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ABSTRACT: Many excellent methods exist that incorporate
cryo-electron microscopy (cryoEM) data to constrain
computational protein structure prediction and refinement.
Previously, it was shown that iteration of two such orthogonal
sampling and scoring methods − Rosetta and molecular
dynamics (MD) simulations − facilitated exploration of
conformational space in principle. Here, we go beyond a
proof-of-concept study and address significant remaining
limitations of the iterative MD−Rosetta protein structure
refinement protocol. Specifically, all parts of the iterative
refinement protocol are now guided by medium-resolution
cryoEM density maps, and previous knowledge about the
native structure of the protein is no longer necessary. Models
are identified solely based on score or simulation time. All four
benchmark proteins showed substantial improvement through
three rounds of the iterative refinement protocol. The best-
scoring final models of two proteins had sub-Ångstrom RMSD
to the native structure over residues in secondary structure
elements. Molecular dynamics was most efficient in refining
secondary structure elements and was thus highly comple-
mentary to the Rosetta refinement which is most powerful in
refining side chains and loop regions.

■ INTRODUCTION

Computationally predicting a protein’s three-dimensional
structure from its amino acid sequence is one of the great
challenges in biochemistry. This task is especially challenging if
no proteins of known structure with sequence or structural
homology exist−a field known as de novo or ab initio protein
structure prediction. A plethora of methods have been
developed over the last decades which have shown extra-
ordinary promise in predicting the structure of ever larger
proteins. Protein energy landscape theory (based on the
concept that the energy landscape of a foldable protein looks
like a rugged funnel) has been applied to the development of
simple folding kinetics models and to obtain optimal energy
functions for protein structure prediction.1 Molecular Dynam-
ics (MD) with physics-based energy functions is the most
physically stringent method for realistically predicting protein
structure.2 Traditionally, MD has been confined to folding the

smallest of peptides only.3 However, massively distributed
computing has helped MD protein folding simulations access
both size and accuracy levels not seen before.4 Recently, the
advent of the Anton supercomputer5 has allowed researchers to
run conventional MD simulations to probe folding pathways of
very small proteins within simulation times upward of 100 μs.6

Arguably the biggest success in the field of de novo protein
folding has however been reserved to methods using knowl-
edge-based energy functions derived from statistics of the
solved structures in deposited PDB.2 Rosetta7 and TASSER8

are probably the two most notable and also the most
consistently successful algorithms in the free modeling category
of CASP (Critical Assessment of protein Structure Prediction),
a biennial blind community-wide experiment for computational
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protein structure prediction.9 All the above-mentioned methods
have also been applied successfully to the related problem of
protein structure refinement where an approximate backbone
conformation has to be improved so that side chain coordinates
can be assigned properly.
Despite impressive success over the past decade, de novo

protein modeling is still limited by protein size with the actual
limit depending heavily on the methodology used. Most
algorithms cannot predict protein structures de novo for
proteins larger than 150 residues,10 even though noticeable
exceptions exist.11 To help either predict or refine protein
structure for larger proteins or increase modeling accuracy,
sparse experimental restraints are routinely used. Sparse
experimental data−in itself not sufficient to derive a high-
resolution protein structure−can be used in combination with
computational methods to either decrease the conformational
search space or serve as an additional term in the energy
function that rewards compliance with experimental data. The
most commonly used experimental restraints are obtained from
nuclear magnetic resonance (NMR),12 electron paramagnetic
resonance (EPR) spectroscopy,13 and low resolution X-ray
crystallography14 as well as electron microscopy (EM).15

