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a b s t r a c t 

The T1w/T2w ratio is a novel magnetic resonance imaging (MRI) measure that is thought to be sensitive to 

cortical myelin. Using this novel measure requires developing novel pipelines for the data quality assurance, 

data analysis, and validation of the findings in order to apply the T1w/T2w ratio for classification of disorders 

associated with the changes in the myelin levels. In this article, we provide a detailed description of such a 

pipeline as well as the reference to the scripts used in our recent report that applied the T1w/T2w ratio and 

machine learning to classify individuals with depressive disorders from healthy controls. 
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Specifications table 

Subject Area: Neuroscience 

More specific subject area: Neuroimaging and Psychiatry 

Protocol name: Cortical myelin mapping and machine learning-based prediction 

Reagents/tools: Scanning was performed using a 3T Siemens Prisma scanner with a 

64-channel receiver head coil. 

Experimental design: Magnetic resonance imaging (MRI) data were collected following the Human 

Connectome Project (HCP) 3T imaging protocol. High-resolution T1w images 

were collected using the MPRAGE sequence with TR = 2400ms, 

resolution = 0.8 × 0.8 × 0.8mm, 208 slices, FOV = 256, TE = 2.22ms, flip angle = 8 °. 
High-resolution T2w images were collected using TR = 3200ms, 

resolution = 0.8 × 0.8 × 0.8mm, 208 slices, FOV = 256, TE = 563ms. Field maps 

were collected in the AP and PA directions using the spin echo sequence 

(TR = 80 0 0, resolution = 2 × 2 × 2mm, FOV = 210, TE = 66ms, flip angle = 90 °, 72 

slices). 

Trial registration: 

Ethics: The study was approved by the University of Pittsburgh Institutional Review 

Board and participants gave written informed consent (protocol number 

STUDY20060265) 

Value of the Protocol: Acquisition, preprocessing, and quality assurance of T1w/T2w cortical myelin 

maps. 

Development of a machine learning analysis pipeline to predict depressive 

disorders with performance evaluation via permutation. 

Methods 

Participants 

Participant recruitment and demographics has been previously described [1] . In brief, we recruited

healthy controls (HC; N = 55) and individuals with unipolar depression (UD; N = 50) diagnosed with

major depressive or persistent depressive disorder using DSM-5 criteria. Participants with a history 

of head injury, metal in the body, pregnancy, claustrophobia, neurodevelopmental disorders, systemic 

medical illness, premorbid IQ < 85 per the National Adult Reading Test [2] , current alcohol/drug abuse,

Young Mania Rating Scale scores > 10 (YMRS [3] ) at scan, or meeting criteria for any psychotic-

spectrum disorder were excluded during recruitment. In addition, we excluded from the present 

analyses participants with brain abnormalities of potential clinical relevance (2 UD); diagnosis change 

during the course of the study (1 HC was diagnosed with major depressive disorder, and 1 UD was

diagnosed with bipolar disorder); scanner and movement related artifacts in T1w or T2w images (4

HC, 7 UD), and myelin maps of insufficient quality (3 HC, 1 UD). A more detailed description of the

last two points will be provided below. The final sample included 47 HC and 39 UD. 

Neuroimaging data acquisition 

The neuroimaging data were collected at the University of Pittsburgh Magnetic Resonance 

Research Center using a 3T Siemens Prisma scanner with a 64-channel receiver head coil. 

Neuroimaging data files were named according to the ReproIn convention [4] . DICOM images were

converted to BIDS format using heudiconv [5] and dcm2niix [6] . High-resolution T1w images were

collected using the MPRAGE sequence (TR = 2400ms, resolution = 0.8 × 0.8 × 0.8mm, 208 slices,

FOV = 256, TE = 2.22ms, flip angle = 8 °). High-resolution T2w images were collected using TR = 3200ms,

resolution = 0.8 × 0.8 × 0.8mm, 208 slices, FOV = 256, TE = 563ms. Field maps were collected in the

AP and PA directions using the spin echo sequence (TR = 80 0 0, resolution = 2 × 2 × 2mm, FOV = 210,

TE = 66 ms, flip angle = 90 °, 72 slices). The raw data used [1] are publicly available ( https://openneuro.

org/datasets/ds003653/versions/1.0.0 ) [7] . 

https://openneuro.org/datasets/ds003653/versions/1.0.0
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b  
ubject-level preprocessing 

