organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N,*N*'-Bis[(2-hydroxyphenyl)(phenyl)methylidene]propane-1,2-diamine

Robert S. Black, David G. Billing,* Agata Bartyzel‡ and Ewa M. Cukrowska

Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, 2050, South Africa Correspondence e-mail: dave.billing@wits.ac.za

Received 31 March 2010; accepted 26 April 2010

Key indicators: single-crystal X-ray study: T = 296 K: mean $\sigma(C-C) = 0.003$ Å: R factor = 0.034; wR factor = 0.087; data-to-parameter ratio = 10.0.

In the title compound, C₂₉H₂₆N₂O₂, two strong intramolecular O-H···N hydrogen bonds involving the hydroxy and imine groups generate S(6) ring motifs. The dihedral angles between the pairs of terminal benzene rings are 89.8 (2) and 87.8 (2)°.

Related literature

For related compounds and further synthetic details, see: Schilf et al. (2007). For intramolecular hydrogen bonds in this type of compound, see: Fernández-G et al. (2001); Kabak (2003); Wojciechowski et al. (2001); Dey et al. (2001); Koşar et al. (2004); Lu et al. (2008); Qiu & Zhao (2008); Montazerozohori et al. (2009); Corden et al. (1996); Black et al. (2010); Dey et al. (2001).

Experimental

Crystal data

$C_{29}H_{26}N_2O_2$	
$M_r = 434.52$	
Monoclinic, C2	
a = 18.1766 (8) Å	
b = 7.9808 (4) Å	
c = 16.0347 (8) Å	
$\beta = 92.703 \ (2)^{\circ}$	

$V = 2323.47 (19) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.08 \text{ mm}^{-1}$
T = 296 K
$0.62 \times 0.38 \times 0.24 \text{ mm}$

‡ On leave from: Faculty of Chemistry, Department of General and Coordination Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 2, 20-031 Lublin, Poland.

Data collection

Bruker APEXII CCD

diffractometer
Absorption correction: integration
(XPREP; Bruker, 1999)
$T_{\text{min}} = 0.918$ $T_{\text{max}} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	1 restraint
$wR(F^2) = 0.087$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.20 \text{ e} \text{ Å}^{-3}$
3001 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$
301 parameters	

22291 measured reflections

 $R_{\rm int} = 0.026$

3001 independent reflections

2724 reflections with $I > 2\sigma(I)$

Table 1

Selected torsion	angles (°).	

C1-C6-C7-C8	89.8 (2)	C17-C22-C23-C24	87.8 (2)

Table 2 Hydrogen-bond geometry (Å, °).

, , ,	, , , ,				
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$	
$\begin{array}{c} O1 - H1A \cdots N1 \\ O2 - H2A \cdots N2 \end{array}$	0.82 0.82	1.84 1.83	2.573 (2) 2.553 (2)	147 147	

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-NT (Bruker, 2005); data reduction: SAINT-NT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The University of the Witwatersrand and the National Research Foundation (GUN 2069064) are thanked for providing the infrastructure and for the award of a research grant required to carry out this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5392).

References

Black, R. S., Billing, D. G., Bartyzel, A. & Cukrowska, E. (2010). Acta Cryst. E66. o1002-o1003.

Bruker (1999). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2005). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin USA Corden, J. P., Errington, W., Moore, P., Phillips, P. R. & Wallbridge, M. G. H.

- (1996). Acta Cryst. C52, 3199-3202.
- Dey, D. K., Dey, S. P., Elmali, A. & Elerman, Y. (2001). J. Mol. Struct. 562, 177-184.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Fernández-G, J. M., del Rio-Portilla, F., Quiroz-Garcia, B., Toscano, R. A. & Salcedo, R. (2001). J. Mol. Struct. 561, 197-207.

Kabak, M. (2003). J. Mol. Struct. 655, 135-139.

Koşar, B., Büyükgüngör, O., Albayrak, Ç. & Odabaşoğlu, M. (2004). Acta Cryst C60 0458-0460.

Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008). Acta Cryst. E64, 01693. Montazerozohori, M., Habibi, M. H., Hojjati, A., Mokhtari, R., Yamane, Y. &

Suzuki, T. (2009). Acta Cryst. E65, 01662-01663.

Qiu, F. & Zhao, L.-M. (2008). Acta Cryst. E64, o2067.

Schilf, W., Kamienski, B., Szady-Chełmieniecka, A., Grech, E., Makal, A. & Wozniak, K. (2007). *J. Mol. Struct.* 94–101, 844–845.
Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
 Wojciechowski, G., Ratajczak-Sitarz, M., Katrusiak, A., Schilf, W., Przybylski, P. & Brzezinski, B. (2001). J. Mol. Struct. 650, 191–199.

Acta Cryst. (2010). E66, 01256-01257 [doi:10.1107/S1600536810015291]

N,*N*'-Bis[(2-hydroxyphenyl)(phenyl)methylidene]propane-1,2-diamine

R. S. Black, D. G. Billing, A. Bartyzel and E. M. Cukrowska

Comment

The molecular structure of the title compound form two strong intermolecular hydrogen bonds O—H···N involving the hydroxyl and the imine groups, forming S(6) ring motifs which are common to this type of compound (Schilf *et al.*, 2007) and (Fernández-G *et al.*, 2001), and also seen in the work completed by (Kabak *et al.*, 2003), (Wojciechowski *et al.*, 2001), (Dey *et al.*, 2001), (Koşar, *et al.*, 2004), (Lu, *et al.*, 2008) (Qiu & Zhao, 2008), (Montazerozohori *et al.*, 2009), (Corden *et al.*, 1996) and (Black *et al.*, 2010). This causes the dihedral angles between the adjacent phenyl rings and phenyl containing plains to be (C1—C6—C7—C8) 89.8 (2)° and (C17—C22—C23—C24) 87.8 (2)° respectively. These dihedral angles are comparable to (Corden *et al.*, 1996) and (Black *et al.*, 2010). The stereogenic centre on the methyl substituted carbon C15 allows the system to pack in the noncentrosymmetric space group *C2*. The remaining weak interactions in the crystals form unexceptional σ - π interactions.

Experimental

A mixture of 0.01 mol (2.00 g) of 2-hydroxybenzophenone and 0.005 mole (0.42 ml) of 1,2-propanediamine in 40 ml of methanol was refluxed for 7 h. The excess of solvent (ca. 30 ml) was then evaporated. After cooling to 277 K, a yellow solid was produced. The polycrystalline product was collected by filtration, washed with methanol and dried a yield 54% was obtained. Recrystalization from an ethanol solution yielded yellow blocks of (I). Elemental analysis: *C% 79.67 H% 5.99 N% 6.03*.

Refinement

The absolute structure of (I) is indeterminate based on the present refinement. All H atoms were refined using a riding model, with a C—H distance of 0.96, for Ar—H a distance of 0.93 Å and for O—H a distance of 0.82 Å, and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). The highest residual peak was 0.742 Å from atom C6 with a $\rho = 0.20$ e Å⁻³.

Figures

Fig. 1. The molecular structure of (I) drawn at the 30% probability displacement ellipsoids. Hydrogens bonds are shown as dashed lines.

N,*N*'-Bis[(2-hydroxyphenyl)(phenyl)methylidene]propane-1,2-diamine

F(000) = 920

 $\theta = 2.2 - 28.3^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 296 KBlock, yellow

 $D_{\rm x} = 1.242 {\rm Mg m}^{-3}$

 $0.62 \times 0.38 \times 0.24 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 9931 reflections

Crystal data

$C_{29}H_{26}N_2O_2$
$M_r = 434.52$
Monoclinic, C2
Hall symbol: C 2y
<i>a</i> = 18.1766 (8) Å
<i>b</i> = 7.9808 (4) Å
c = 16.0347 (8) Å
$\beta = 92.703 \ (2)^{\circ}$
$V = 2323.47 (19) \text{ Å}^3$
Z = 4