Particularly recent rapid improvements in the field of cryo-
electron microscopy (cryoEM) led to a growing number of
medium-resolution cryoEM density maps.16 In those density
maps − at a resolution of 6−9 Å − strong density rods are
visible in protein regions with secondary structure, but loop and
side chain density generally remains elusive. A multitude of
methods has been developed to build secondary structure
elements (SSEs) into those density maps15c,17 as well as to
refine those initial models.15a,e One obstacle in achieving near-
atomic resolution protein models based on Rosetta refinement
in medium-resolution cryoEM data is insufficient sampling.
When benchmarking the refinement of 27 proteins in medium
resolution cryoEM density maps, it was observed that the
Rosetta energy function can distinguish native-like from non-
native-like conformations by score.15e However, generally no
sufficiently native-like models were built to take advantage of
the deterministic scoring function. Speculating that the
conformational search algorithm (based on fragment replace-
ment and side chain repacking) became stuck in “conforma-
tional traps” from which no easy escape was possible using the
sampling provided by Rosetta, we developed an iterative MD-
Rosetta protocol.18 The idea that an orthogonal sampling and
scoring strategy might facilitate exploration of conformational
space proved useful in some of the benchmark proteins. For
those, steady improvement in model quality was observed in
every round of the iterative protocol. While this work was a
powerful proof of principle, there were two significant
shortcomings that rendered it insufficient to be used outside
of benchmark settings. First, while clearly meant to be a hybrid
cryoEM-computational method, the MD section of the
protocol was not using the cryoEM density map at all. Second,
the models generated by the MD protocol had to be picked
based on RMSD to the native model. Outside of benchmark
settings, a more neutral way of identifying good models had to
be used.
In the present work, we have addressed those shortcomings

in the iterative Rosetta−MD protocol and are presenting
significant improvements to computational high-resolution
refinement of protein structures guided by medium-resolution
cryoEM data. Starting from low-RMSD protein conformations
(RMSDs of 2−5 Å to the native structure, generated with EM-

Fold15e) we are using a combination of Rosetta and MD,
guided by medium-resolution cryoEM density maps, to
gradually improve model quality through iterative refinement.
All models are now picked based on criteria such as score or
simulation time.

■ MATERIAL AND METHODS
System Preparation and Molecular Dynamics (MDFF)

Simulations. Four different proteins were chosen for which
low-RMSD models had been built de novo with EM-Fold and
Rosetta:15e 1X91, 1ICX, 1DVO, and 2FD5. Three of those
were α-helical proteins, while one was an α−β-protein (1ICX).
The size of the proteins was between 152 and 180 residues.
The best scoring model after the third round of Rosetta-only
refinement in ref 15e for each protein was extracted and used as
input model for the first round of the iterative cryoEM-guided
MD−Rosetta protocol. For the MD section of the protocol, the
four systems were prepared for molecular dynamics simulations
in NAMD using Molecular Dynamics Flexible Fitting
(MDFF15h,19). VMD was used to add a TIP3P water box
with a 14 Å padding. K+ and Cl− ions were added to neutralize
the system and obtain a physiologically relevant ionic strength
(150 mM). 34 K+ and 33 Cl− ions were added to 1X91, 32 K+

and 25 Cl− ions were added to 1ICX, 53 K+ and 60 Cl− ions
were added to 1DVO, and 36 K+ and 34 Cl− ions were added
to 2FD5. The fully solvated systems contained approximately
38000 (1X91), 28000 (1ICX), 59000 (1DVO), and 39000
(2FD5) atoms, respectively. The actual number varied slightly
during the three rounds of MDFF. The mdff package was used
for the density specific preparations. The griddx command was
used to convert the cryoEM density maps from mrc format to
dx format (the MDFF potential file). Subsequently, a PDB file
containing the per-atom scaling factors was generated with
gridpdb and dihedral angle restraints in SSEs were applied
using ssretraints. Peptide bond configurations and chiral centers
were also restrained (using cispeptide and chirality restrain).
NAMD configuration files were generated using the mdff setup
command. In every round of the iterative protocol, two MDFF
simulations were performed in two consecutive steps as
outlined in the MDFF tutorial.15h,19 The CHARMM27 force
field20 was used for the simulations. In the first step, a short 200
time step minimization using NAMD 2.921 was followed by 1
ns of MD using a low density scaling factor of 0.3 (gscale =
0.3). In a second step, a 200 ps minimization using a higher
density scaling factor of 5 to 10 followed the simulation in the
first step. Periodic boundary conditions were used, along with a
nonbonded interaction cutoff of 10 Å for Particle Mesh Ewald
(PME) long-range electrostatic interaction calculations. Bonds
involving hydrogen atoms were constrained using the SHAKE
algorithm,22 allowing for a time step of 2 fs. Structures were
saved every 2 ps.

