
Frontiers in Immunology | www.frontiersin.

Edited by:
Steven O’Reilly,

STipe Therapeutics, Denmark

Reviewed by:
Sally A. Huber,

University of Vermont, United States
Katelyn Ann Bruno,

Mayo Clinic Florida, United States

*Correspondence:
Jian-Zeng Dong

jzdong@ccmu.edu.cn

Specialty section:
This article was submitted to
Molecular Innate Immunity,

a section of the journal
Frontiers in Immunology

Received: 04 January 2022
Accepted: 24 March 2022
Published: 19 April 2022

Citation:
Zheng SY and Dong JZ (2022) Role of

Toll-Like Receptors and Th
Responses in Viral Myocarditis.

Front. Immunol. 13:843891.
doi: 10.3389/fimmu.2022.843891

REVIEW
published: 19 April 2022

doi: 10.3389/fimmu.2022.843891
Role of Toll-Like Receptors and Th
Responses in Viral Myocarditis
Shi-Yue Zheng1 and Jian-Zeng Dong1,2*

1 Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China, 2 Department of Cardiology,
The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China

Myocarditis is the common cause of sudden cardiac death, dilated cardiomyopathy
(DCM) and heart failure (HF) in young adults. The most common type of myocarditis is viral
myocarditis (VMC). Toll-like receptors (TLRs) are vital to identify pathogens in vivo. TLRs
promote the differentiation of naive CD4+T cells to T helper (Th) cells, activate the immune
response, and participate in the pathogenesis of autoimmune and allergic diseases.
Although the pathogenesis of VMC is unclear, autoimmune responses have been
confirmed to play a significant role; hence, it could be inferred that VMC is closely
related to TLRs and Th responses. Some drugs have been found to improve the
prognosis of VMC by regulating the immune response through activated TLRs. In this
review, we discuss the role of TLRs and Th responses in VMC.
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INTRODUCTION

Myocarditis is a myocardial inflammation resulted from infectious, idiopathic, or autoimmune
causes, of which the most popular is viral infection brought by enterovirus, Epstein-Barr (EB) virus,
or human herpesvirus 6. Besides, myocarditis is the primary cause of dilated cardiomyopathy
(DCM) and gradually becomes a cause of sudden cardiovascular death among young people (< 40-
year-old) (1). Most patients with myocarditis can recover fully; however, some (up to 20%) develop
chronic myocarditis, eventually resulting in DCM and heart failure (HF) (2). Myocarditis is
diagnosed by combining clinical presentation, biomarkers, electrocardiogram (ECG),
echocardiography, cardiac magnetic resonance imaging (CMRI), and endocardial biopsy (EMB).
Tissue taken from EMB should be combined with the results of histology, immunohistochemistry
and viral polymerase chain reaction (PCR) for the diagnosis of myocarditis (3). The EMB histology
of myocarditis showed a value of leukocytes>14/mm2 with T lymphocytes>7/mm2, while
immunohistochemistry showed an increase in the number of CD3+T cells or CD68+macrophages
or CD163+M2 macrophages and virus genome could be detected by viral PCR (4, 5). EMB is a non-
targeted operation, with low sensitivity as its main shortcoming, which may occur false-negative
results when VMC is multifocal, focal, or localized (4). Therefore, the sensitivity of EMB in
fulminant myocarditis with extensive inflammatory infiltration is increased, while that in focal
myocarditis is relatively low, which may lead to false-negative results. In addition, although the virus
can replicate in the myocardium, it does not cause enough myocardial inflammation, and EMB
detection of the virus genome may also show false-negative results. The diagnostic criteria of CMRI
for myocarditis are based on the ‘Lake-Louise’ criteria (6, 7). Therefore, in order to improve the
sensitivity of EMB in diagnosis of myocarditis, we can determine the sampling site by combining
org April 2022 | Volume 13 | Article 8438911
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CMRI and obtain myocardial tissue from three different sites.
Chronic myocarditis also has persistent myocardial inflammation,
which is the intermediate stage between acute myocarditis and
chronic inflammatory cardiomyopathy. However, there is no
detectable inflammation due to myocardial fibrosis in patients
with chronic inflammatory cardiomyopathy, which renders
diagnosis and treatment rather challenging (8).