Data collection

Bruker APEXII CCD diffractometer	3001 independent reflections
Radiation source: sealed tube	2724 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.026$
ϕ and ω scans	$\theta_{\text{max}} = 28^\circ, \ \theta_{\text{min}} = 1.3^\circ$
Absorption correction: integration (XPREP; Bruker, 1999)	$h = -23 \rightarrow 24$
$T_{\min} = 0.918, T_{\max} = 1.000$	$k = -10 \rightarrow 10$
22291 measured reflections	$l = -21 \rightarrow 20$

Refinement

3001 reflections 301 parameters

Refinement on F^2	1 restraint
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.034$	$w = 1/[\sigma^2(F_o^2) + (0.0448P)^2 + 0.6417P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.087$	$(\Delta/\sigma)_{\text{max}} = 0.001$
<i>S</i> = 1.05	$\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$
3001 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 1999)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.17117 (10)	0.8773 (3)	0.19104 (12)	0.0380 (4)
H1	0.1576	0.8561	0.2453	0.046*
C2	0.23795 (11)	0.9528 (3)	0.17780 (14)	0.0452 (5)
H2	0.2699	0.9792	0.2229	0.054*
C3	0.25725 (11)	0.9890 (3)	0.09795 (15)	0.0500 (5)
Н3	0.302	1.0411	0.0891	0.06*
C4	0.21054 (12)	0.9484 (3)	0.03135 (14)	0.0536 (5)
H4	0.2237	0.974	-0.0225	0.064*
C5	0.14368 (11)	0.8693 (3)	0.04351 (12)	0.0432 (5)
Н5	0.1124	0.8412	-0.0019	0.052*
C6	0.12418 (9)	0.8328 (2)	0.12419 (11)	0.0318 (4)
C7	0.05455 (9)	0.7387 (2)	0.14143 (10)	0.0308 (4)
C8	-0.01204 (10)	0.8365 (2)	0.15614 (11)	0.0317 (4)
С9	-0.01477 (11)	1.0091 (2)	0.14096 (13)	0.0398 (4)
H9	0.0267	1.0624	0.1219	0.048*
C10	-0.07704 (12)	1.1025 (3)	0.15342 (13)	0.0478 (5)
H10	-0.0777	1.2167	0.142	0.057*
C11	-0.13872 (12)	1.0242 (3)	0.18322 (14)	0.0487 (5)
H11	-0.1808	1.0867	0.1924	0.058*
C12	-0.13812 (11)	0.8549 (3)	0.19929 (13)	0.0445 (5)
H12	-0.1796	0.8042	0.2199	0.053*
C13	-0.07625 (10)	0.7587 (3)	0.18505 (12)	0.0372 (4)
C14	0.09851 (12)	0.3771 (3)	0.04854 (12)	0.0445 (5)
H14A	0.0548	0.3114	0.0545	0.067*
H14B	0.139	0.3044	0.0374	0.067*
H14C	0.0907	0.4544	0.0031	0.067*
C15	0.11599 (10)	0.4740 (2)	0.12901 (11)	0.0330 (4)
H15	0.1592	0.5453	0.1221	0.04*
C16	0.13115 (11)	0.3541 (2)	0.20186 (11)	0.0364 (4)
H16A	0.0869	0.2909	0.2124	0.044*
H16B	0.1695	0.2755	0.1882	0.044*
C17	-0.00368 (11)	0.3145 (3)	0.35288 (13)	0.0447 (5)
H17	-0.0215	0.4205	0.3389	0.054*
C18	-0.05238 (12)	0.1829 (4)	0.36563 (14)	0.0602 (7)
H18	-0.1029	0.2012	0.3604	0.072*
C19	-0.02579 (16)	0.0266 (4)	0.38587 (16)	0.0640 (7)
H19	-0.0585	-0.0607	0.3944	0.077*
C20	0.04851 (16)	-0.0019 (3)	0.39361 (17)	0.0639 (7)
H20	0.066	-0.1085	0.4071	0.077*
C21	0.09762 (13)	0.1270 (3)	0.38147 (14)	0.0477 (5)
H21	0.148	0.1073	0.3869	0.057*
C22	0.07149 (10)	0.2860 (2)	0.36114 (11)	0.0331 (4)
C23	0.12560 (9)	0.4238 (2)	0.34679 (11)	0.0307 (3)
C24	0.14855 (9)	0.5331 (2)	0.41770 (11)	0.0304 (3)
C25	0.11331 (10)	0.5252 (2)	0.49331 (12)	0.0368 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H25	0.0749	0.4495	0.4988	0.044*