Rosetta All Atom Refinement in Density Map. In each
round of the iterative protocol, the final models from both steps
of the MDFF simulations were subjected to loop rebuilding and
refinement within Rosetta7a,15a guided by the cryoEM density
map. The Rosetta refinement protocol is identical to the
protocol described in ref 18. In summary, regions of the models
that agree least with the density map of the protein are
identified (loops_from_density.linuxgccrelease) and rebuilt
guided by the density map (loopmodel.linuxgccrelease). Each
round performs a full atom relaxation of the entire structure.

Iterative MD−Rosetta Protocol. Three rounds of iterative
MDFF and Rosetta were run for all four benchmark proteins.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/ct500995d
J. Chem. Theory Comput. 2015, 11, 1337−1346

1338

http://dx.doi.org/10.1021/ct500995d


Figure 1 shows a flowchart of the iterative Rosetta−MDFF
protocol. For each of the proteins, the starting model for the
first round of the protocol was the best scoring model after the
third round of a Rosetta-only refinement from ref 15e. The
protocol started with an MDFF run, followed by a Rosetta run,
repeated twice: MDFF1−Rosetta1−MDFF2−Rosetta2−
MDFF3−Rosetta3. All MDFF runs were short (1 ns (step 1)
followed by 0.2 ns of minimization into the density map (step
2)). After each MDFF run two models were picked to
transition into the following Rosetta round. For this work we
picked the final models after each of the two steps of the MDFF
protocol: (a) the model after 1 ns of MDFF simulation with
modest density map scaling factor and (b) the model after the
terminal MDFF minimization into the density map using a high
density map scaling factor. For both of these models the
regions that agreed least with the density map were identified
and rebuilt using Rosetta, followed by an all atom refinement of
the models. The Rosetta models were then sorted by score.

The five best-scoring models were picked as input into the next
MDFF round. Thus, for MDFF2 and MDFF3, a total of five
models underwent system preparation and MDFF simulations.
Hence, Rosetta2 and Rosetta3 rounds were based on a total of
10 starting models each. Final results are reported after the
third round of Rosetta. All reported RMSDs were calculated
over the protein backbone atoms N, Cα, C, and O. The
BCL::Quality application11b was used for all RMSD calcu-
lations. The SCit Web server was used for the rotamer analysis
(http://bioserv.rpbs.jussieu.fr//cgi-bin/SCitCompare23) with
an angular deviation limit of 40°.

■ RESULTS AND DISCUSSION
Iterative MD−Rosetta Protocol Successful in Refining

All Four Benchmark Proteins without User Intervention.
An improved iterative cryoEM-guided MD−Rosetta protocol
aimed at refining proteins to near-native resolution is presented
here. The rationale for iteratively using two orthogonal

Figure 1. Flowchart of the iterative cryoEM-guided Rosetta−MD protocol. For each of the proteins, the starting model for the first round of the
protocol was the best scoring model from a previous benchmark. The protocol started with an MDFF run, followed by a Rosetta run, repeated twice:
MDFF1−Rosetta1−MDFF2−Rosetta2−MDFF3−Rosetta3. The best scoring models after the third round of Rosetta was picked as the final model.
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sampling and scoring methods is to symbiotically leverage both
methods’ strengths and increase sampling efficiency in high-
resolution protein structure refinement. The original imple-
mentation of the iterative protocol was described in ref 18, and
several main improvements are presented in this work. The
starting point for the iterative protocol was the best-scoring
Rosetta structure from a previous benchmark.15e The protocol
then performs three rounds of iterative cryoEM-guided
molecular dynamics (MDFF) followed by cryoEM-guided
Rosetta refinement. The MDFF simulations contained two
separate steps (one with low density forces and a second one
with high forces), and the final models after each of these steps
were chosen as input into a Rosetta loop rebuilding and all-
atom refinement run guided by the cryoEM density map. After
each round of Rosetta refinement, the five best-scoring models
were extracted and were used as starting models in the
subsequent MDFF simulations. Thus, during the first round of
MDFF, simulations were run on one model, while simulations
were run on five models during MDFF2 and MDFF3. Similarly,
Rosetta runs were started from two different models for