Cortical myelin was characterized with the T1w/T2w ratio [8–10] using the

reFreeSurfer, FreeSurfer, and PostFreeSurfer minimal preprocessing pipelines for the human

onnectome project (HCP) [8] . Workbench v1.4.2 and HCPpipelines-4.1.3 were installed system-wide on

 workstation with GNU/Linux Debian 10 operating system. Bias field correction in PreFreeSurfer used

pin echo field maps collected in AP and PA phase encoding directions. MSMSulc [11] in PostFreeSurfer

as used for registration to standard space. Parcellation of the T1w/T2w ratio maps [ 10 , 12 ] was done

sing the Glasser Atlas [9] ( n = 360 regions). Parcellation is a procedure by which points in the brain

re mapped to brain regions, or parcels. The mean T1w/T2w ratio of each parcel was computed for

ach participant. The Glasser Atlas was used as it is the only brain atlas which incorporates the

1w/T2w ratio. Subject-level myelin maps, as well as all code and data used in this protocol, are

ublicly available ( https://github.com/manelis- lab/myelin- paper- NICL2021 ). 

euroimaging quality assurance 

Quality assurance (QA) was first performed following standard procedures. We additionally provide

etail on our customizations to our QA pipelines for T1w, T2w, and T1w/T2w ratio images. T1w and

2w images were visually inspected for noise or movement-induced artifacts [13] , including ringing,

liasing, ghosting, blurring, banding, and hyperintensities, as well as for structural abnormalities that

ay be clinically relevant. Data quality was then examined using mriqc version 0.15.1 [14] . Background

oise enhanced images generated by m riqc were visually inspected for the same aforementioned

rtifacts. As there are no clear guidelines regarding how to use single or combined image quality

etrics (IQMs) produced by mriqc to identify potential low-quality scans or unacceptable level of

oise, we adopted the procedure proposed by the mriqception project [15] to identify potential

1w and T2w outlier images. Specifically, the images that passed this initial visual inspection were

ompared against a large sample of independent deidentified T1w and T2w images whose mriqc

QMs were downloaded from the mriqc API ( https://mriqc.nimh.nih.gov/ ). The mriqc API collection

ontains information on over 1.4 million T1 and T2 images. For the purpose of this study, we selected

he IQMs from images that were matched to the present study, based on TR, TE, spacing, scanner

anufacturer, head coil, and the version of mriqc used. This resulted in 1046 T1w comparison images

nd 619 T2w comparison images. The distribution of IQMs from the present study was compared

o the distribution of IQMs from the API. Scans with IQMs beyond the interquartile range (IQR) of

he mriqc API data (median + /- 1.5 × 75% quartile – 25% quartile) were flagged as potential outliers

nd were re-inspected. Scans were excluded solely based on IQMs when values fell far outside the

xpected range ( > 5 IQRs). One subject (UD) was excluded based on this procedure. A total of 4 HC

ubjects and 7 UD subjects were excluded for noise or movement-related artifacts. Participants were

xcluded from analyses even if they failed QC only for T1w or only for T2w images. For the images

hat passed the mriqc API quality assurance, the FreeSurfer generated images were visually inspected

or registration errors and artifacts that were not detected previously. 

1w/T2w ratio quality assurance 

For the participants whose T1w and T2w images passed the neuroimaging QA steps described

bove, we evaluated the quality of the T1w/T2w ratio maps. As the T1w/T2w ratio image is a relatively

ecent addition to the MRI toolkit [10] , there is no standard QA pipeline for T1w/T2w ratio maps.

ere we detail our procedure for performing QA on T1w/T2w ratio images. First, T1w/T2w ratio

mages were visually inspected, by comparing each image to the average T1w/T2w ratio map from

he HCP [9] . This step allowed us to identify regions with excessively high or low values. Some

xamples include large regions of apparent low myelin in the occipital cortex due to the transverse

inus interfering with accurate identification of the pial surface, or regions of excessive myelin in the

edial frontal cortex that likely appeared due to motion. 

Second, beyond gross imaging or anatomical artifacts, some areas in the brain are affected

y susceptibility artifacts more than others [16] . These areas include the orbitofrontal cortex

https://github.com/manelis-lab/myelin-paper-NICL2021
https://mriqc.nimh.nih.gov/
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Fig. 1. Results of parcel outlier detection 

The coefficient of variation of each parcel (sd/|mean|), colored by whether or not the parcel was determined to be an outlier. 

sd and |mean| were calculated across all subjects per each parcel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and the regions in the medial temporal cortex such as hippocampal and entorhinal cortices 