C26	0.13414 (11)	0.6270 (3)	0.56007 (13)	0.0437 (5)
H26	0.1102	0.6195	0.6099	0.052*
C27	0.19109 (12)	0.7405 (3)	0.55188 (14)	0.0477 (5)
H27	0.2049	0.8105	0.5963	0.057*
C28	0.22735 (11)	0.7505 (3)	0.47865 (13)	0.0461 (5)
H28	0.2658	0.8264	0.4741	0.055*
C29	0.20693 (9)	0.6482 (2)	0.41146 (11)	0.0355 (4)
N1	0.05252 (8)	0.57835 (19)	0.14636 (9)	0.0338 (3)
N2	0.15442 (8)	0.44924 (19)	0.27629 (9)	0.0348 (3)
01	-0.07848 (8)	0.59298 (19)	0.20016 (11)	0.0509 (4)
H1A	-0.0408	0.5489	0.1844	0.076*
02	0.24508 (8)	0.6613 (2)	0.34177 (8)	0.0487 (4)
H2A	0.2264	0.6006	0.3053	0.073*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0384 (10)	0.0346 (9)	0.0407 (9)	-0.0049 (8)	0.0003 (8)	-0.0001 (8)
C2	0.0365 (10)	0.0390 (10)	0.0591 (12)	-0.0070 (8)	-0.0073 (8)	-0.0052 (9)
C3	0.0296 (10)	0.0468 (12)	0.0742 (14)	-0.0096 (9)	0.0104 (9)	-0.0005 (11)
C4	0.0464 (11)	0.0669 (14)	0.0487 (11)	-0.0111 (11)	0.0144 (9)	0.0084 (11)
C5	0.0386 (10)	0.0536 (12)	0.0374 (9)	-0.0087 (9)	0.0009 (8)	0.0026 (9)
C6	0.0301 (9)	0.0270 (8)	0.0383 (9)	-0.0033 (7)	0.0021 (7)	0.0017 (7)
C7	0.0299 (8)	0.0341 (9)	0.0280 (8)	-0.0069 (7)	-0.0017 (6)	0.0013 (6)
C8	0.0303 (9)	0.0335 (9)	0.0311 (8)	-0.0046 (7)	-0.0011 (6)	-0.0007 (7)
C9	0.0379 (10)	0.0355 (10)	0.0462 (10)	-0.0049 (8)	0.0031 (8)	-0.0008 (8)
C10	0.0544 (12)	0.0365 (10)	0.0526 (12)	0.0058 (9)	0.0034 (10)	-0.0034 (9)
C11	0.0418 (11)	0.0531 (13)	0.0513 (12)	0.0102 (10)	0.0028 (9)	-0.0072 (10)
C12	0.0310 (10)	0.0535 (13)	0.0494 (11)	-0.0034 (9)	0.0057 (8)	0.0002 (9)
C13	0.0315 (9)	0.0409 (10)	0.0389 (9)	-0.0042 (8)	-0.0020 (7)	0.0016 (8)
C14	0.0513 (12)	0.0435 (10)	0.0391 (9)	-0.0056 (10)	0.0053 (8)	-0.0027 (9)
C15	0.0318 (9)	0.0306 (9)	0.0372 (9)	-0.0056 (7)	0.0066 (7)	-0.0007 (7)
C16	0.0406 (10)	0.0294 (8)	0.0391 (9)	-0.0029 (7)	0.0018 (7)	-0.0018 (7)
C17	0.0341 (9)	0.0512 (12)	0.0492 (11)	-0.0046 (9)	0.0052 (8)	-0.0058 (9)
C18	0.0379 (11)	0.089 (2)	0.0546 (13)	-0.0233 (12)	0.0085 (9)	-0.0164 (13)
C19	0.0761 (18)	0.0632 (16)	0.0534 (13)	-0.0401 (15)	0.0107 (12)	-0.0014 (12)
C20	0.0856 (19)	0.0415 (12)	0.0645 (15)	-0.0188 (13)	0.0017 (13)	0.0086 (11)
C21	0.0495 (12)	0.0368 (10)	0.0564 (12)	-0.0059 (9)	-0.0017 (9)	0.0050 (9)
C22	0.0328 (9)	0.0340 (9)	0.0326 (8)	-0.0063 (7)	0.0012 (7)	-0.0034 (7)
C23	0.0263 (8)	0.0258 (8)	0.0396 (9)	0.0011 (6)	-0.0013 (6)	0.0008 (7)
C24	0.0260 (8)	0.0266 (8)	0.0382 (8)	0.0013 (6)	-0.0028 (6)	0.0002 (7)
C25	0.0309 (9)	0.0336 (9)	0.0461 (10)	-0.0024 (8)	0.0034 (7)	-0.0017 (8)
C26	0.0419 (10)	0.0466 (11)	0.0429 (10)	-0.0020 (9)	0.0067 (8)	-0.0078 (8)
C27	0.0472 (11)	0.0480 (12)	0.0473 (11)	-0.0063 (10)	-0.0032 (9)	-0.0140 (9)
C28	0.0404 (10)	0.0452 (11)	0.0520 (11)	-0.0149 (9)	-0.0066 (8)	-0.0033 (9)
C29	0.0307 (9)	0.0357 (9)	0.0398 (9)	-0.0026 (8)	-0.0029 (7)	0.0036 (8)
N1	0.0307 (7)	0.0322 (8)	0.0385 (8)	-0.0061 (6)	0.0031 (6)	0.0001 (6)