Rosetta1, while ten starting models were used during Rosetta2
and Rosetta3. Success of the protocol is quantified by
improvement in RMSD of the models built with respect to
the native structure. Importantly, all starting structures resulted
from several rounds of cryoEM-guided Rosetta-only refinement
in which model improvement had completely seized.15e Thus,
any improvement in RMSD in the current benchmark can be
attributed to the iterative combination of MDFF and Rosetta.
Figure 2 summarizes the results of the entire refinement. It

shows the RMSD over all protein residues with respect to the
native structure after each of the rounds of the iterative
cryoEM-guided protein structure refinement. For the MDFF
simulations, final models after each of the two separate steps
(MD simulation with low density forces (red) and subsequent
minimization with high forces (blue)) are shown. In virtually all
the cases, the subsequent minimization did at least slightly
improve the RMSD of the final model (blue points generally
have slightly lower RMSD than red points). For each of the
three rounds of Rosetta refinement, the RMSD of the top
scoring model (thick black dot) and the subsequent four best-

Figure 2. Summary of the results of all rounds of the iterative MDFF−Rosetta refinement. The RMSD values over all protein residues with respect
to the native structure in all three rounds of iterative cryoEM-guided protein structure refinement are shown. The first panel (black dot, labeled
initial model) shows the top-scoring model of the last round of Rosetta-only refinement in 15e. A trend line has been added to facilitate comparison
to the initial model. For the MDFF simulations, final models after each of the two separate steps (MD simulation with low density forces (red) and
subsequent minimization with high forces (blue)) are shown. For each of the three rounds of Rosetta refinement, the RMSD values of the top
scoring model (thick black dot) and the subsequent four best-scoring models (four thin black dots) are shown. A blue bar indicates the range of the
RMSDs of all models built during that round of Rosetta refinement (irrespective of their individual scores), with the low-RMSD end of the bar
corresponding to the lowest-RMSD model built. The high-RMSD end of the bar is beyond the plotting limit of 3 Å for all proteins and rounds.
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scoring models (thin black dots) are shown. Those are the five
models that were used as input in the following MDFF round.
A blue bar indicates the range of the RMSDs of all models built.
The low-RMSD end of that bar corresponds to the lowest-
RMSD model built during that round of Rosetta. In summary,
for all four proteins, models significantly lower in RMSD than
the initial model were built over the course of the protocol. For
three of the four proteins (1X91, 2FD5, 1ICX) there is a
gradual improvement in model quality over the three rounds of
the iterative refinement. For 1DVO, the third round of the
protocol did undo some of the improvements from the
previous rounds. But even for 1DVO, the second round MDFF
model has its RMSD improved by more than 1 Å compared to
the initial starting structure. Also, the quality of the SSE parts of
the 1DVO model improved through all three rounds. For all
proteins, the biggest improvement is seen in the first round of
MDFF. However, the subsequent rounds of MDFF generally
still improve model quality. An in-depth analysis showed that
none of the five top-scoring models in any Rosetta run (for any
of the proteins) did originate from a model that underwent
strong MDFF density minimization (blue dots). This is
important for two reasons. First, it suggests that density map
scaling factors of 10 (and even 5; we did lower the scaling
factor over the course of the benchmark) perturb the protein
structure too much for Rosetta to be able to still build well-
scoring models. Second, in the future it may not be necessary to
even transition the MDFF step 2 models into Rosetta. This will
cut the computational cost of the protocol in half without
affecting the performance at all.
Supplemental Figure 1 shows an equivalent plot of the results

of the entire refinement but with the RMSD values calculated
just over SSEs in the proteins. The model progression is less
steady when only secondary structure elements are considered.
Particularly, the Rosetta refinement and subsequent model
selection more frequently seemed to increase the model
RMSD. This can be understood when considering that the
Rosetta protocol is aimed at improving model quality in loop
regions. Sections of the models that agree least with the density
map of the protein are identified and rebuilt. These sections
tend to be in loop regions. The final model selection is based
on the Rosetta energy function scoring all protein residues.
Thus, less favorable conformations within SSEs may be selected
at the expense of better agreement in loop regions. Nonethe-
less, for two of the four benchmark proteins (1DVO and
1X91), a more or less steady quality improvement is observed
even when the RMSD values are calculated just over SSEs in
the proteins.
Table 1 quantizes the RMSD values of the generated models