Although the pathogenesis of myocarditis is yet unclear, the role
of immune response in its process is under intensive focus. Under
physiological conditions, a small number of immune cells are
detected in the myocardium. After the onset of infections or
autoimmune disorders, numerous immune cells and cytokines
gather in the myocardial tissue to initiate inflammatory reactions.
This process requires the initiation and maintenance of congenital
and adaptive immune systems. Toll-like receptors (TLRs) recognize
endogenous and exogenous ligands and are expressed on various
cells, such as macrophages, neutrophils, dendritic cells (DCs), mast
cells, and natural killer (NK) cells (9). They transmit signals to
downstream pathways to stimulate innate and adaptive immunity
after identifying the ligands involved in the pathogenesis of various
autoimmune diseases, such as systemic lupus erythematosus (SLE),
rheumatoid arthritis (RA), multiple sclerosis (MS), experimental
autoimmune encephalitis (EAE), and experimental autoimmune
myocarditis (EAM) (10). TLR1-TLR10 mRNA can be detected in
normal peripheral blood T cells, but only TLR2-TLR5 and TLR9
expression can be detected at the protein level. TLR1, TLR2, and
TLR7 are overexpressed on mRNA level in patients with
myocarditis (9, 11). In addition, the inflammatory factors
produced after TLRs activation, including interferon-gamma
(IFN- g), interleukin (IL)-6, and tumor growth factor-beta (TGF-
b), can also stimulate native CD4+T cells to differentiate into T
helper (Th) cells and participate in immune response to aggravate
myocarditis. This study reviewed the role of TLRs and Th responses
in viral myocarditis (VMC).
VMC

VMC is the most common myocarditis caused by various viruses,
including enterovirus, adenovirus, influenza virus, EB virus, and
parvovirus; the most common is Coxsackievirus B3 (CVB3) that
belongs to enterovirus (12). CVB3 may be cleared by innate
immune response or stimulate the immune system to produce
autoantibodies against the infection. The condition can be cured
or progressed to DCM and HF (13). According to the clinical
characteristics, VMC can be classified into fulminant, acute,
subacute, or chronic myocarditis and localized or diffuse
inflammatory infiltration can be observed in myocardial
pathology. Fulminant myocarditis is rare and characterized by
diffuse inflammatory infiltration in myocardial tissue, which has
multiple active lesions and can be completely relieved, die, or
progress to chronic myocarditis. Acute or chronic myocarditis
progresses latently, resulting in DCM or HF (14). The pathological
progression of VMC has three phases at the cellular and tissue
level: the acute phase caused by viral entry and replication, the
subacute phase characterized by inflammatory cell infiltration, and
Frontiers in Immunology | www.frontiersin.org 2
the chronic phase characterized by cardiac remodeling (15). VMC
can be diagnosed by combining biomarkers , ECG,
echocardiography, CMRI, and EMB (16). With the continuous
update and development of technology, viruses in patients with
VMC can be detected by polymerase chain technology, but EMB is
still the gold standard for the diagnosis of myocarditis (3, 17, 18).
VMC can be divided into eosinophilic, lymphocytic, giant cell, and
granulomatous myocarditis based on the histological types
observed by EMB. The most common type is lymphocytic
myocarditis, wherein the main infiltration is by CD4+T and
CD8+T lymphocytes, accompanied by CD68+ macrophages and
few B lymphocytes (19, 20). However, only 38% of patients with
VMC present viral genomes in their EMB samples (21). Hence, a
close correlation is established between virus infection and
immune response in the pathogenic process of VMC, while
many studies have confirmed that the core of innate immunity
and adaptive immunity is related to TLRs (22).
TLRs