[ 13 , 17 ]. The presence of susceptibility artifacts varies among subjects due to the differences in

the scalp, face, and brain anatomy as well as the placement inside the scanner. Characterizing

between-subject variability in the T1w/T2w ratio measures could help identify brain regions 

affected by susceptibility artifacts the most. We developed an empirical procedure to identify 

the regions with unusually high variability and remove them from the subsequent analyses. The 

procedure included calculating the coefficient of variation (sd/mean) to summarize the variability 

within each parcel [18] ( https://github.com/manelis- lab/myelin- paper- NICL2021/blob/master/scripts/ 

preprocessing/outlier _ regions.R ). As susceptibility artifacts result in both increased variability in the 

T1w/T2w ratio and excessively low estimates of the mean T1w/T2w ratio, regions contaminated with 

susceptibility artifacts will have a very high coefficient of variation, relative to other regions. Rosner’s

test for outliers [ 18 , 19 ] was used to identify outlier parcels with excessively high variation. Rosner’s

test assumes that the data, without outliers, are normally distributed. The most extreme values are

iteratively tested, identifying up to 10 possible outliers preventing the data from being normal are

identified. It may be appropriate to log-transform the coefficient of variation prior to Rosner’s test,

if the distribution is heavily skewed. This was not done in the present analysis as we were only

interested in outliers in the right-hand side of the distribution. If more than 10 possible outliers

are suspected, the test needs to be run multiple times. This procedure identified 11 outlier parcels

( Fig. 1 ), including the bilateral hippocampus, entorhinal cortex, presubiculum, piriform cortex, and

posterior orbitofrontal cortex complex, and the right subgenual cingulate (bilateral H, EC, PreS, Pir, 

pOFC, and right 25). The locations for these outlier parcels were, in general, consistent with areas

of high susceptibility artifacts [ 13 , 17 ]. These outlier parcels were removed from the subsequent data

analyses, thus, leaving 349 parcels per participant in the data set. 

Machine learning pipeline 

Elastic-net with nested cross-validation 

One limitation of using machine learning in neuroimaging data analysis is that there is a larger

number of features (e.g., voxels or parcels) relative to the number of participants in the data

sets. Elastic net is a regularized regression which combines LASSO and ridge regression (i.e., L1-

and L2- norm regularization) [20] , which is widely used to select variables in large multivariate

analyses [21–23] . Ridge regression reduces the size of overly-large coefficients, while LASSO regression

removes variables with small coefficients. In this study, elastic net was used to select parcels whose

T1w/T2w ratio was sensitive to distinguishing HC from individuals with depressive disorders. All 

https://github.com/manelis-lab/myelin-paper-NICL2021/blob/master/scripts/preprocessing/outlier_regions.R
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ariables used in training the elastic net model are publicly available ( https://github.com/manelis-lab/

yelin- paper- NICL2021 ). Previous studies that used elastic net for clinical and neuroimaging data

nalyses often used a whole sample to identify a sparse model. Such approach can result in model

ias and overfitting. To mitigate these effects, we used nested cross-validation - a procedure in which

 subset of participants is held-out and the entirety of the analytic pipeline is performed in the

emaining participants [24] . The resulting model is tested in the held-out participants. This process

s repeated multiple times and results in multiple sparse models. Here we provide details on our

ustomizations to the machine learning pipeline. 

In the present nested cross-validation analysis, in each iteration of the ‘outer loop’, two participants

one UD and one HC) were held-out for testing, while the remaining participants were used for model

raining. During model training, the elastic net alpha ( α) parameter was set to 0.5. The optimal lambda

 λ) parameter was determined using leave-one-out cross-validation of the training data (i.e., the ‘inner

oop’). Thus, there were 1833 nested cross-validation models (all possible pairings of UD and HC

articipants: 39 UD 

∗ 47 HC = 1833) and, consequently, 1833 sets of parcels deemed important for

D vs. HC classification ( Fig. 2 ). This analysis allowed us to identify how consistently each parcel was

elected across 1833 models. For each parcel, we calculated the proportion of times a given region

as selected across all 1833 nested cross-validation models. The less frequently a region is selected,

he more strongly its selection depends on the choice of the training and testing samples, indicating

hat it is a less robust predictor of participant class (e.g., less likely to be generalizable). 