for all four proteins throughout all three rounds of the iterative

protocol. Three of the four proteins exhibited excellent overall
improvement. The RMSD of 1ICX improved by 0.85 Å (0.77 Å
measured over residues in secondary structure elements), and
the RMSD of 1X91 improved by 0.53 Å (0.40 Å measured over
residues in secondary structure elements). While the RMSD of
1DVO improved by a respectable 0.36 Å over all residues of the
protein, it did improve by 0.77 Å measured over residues in
secondary structure elements. The native structures relaxed in
the Rosetta force field exhibit RMSDs of around 0.5−0.8 Å,
thus the observed improvement in the protocol corresponds to
around 30−60% of the maximally possible improvement. Two
of the final best-scoring Rosetta models (1X91 and 1DVO)
have sub-Ångstrom RMSD values when measured over residues
in secondary structure elements − arguably the most important
core part of the protein. During the course of the protocol,
models were built that had an even higher quality than the best-
scoring models. Those models showed improvement of almost
1 Å over only three rounds of iteration. We were even able to
build a sub-Ångstrom RMSD model for 1X91 (as measured
over all 153 residues). This demonstrates the power of the
iterative MDFF−Rosetta protocol to build models of excellent
quality that would not have been generated by any of the
individual methods.
To visualize the quality of the generated models, Figure 3

and Supplemental Figure 2 show the best models for all four
benchmark proteins overlaid with their native structure. Both
the backbone (ribbon-only representation) and side chain
agreement are shown. For proteins of 150 to 180 residues,
RMSD-to-native values of around 1 Å over SSE residues
represent a virtually correct backbone prediction. Some
deviations in loop regions still exist, but given the more flexible
nature of those regions, this is not unexpected. The side chain
coordinate prediction is excellent particularly in secondary
structure elements. To quantify the side chain prediction
accuracy, a rotamer analysis was performed. Between 57%
(1DVO) and 69% (1X91) of the χ1 rotamers were predicted
correctly. Within the core of the proteins these values were as
high as 77%.
The successful model refinement for 1ICX is of particular

interest since it is the α−β-protein in the benchmark. The
previous implementation of the method was only successful in
iteratively refining α-helical proteins.18 This suggests that
cryoEM-guided sampling in all steps of the protocol can be
particularly useful for accurately refining β-sheets. In summary,
the novel implementation of the iterative Rosetta−MD protein
structure refinement protocol has been more successful than
the previous version. This is particularly notable since the
RMSD-based model selection in the MD stage of the protocol

Table 1. RMSDs of the Models Built with Respect to Native Structure over All Residues and over All Residues in Secondary
Structure Elements (in Parentheses)I

protein starta MDFF1b Rosetta1c MDFF2d Rosetta2e MDFF3f Rosetta3g besth

1X91 1.82(1.19) 1.42(0.88) 1.53(0.94) 1.38(0.89) 1.37(0.85) 1.41(0.92) 1.29(0.79) 0.98(0.74)
1DVO 2.50(1.65) 2.18(1.28) 2.16(1.19) 1.56(0.99) 1.89(1.01) 2.14(1.17) 2.14(0.98) 1.54(1.01)
1ICX 2.65(2.14) 1.90(1.45) 2.05(1.72) 1.75(1.38) 2.21(1.87) 1.84(1.39) 1.80(1.37) 1.80(1.37)
2FD5 2.16(1.46) 1.89(1.17) 2.03(1.26) 1.94(1.19) 2.07(1.31) 1.96(1.27) 2.01(1.38) 1.55(1.29)

aRMSDs of the starting models. bRMSDs of the models after 1 ns of the first round of MDFF (step 1, density map scaling factor 0.3). cRMSDs of
the top scoring model after the first round of Rosetta refinement. dRMSDs of the models after 1 ns of the second round of MDFF (step 1, density
map scaling factor 0.3). eRMSDs of the top scoring model after the second round of Rosetta refinement. fRMSDs of the models after 1 ns of the
third round of MDFF (step 1, density map scaling factor 0.3). gRMSDs of the top scoring model after the third round of Rosetta refinement.
hRMSDs of the best Rosetta models ever built during the iterative MD−Rosetta refinement protocol. IAll RMSDs shown are in Å.
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has been abolished. The current protocol can be used without
any previous knowledge of the native protein structure.
MDFF Routinely Builds Improved Models. As part of