TLRs were first discovered as Drosophila gene and related to the
human immune response (23). They are vital receptors on cells
to recognize pathogens and belong to the pattern recognition
receptor family (PRRs). They can detect pathogen-associated
molecular patterns (PAMPs), such as unmethylated cytosine-
phosphate-guanine DNA (CpGor TLR3, TLR7, TLR8, and TLR9
transport) and PRAT4A (responsible for TLR1, TLR2, TLR4,
and TLR7 transport). These TLRs can only be functional after
transport to the internal lysosome (24). Moreover, TLRs can also
be heterodimerized, which expands the range of cognitive
ligands. Different TLRs correspond to various endogenous
ligands that are TLR4 and TLR2 agonists. The abnormal
activation of TLRs may lead to unrestricted inflammatory
response (25).
CHARACTERISTICS OF TLRs

Hitherto, 11 TLRs have been found in humans (Table 1) (26).
TLRs, such as TLR1, TLR2, TLR4, TLR6, and TLR10, are
expressed on the cell surface and can recognize microbial
membrane components, such as p-DNA), single-stranded RNA
(ssRNA), double-stranded RNA (dsRNA), lipopolysaccharide
(LPS), and flagellin and initiate immune response (27). In
addition to the above exogenous ligands, TLRs can also
recognize endogenous ligands, including high mobility group
box 1 (HMGB1), heat shock proteins (HSP), human cardiac
myosin (HCM) peptides S2-16, and HCM S2-28 (28, 29).
Moreover, TLRs activate various types of cells and are highly
expressed in most immune cells, chondrocytes, endothelial cells,
and fibroblasts (30). All TLRs consist of an amino-terminal
domain and a carboxyl-terminal Toll/interleukin-1 receptor
(TIR) domain. The TIR domain interacts with the junction
proteins, including myeloid differentiation factor 88 (MyD88),
MyD88 adaptor-like (Mal, also known as TIR domain-containing
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adapter protein (TIRAP)), TIR domain-containing adaptor
inducing IFN-b (TRIF), TRIF-related adaptor molecule
(TRAM), and sterile a- and armadillo motif-containing protein
(SARM), stimulating nuclear factor-kappa B (NF-kB) and the
production of various proinflammatory cytokines, thereby
initiating an immune response (31). Some TLRs, including
TLR1, TLR2, TLR4, TLR5, TLR6, and TLR10, are expressed on
the cell surface, while others, including TLR3, TLR7, TLR8, and
TLR9, are expressed on the intracellular vesicles (32). Intracellular
TLRs exist in the endoplasmic reticulum (ER) and are transported
by ER resident proteins to the plasma membrane or lysosomes
after stimulation: UNC93B (responsible f proteins, lipids, and
participate in the recognition of virus proteins (33).