We used a linear discriminant analysis (LDA) in the ‘outer loop’ to verify how well the

et of variables selected by elastic net (in the ‘inner loop’) classified UD vs. HC ( Fig. 2 ). A

otal of 1833 LDA models were tested as this analysis was run for each repetition of nested

ross validation. Specifically, each LDA model was trained using the set of participants and

he set of parcels selected by elastic net in that particular ‘inner loop’ cross-validation model

 This LDA model was then used to predicted the class (UD or HC) of the two participants

ho were held-out for each round of nested cross-validation. This procedure was repeated for

ll 1833 participant pairs ( https://github.com/manelis- lab/myelin- paper- NICL2021/blob/master/scripts/

nalyses/glmnet _ with _ LDA _ myelin _ paper.R ). Participant-wise accuracy was computed as the percent

f nested models in which the held-out participant was correctly classified. Total model accuracy was

omputed as the average of the participant-wise accuracies. Model sensitivity and specificity were

omputed as the average of UD-only and HC-only participant accuracies, respectively ( https://github.

om/manelis- lab/myelin- paper- NICL2021/blob/master/scripts/analyses/process _ glmnet _ output.R ). The

trength of the nested cross validation approach is that it produces a relatively unbiased estimate

f model parameter ( λ), which would not be the case if the entire training data were used

or determining the parameter [ 25 , 26 ]. We note than many other classifiers could be used

nstead of LDA. The complete output of this pipeline is available ( https://github.com/manelis-lab/

yelin- paper- NICL2021 ). 

esting the model performance with permutation analyses 

While we believed that the parcels selected by all 1833 elastic net models would likely represent

ignal, the parcels that were selected by 1 model could reflect noise. Permutation analyses were

mployed to assess the presence and extent of model bias and overfitting. In each permutation,

articipant class (UD or HC) in the training data set was permuted (randomized), while the class of

he hold-out participants remained unchanged (i.e., true) ( Fig. 2 ). The expected accuracy for permuted

ata is at chance (in the present case, 50%). Deviations from this expectation are indicative of bias or

verfitting. The permutation analyses included the same steps for nested cross-validation procedure

escribed above, except that for each cross-validation fold we conducted 100 repetitions of a

ermutation procedure, which resulted in a total of 183,300 permutation models (1833 ∗100 = 183,300).

 new randomization seed was set prior to each of these permutations to ensure that permutations

ould be unique, and the results would be reproducible. Following the processing pipeline for

he primary analyses, we calculated the proportion of times each variable was selected in the

ermutation analyses, reflecting how frequently we can expect each variable to be selected by chance.

ariables from the primary analyses were considered to be important for distinguishing control from

https://github.com/manelis-lab/myelin-paper-NICL2021
https://github.com/manelis-lab/myelin-paper-NICL2021/blob/master/scripts/analyses/glmnet_with_LDA_myelin_paper.R
https://github.com/manelis-lab/myelin-paper-NICL2021/blob/master/scripts/analyses/process_glmnet_output.R
https://github.com/manelis-lab/myelin-paper-NICL2021
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Fig. 2. Diagram of analysis steps. 

Figure used with permission from Baranger et al., 2021 1 . Conceptual depiction of analysis steps including: (1) a unique pair of one UD and one HC participant is held-out; (2) an elastic 

net regression is used to select variables; (3) the retained variables are used an LDA model predicting case/control status; (4) the LDA model is tested on the held-out sample; (5) this 

process is repeated for each of the n = 1833 pairs of subjects; (6) for each held-out pair, the training procedure is repeated with 100 unique permutations. 
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[  
D if they were selected more than the median value + 3.5 IQR of the selection frequency in

ermutation analyses. That is, if they were selected more frequently than expected by chance. We

pplied this threshold, as opposed to computing the significance of each feature via individually

ermuting them, due to the high computational burden of the latter in the context of nested cross-

alidation (1833 ∗100 ∗360 = 65,988,0 0 0 models), In addition, we computed the LDA accuracies for

ach permutation round as a validation of the variable selection. Accuracy is expected to be higher in

he primary analyses than the permutations (i.e., selected variables are truly predictive of participant

lass). The deviation of permutation accuracy from chance is indicative of the extent to which results

re contaminated by bias or overfitting. Deviation from chance would thus indicate that selected

ariables may not be valid indicators of the outcome, and would additionally indicate that model

esults may not be generalizable to new samples 

( https://github.com/manelis- lab/myelin- paper- NICL2021/blob/master/scripts/analyses/permuted _ 

lmnet _ with _ LDA _ myelin _ paper.R ). 

utcomes 

There are three primary outcomes of this protocol. First, we developed a quality assurance

ipeline for T1w/T2w ratio images that includes identifying the outlier regions heavily affected by

usceptibility artifacts. Second, we developed a nested cross-validation pipeline that runs the feature

election and linear discrimination to distinguish participant classes (UD vs. HC). Third, we verified the

elected regions and classification accuracy, using a permutation approach. The raw data are publicly

vailable ( https://openneuro.org/datasets/ds003653/versions/1.0.0 ) 7 . The derivative data as well as

he scripts used in this protocol are available ( https://github.com/manelis- lab/myelin- paper- NICL2021 )

27] . 
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