N2	0.0345 (7)	0.0323 (7)	0.0376 (7)	-0.0043 (6)	0.0003 (6)	-0.0011 (6)
01	0.0343 (7)	0.0413 (8)	0.0778 (11)	-0.0062 (6)	0.0092 (7)	0.0116 (8)
02	0.0440 (8)	0.0613 (10)	0.0410 (7)	-0.0221 (7)	0.0020 (6)	0.0007 (7)
Geometric para	meters (Å, °)					
C1—C2		1 380 (3)	C15-	-H15	0.9	98
C1—C6		1.385 (3)	C16-	-N2	1.4	460 (2)
C1—H1		0.93	C16-	-H16A	0.9)7
C2—C3		1.374 (3)	C16-	-H16B	0.9)7
C2—H2		0.93	C17–	-C22	1.3	385 (3)
C3—C4		1.371 (3)	C17–	-C18	1.3	395 (3)
С3—Н3		0.93	C17–	-H17	0.9	93
C4—C5		1.391 (3)	C18–	-C19	1.3	372 (4)
C4—H4		0.93	C18–	-H18	0.9	93
C5—C6		1.388 (3)	C19–	-C20	1.3	369 (4)
С5—Н5		0.93	C19–	-H19	0.9	93
С6—С7		1.508 (2)	C20–	-C21	1.3	382 (3)
C7—N1		1.283 (2)	C20–	-H20	0.9	93
С7—С8		1.469 (3)	C21-	-C22	1.3	389 (3)
С8—С9		1.399 (3)	C21-	-H21	0.9)3
C8—C13		1.419 (2)	C22–	-C23	1.5	500 (2)
C9—C10		1.378 (3)	C23–	-N2	1.2	284 (2)
С9—Н9		0.93	C23–	-C24	1.4	177 (2)
C10-C11		1.388 (3)	C24—	-C25	1.3	399 (2)
C10—H10		0.93	C24—	-C29	1.4	411 (2)
C11—C12		1.376 (3)	C25-	-C26	1.3	383 (3)
C11—H11		0.93	C25–	-H25	0.9)3
C12—C13		1.389 (3)	C26—	-C27	1.3	386 (3)
C12—H12		0.93	C26–	-H26	0.9)3
C13—O1		1.346 (3)	C27—	-C28	1.3	376 (3)
C14—C15		1.525 (3)	C27—	-H27	0.9)3
C14—H14A		0.96	C28–	-C29	1.3	388 (3)
C14—H14B		0.96	C28–	-H28	0.9	93
C14—H14C		0.96	C29–	-02	1.3	347 (2)
C15—N1		1.460 (2)	01—	H1A	0.8	32
C15—C16		1.525 (3)	O2—	H2A	0.8	32
C2—C1—C6		120.49 (18)	C16–	-С15—Н15	10	9.5
С2—С1—Н1		119.8	N2—	C16—C15	10	9.55 (15)
С6—С1—Н1		119.8	N2—	C16—H16A	10	9.8
C3—C2—C1		120.01 (18)	C15-	-C16—H16A	10	9.8
С3—С2—Н2		120	N2—	C16—H16B	10	9.8
C1—C2—H2		120	C15-	-C16—H16B	10	9.8
C4—C3—C2		120.00 (18)	H16A	—С16—Н16В	10	8.2
С4—С3—Н3		120	C22–	-C17C18	11	9.5 (2)
С2—С3—Н3		120	C22–	-C17—H17	12	0.2
C3—C4—C5		120.72 (19)	C18–	-C17—H17	12	0.2
С3—С4—Н4		119.6	C19–	-C18C17	12	0.0 (2)
C5—C4—H4		119.6	C19–	-C18—H18	12	0