the iterative cryoEM-guided Rosetta−MD protein structure
refinement protocol, three rounds of MDFF simulations were
run for the benchmark proteins. The simulation length was
kept to 1 ns (plus an additional 0.2 ns of MDFF minimization
with high density map scaling factor) based on testing and
previous results18 which suggested that the proteins exhibit
their largest improvements within the first 0.5 ns of MD
simulation. As an example, Figure 4 shows the evolution of the
model quality of 1X91 during all three rounds of MDFF. At the

start of the simulations, the protein quickly improves its
RMSDs compared to that of the previous-round Rosetta model
(red lines) as the agreement with the density map improves.
This effect is most pronounced in the first round of MDFF
when an improvement in RMSD to the native structure of
about 0.3 Å is seen within only 100 ps of MDFF. While in a
previous implementation of the protocol, models had to be
picked based on RMSD, it is possible to now simply pick the
last model at the end of each step of the MDFF simulation (i.e.,
one model after 1 ns and another model after 1.2 ns) and still
see consistent model quality improvement. Despite the fact that
the final models generally have improved RMSDs (with respect

Figure 3. Lowest RMSD models after three rounds of iterative MDFF−Rosetta refinement for 1X91 (panels A and C) and 1ICX (panels B and D).
The native structure is shown in gold, while the model is shown in turquois. A, B) Ribbon backbone representation of the proteins. The overall
structure within secondary structure elements has been recovered in the models. C, D) Stereoviews of side chain non-hydrogen coordinates are
shown in addition to ribbon backbone representation. Most side chain conformations within the interface of secondary structure elements have been
built correctly.
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to the starting model in that round of MDFF), there are still
conformations sampled during the MDFF simulations that have
lower RMSDs. As long as no reliable method for identification
of those models exists, this constitutes untapped potential.
Compared to results without density map guidance, notable
progress has been achieved in the improvement of the full
length RMSD, something that was previously routinely not
achieved during the second and third round of MD refinement.
Lastly, as can be seen from Figure 4, the MDFF refinement is
still clearly most effective at improving segments of the proteins
in secondary structure elements.
Rosetta Refinement Most Powerful at Improving

Model Quality in Loop Regions. Figure 2 displayed the
RMSDs of the five top-scoring models and the lowest RMSD
model during each round of Rosetta refinement. For a more in-
depth analysis of the Rosetta refinement performance, it is
necessary to consider RMSD vs Rosetta energy score plots for
all rounds of refinement. Figure 5 shows the RMSD vs score
plots of all four benchmark proteins (panels A through D). For
each protein the RMSD vs score distributions are plotted in
rounds 1, 2, and 3 of the iterative protocol (the lower three
subpanels). Additionally RMSD vs score distributions from the
final round of a Rosetta-only refinement of the same proteins15e

is shown in the top subpanel. Those can be considered the limit
of the protocol without the use of iterative MDFF simulations.
Additionally, the native structure is plotted for reference. The
Rosetta refinement protocol can only be successful if the native
structure scores better than models with higher RMSD values.
The nonzero RMSD values for the native structures are a result
of a relaxation in the Rosetta force field before scoring. Those
values (between 0.5 and 0.8 Å for the benchmark proteins) can

