Cytotoxicity effects of ZOEOs were evaluated using human

lung cancer A549 cells and human prostate carcinoma LNCaP

cells in vitro. Evaluation of cytotoxicity of ZOEOs was used

to reflect its antitumor activity. Anti-tumor activity was

demonstrated by half inhibition rate of essential oil on cell

growth (IC50), and the effects are shown in Figure 7. the IC50

value was 121.52± 6.16 and 145.50± 9.65µg/mL, respectively.

Ginger rhizome is widely cultivated both as spice and

traditional cure for certain diseases (8). It noteworthy that

ginger also exhibits anticancer properties in variety experimental

models, including colorectal cancer HCT-116 cell line (57),

diethylnitrosamine (DEN)-induced liver cancer (58), human

cervical cancer HeLa cells and others (8). In this study, we

determined the anti-tumor effects of ZOEOs on A549 and

LNCaP cells. Czerwonka et al. (59) investigated the anti-

cancer effects of the water extract of a commercial Spirulina

(Arthrospira platensis) product on the human lung cancer

A549 cell line, showing that The IC50 value was estimated at

99.2µg/mL. Similarly, three Thai herbs, Bridelia ovata, Croton

oblongifolius, and Erythrophleum succirubrum were extracted

by ethyl acetate and 50% ethanol, and the IC50 values for

A549 were all above 200µg/mL, except for C. oblongifolius

(118.41 ± 8.07µg/mL) (60). The IC50 value of ZOEOs for

A549 was in between, indicating a good anti- human lung

cancer function. Additionally, as a human prostate carcinoma,
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FIGURE 5

SEM micrograph of before and after treatment with ZOEOs in E.

coli (A), P. aeruginosa (B), S. aureus (C) at scale bar of 3mm.

Under 18,000×magnification, untreated bacterial cells remained

intact and evenly distributed with no sign of morphological

depression, whereas bacterial cells treated with ZOEOs depicted

morphological disruption with blisters and deep craters on their

surface.

FIGURE 6

DPPH radical scavenging capacity of ZOEOs.

LNCaP was widely used and investigated. Kazemi et al. (61)

reported that the IC50 value of flavonoids in Alpinia officinarum

Hance. was 168µg/mL, which was higher than that of ZOEOs.

FIGURE 7

Anti-tumor properties (human lung cancer A549 and human

prostate cell lines LNCaP) of ZOEOs.

These all showed that ZOEOs exhibited good anti-cancer

properties, which might be related to its special components,

such as zingiberene.

Conclusion

The chemical composition, anti-inflammation, antibiosis,

antioxidation, and antitumor activity of ZOEOs were evaluated.

Essential oil was extracted from ginger by steam distillation, and

a total of 41 compounds of the four essential oils were analyzed

using GC-MS. The main chemical components identified

included Zingiberene (19.71%), (+)-β-Cedrene (12.85%),

Farnesene (12.17%), α-Curcumene (10.18%), β-Elemene

(3.54%) and (–)-Borneol (2.73%).

Anti-inflammatory effects of ZOEOs were assessed

using a TPA induced ear swelling validation model. The

results from anti-inflammatory experiments and GC-

MS analysis showed that ZOEOs have active compounds

that significantly improve auricle swelling and reduce

expression of inflammatory factors. Analysis showed that

ZOEOs have significantly higher anti-inflammatory activity

compared with ibuprofen. Furthermore, analysis shows that

ginger essential oil has a high inhibitory effect on certain

bacteria. In addition, antioxidant activity of essential oils

was evaluated through DPPH in vitro experiment. Analysis

showed that ZOEOs exhibit excellent antioxidant effects at

low concentrations. In addition, ginger essential oil showed

anti-tumor activity.

In summary, ginger essential oil has a variety of

activities. Thus, it has potential application in food, skin

care cosmetics and health care products. Further, studies

should be carried out to explore activities of active ingredients

of ginger.
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