C6—C5—C4	119.26 (18)	C17—C18—H18	120
С6—С5—Н5	120.4	C20—C19—C18	120.5 (2)
С4—С5—Н5	120.4	С20—С19—Н19	119.7
C1—C6—C5	119.48 (17)	С18—С19—Н19	119.7
C1—C6—C7	118.56 (16)	C19—C20—C21	120.3 (2)
C5—C6—C7	121.90 (16)	С19—С20—Н20	119.9
N1—C7—C8	119.60 (16)	С21—С20—Н20	119.9
N1—C7—C6	122.34 (17)	C20—C21—C22	119.8 (2)
C8—C7—C6	118.02 (15)	C20—C21—H21	120.1
C9—C8—C13	117.66 (17)	C22—C21—H21	120.1
C9—C8—C7	121.20 (17)	C17—C22—C21	119.81 (18)
C13—C8—C7	121.13 (15)	C17—C22—C23	121.07 (18)
C10C9C8	122.01 (19)	C21—C22—C23	119.12 (16)
С10—С9—Н9	119	N2—C23—C24	118.18 (15)
С8—С9—Н9	119	N2—C23—C22	123.25 (16)
C9—C10—C11	119.3 (2)	C24—C23—C22	118.55 (15)
C9—C10—H10	120.4	C25—C24—C29	117.87 (16)
C11-C10-H10	120.4	C25—C24—C23	121.07 (15)
C12—C11—C10	120.5 (2)	C29—C24—C23	121.06 (15)
C12—C11—H11	119.8	C26—C25—C24	121.64 (18)
C10-C11-H11	119.8	C26—C25—H25	119.2
C11—C12—C13	120.7 (2)	C24—C25—H25	119.2
C11—C12—H12	119.6	C25—C26—C27	119.29 (19)
C13—C12—H12	119.6	С25—С26—Н26	120.4
O1—C13—C12	118.80 (18)	С27—С26—Н26	120.4
O1—C13—C8	121.39 (17)	C28—C27—C26	120.58 (19)
C12—C13—C8	119.81 (18)	С28—С27—Н27	119.7
C15—C14—H14A	109.5	С26—С27—Н27	119.7
C15—C14—H14B	109.5	C27—C28—C29	120.45 (19)
H14A—C14—H14B	109.5	C27—C28—H28	119.8
C15—C14—H14C	109.5	С29—С28—Н28	119.8
H14A—C14—H14C	109.5	O2—C29—C28	117.95 (17)
H14B—C14—H14C	109.5	O2—C29—C24	121.87 (16)
N1—C15—C14	108.39 (15)	C28—C29—C24	120.17 (17)
N1—C15—C16	109.14 (14)	C7—N1—C15	122.13 (16)
C14—C15—C16	110.66 (15)	C23—N2—C16	121.53 (16)
N1-C15-H15	109.5	C13—O1—H1A	109.5
C14—C15—H15	109.5	C29—O2—H2A	109.5
C6—C1—C2—C3	2.0 (3)	C19—C20—C21—C22	-0.1 (4)
C1—C2—C3—C4	-0.7 (3)	C18—C17—C22—C21	0.4 (3)
C2—C3—C4—C5	-0.5 (4)	C18—C17—C22—C23	179.17 (18)
C3—C4—C5—C6	0.5 (4)	C20—C21—C22—C17	-0.2 (3)
C2—C1—C6—C5	-1.9 (3)	C20—C21—C22—C23	-179.00 (19)
C2—C1—C6—C7	175.34 (18)	C17—C22—C23—N2	-93.9 (2)
C4—C5—C6—C1	0.7 (3)	C21—C22—C23—N2	84.9 (2)
C4—C5—C6—C7	-176.5 (2)	C17—C22—C23—C24	87.8 (2)
C1—C6—C7—N1	-87.8 (2)	C21—C22—C23—C24	-93.4 (2)
C5—C6—C7—N1	89.5 (2)	N2—C23—C24—C25	172.54 (17)
C1—C6—C7—C8	89.8 (2)	C22—C23—C24—C25	-9.1 (2)