be considered the positive limit of RMSD refinement in
Rosetta. All proteins exhibit a general funnel-shaped RMSD vs
score distribution. Models with RMSD values larger than 0.5−1
Å compared to the best models built all have higher (more
unfavorable) scores than low-RMSD models. The funnel shape
is less pronounced within the 0.5−1 Å RMSD range of the best
models built. This is particularly true for 1X91. The final
RMSD vs score distributions are significantly shifted to lower
RMSD value (and also lower scores) compared to the initial
starting distributions (upper panel). This demonstrates overall
success of the protocol to improve model quality. While a large
fraction of the Rosetta models have higher RMSD than the
previous round MDFF models, the RMSD vs score
distributions improve with each round, due to iterative
orthogonal sampling by molecular dynamics. This suggests
that the rounds of iterative Rosetta−MD refinement do indeed
gradually improve the quality of the protein models. For
1DVO, 1ICX, and 2FD5, the native models (relaxed and scored
in the Rosetta force field) score better than any refined protein
models, indicating that there is indeed still room for model
improvement. However, for 1X91 there are about 800 Rosetta3
models that score better than any of the realxed native models.
This may explain the disappearance of a funnel shape for low
RMSD models for this protein since the scoring function
cannot distinguish native from native-like models any more.
More importantly, this may also indicate a limitation to what
model quality can be achieved with the iterative Rosetta−MD
protocol. Potentially, the cryoEM-guided Rosetta scoring
function is only able to refine models up to about 1 Å
RMSD. The protocol converges after three iterative MD−
Rosetta rounds. An additional fourth round of MDFF did not
improve the proteins considerably.

■ CONCLUSIONS
Here we presented the results of an improved iterative MD−
Rosetta protocol to computationally refine protein structures
guided by medium resolution cryoEM density maps. The
presented protocol is tailored toward high resolution structure
refinement if native-like starting models exist. Molecular
dynamics flexible fitting and Rosetta were used iteratively to
improve the model quality of the benchmark proteins. All four
benchmark proteins exhibited improvement of up to 1 Å in
RMSD over only three rounds of iteration. This work was
based on the original idea of an iterative MD−Rosetta protein
structure refinement protocol,18 where we demonstrated that
such a combination of MD and Rosetta could indeed help to
overcome some of the “conformational traps” in which
cryoEM-guided Rosetta refinement may have been trapped.
Several improvements over the original implementation were
presented. Particularly, all limitations discussed in ref 18 were
addressed here. First, both the MD and Rosetta part of the
protocol are guided by medium-resolution cryoEM density
maps now, allowing the method to leverage the full potential
from the sparse experimental data. Second, and more
importantly, the need to cherry-pick MD models based on
RMSD has been obviated. Models are now picked from the end
of the MDFF simulations regardless of their RMSD with
respect to the native structure. Furthermore, not only the top
scoring model from each Rosetta round enters the next MDFF
stage, but rather the five best-scoring models are chosen. All
these method enhancements did also improve the success rate
of the protocol, so that now all benchmark proteins showed
improvements. Lastly, while the benchmark set only contained

Figure 4. Model quality evolution of 1X91 during the three rounds of
MD. The RMSD of the MD structure with respect to the native model
is shown for all protein residues (blue) and for residues in secondary
structure elements (green). RMSDs of specific reference models are
displayed by vertical lines: the full length RMSD of the starting model
(black line), the RMSD over SSEs of the starting model (dashed black
line), the full length RMSD of the best scoring model from the
previous Rosetta round (red line), and the RMSD over SSEs of the
best scoring model from the previous Rosetta round (dashed red line).
For the first round of MD, the red and black lines coincide. Success in
this stage of the protocol is characterized by the blue line breaking
through the red line (corresponding to MD sampling lower RMSD
models than the best scoring model seen in the last Rosetta round)
and the green line breaking through the dashed red line.
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one α−β-protein, this protein was not only successfully refined
but did show the most significant improvement of all proteins
in the benchmark (the RMSD of 1ICX improved by 0.85 Å
when measured over all protein residues and by 0.77 Å when
measured over residues in secondary structure elements). This
demonstrates a promising extension of the scope of the
protocol to β-sheet containing proteins. In summary, the
improved protocol is considerably better than the original
iterative MD−Rosetta protocol. The protocol converges after
three iterative MD−Rosetta rounds. An encouraging symbiosis
between MDFF and Rosetta was observed, in that MDFF was
best at improving the RMSDs over residues in secondary
structure elements, while Rosetta improvements were greatest
in loop regions. This suggests that each method has its strength
in an area where the other method faces challenges. Used in an
iterative fashion, MDFF and Rosetta can thus contribute
constructively to overcome sampling limitations of the
individual methods. While these results are very encouraging,
room for future methodology improvement remains. Future
work will focus on optimizing the role of the density map
scaling factor in MDFF, as it pertains to the successful

transition of models into Rosetta. We will also focus on
identifying lower RMSD models built by MDFF.
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