C5—C6—C7—C8	-92.9 (2)	N2-C23-C24-C29	-7.8 (2)
N1—C7—C8—C9	-171.73 (18)	C22—C23—C24—C29	170.61 (16)
C6—C7—C8—C9	10.6 (2)	C29—C24—C25—C26	0.5 (3)
N1—C7—C8—C13	7.3 (3)	C23—C24—C25—C26	-179.84 (18)
C6—C7—C8—C13	-170.35 (16)	C24—C25—C26—C27	0.3 (3)
C13—C8—C9—C10	0.1 (3)	C25—C26—C27—C28	-0.9 (3)
C7—C8—C9—C10	179.19 (17)	C26—C27—C28—C29	0.7 (3)
C8—C9—C10—C11	1.1 (3)	C27—C28—C29—O2	-178.9 (2)
C9-C10-C11-C12	-0.7 (3)	C27—C28—C29—C24	0.2 (3)
C10-C11-C12-C13	-0.8 (3)	C25—C24—C29—O2	178.35 (17)
C11—C12—C13—O1	-178.8 (2)	C23—C24—C29—O2	-1.4 (3)
C11—C12—C13—C8	2.0 (3)	C25—C24—C29—C28	-0.7 (3)
C9—C8—C13—O1	179.18 (19)	C23—C24—C29—C28	179.59 (17)
C7—C8—C13—O1	0.1 (3)	C8—C7—N1—C15	177.40 (14)
C9—C8—C13—C12	-1.7 (3)	C6—C7—N1—C15	-5.0 (3)
C7—C8—C13—C12	179.27 (17)	C14—C15—N1—C7	-111.3 (2)
N1-C15-C16-N2	-66.08 (18)	C16-C15-N1-C7	128.14 (18)
C14—C15—C16—N2	174.74 (15)	C24—C23—N2—C16	-175.93 (15)
C22—C17—C18—C19	-0.2 (3)	C22-C23-N2-C16	5.8 (3)
C17—C18—C19—C20	-0.1 (4)	C15-C16-N2-C23	131.47 (17)
C18—C19—C20—C21	0.3 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O1—H1A…N1	0.82	1.84	2.573 (2)	147
O2—H2A···N2	0.82	1.83	2.553 (2)	147