TLR2 forms heterodimers with TLR1 or TLR6 and recognizes
different TLR ligands, resulting in different functions: dimers
combined with TLR1 can recognize triacylated lipopeptides from
bacteria while diacylated lipopeptides with TLR6 (34). Both
TLR1/2 and TLR2/6 signaling pathways activate downstream
inflammatory cytokines, tumor necrosis factor-alpha (TNF-a),
(IL-8, IFN-g, IL-12, and IL-6, through MyD88/Mal-NF-kB
signaling pathway (35–37). When recognizing dsRNA, TLR3
transmits signals through TRIF and activates the transcription
factor interferon regulatory factor 3 (IRF-3), NF-kB, and AP-1
(the complex of transcription factor 2 and jun), inducing the
production of IFN-a/b, cytokines, or chemokines and the
maturation of DCs (38, 39). TLR4 is the first molecule
identified among TLRs and is mainly expressed in myeloid
immune cells and in some non-immune such as endothelial
cells (40). TLR4 can recognize heat shock protein, oxidized
phospholipid, heparan sulfate, fibrinogen, fibronectin, tendon
protein-C, and hyaluronic acid (41). Similar to other TLRs, TLR4
interacts with the intracellular TIR domain responsible for signal
transduction (42). It mainly recruits Mal and MyD88 to activate
NF-kB and utilizes TRIF and TRAM to activate type 1 IFN to
produce proinflammatory factors, such as IL-1b, TGF-b, TNF-a,
and IL-12 p40, to eliminate bacteria (43, 44). TLR5 activates the
innate immune response against flagella by inducing a MyD88-
dependent s igna l ing pathway that s t imula tes the
proinflammatory transcription factor NF-kB in epithelial cells,
monocytes, and DCs (45). IL-8 and TNF-a can also be induced
by the p38 mitogen-activated protein kinase (MAPK) signaling
pathway in response to flagellin infection (46). TLR7 and TLR8
are homologous and located on the X chromosome. Both
Frontiers in Immunology | www.frontiersin.org 3
recognize virus ssRNA and are expressed in various immune
cells (47). TLR7 is mainly expressed in plasma-like DCs and B
cells, while TLR8 is mainly expressed in monocytes or
macrophages , myeloid DCs, and neutrophi ls (48) .
Inflammatory factors, such as TNF-a and IL-12 p40 are
activated through the MyD88-IRF-7 pathway after TLR7
activation, promoting the innate immune cells to perceive
endosomal ssRNA, detecting RNA virus infection (49, 50).
However, the overexpression or overactivation of TLR7
promotes the reduction of B cells producing IL-10 in an IFN-g
signal transduction-dependent manner and suppresses the
immune response (51). TLR8 induces NF-kB through MyD88
signal transduction and promotes the expression of
inflammatory factors, such as IL-1b, TNF-a, IL-6, and IL-12
after recognizing ssRNA. It also induces the production of IFN-
a/b through IRAK4, IRAK1, and IRF-7 in response to viral
infection (52). TLR9 was first cloned and identified as the
receptor of unmethylated CpG-DNA in 2000. It induces the
expression of IFN-a/b and proinflammatory cytokines (NF-kB,
IL-1b, and IL-18) and activates the immune response only by
recruiting MyD88 (53). TLR8 modulates the function of TLR7
on DCs, and TLR9 restrains the response of TLR7 on B cells.
TLR7 crosstalk with TLR8 and TLR9 and play a critical role in
the immune response of the body (54). Intriguingly, TLR10 is
known as an orphan receptor because it lacks classical
downstream signaling pathway. It is also an inhibitory
receptor, homologous to TLR1 and TLR6, and hence, can form
heterodimers with TLR2 and inhibit the production of
proinflammatory cytokines, such as IL-6, IL-10, TNF-a, and
IL-1b (46). It also inhibits monocyte differentiation, reduces the
ability of DCs to stimulate T cells, and suppresses the immune
response (55). The human TLR11 gene has no function due to
the presence of a stop codon (25).
TLRs AND Th RESPONSES

Naive CD4+T cells can differentiate into different subtypes of
CD4+Th cells under the stimulus of cytokines. CD4+Th cells direct
the immune response and play key roles in pathogenic infection,
chronic inflammation, autoimmune diseases, and cancer. Some
studies have found a variety of CD4+Th cells, such as Th1, Th2,
Th17, and regulatory T (Treg) cells (Figure 1) (56). Naive CD4+T
TABLE 1 | Characteristics of TLRs.

TLRs Localization Ligands Signaling pathways Cytokines

TLR1 (with TLR2) Cell surface Triacylated lipopeptides MyD88/TIRAP-NF-kB TNF-a, IL-8
TLR2 Cell surface HSP, HMGB1, HCM MyD88/TIRAP-NF-kB TNF-a, IL-8, IFN-g, IL-12, IL-6
TLR3 Intracellular vesicle Virus dsRNA TRIF-IRF-3/NF-kB/AP-1 IFN-a/b
TLR4 Cell surface HSP, Gp96, HMGB1 Mal/MyD88-NF-kB and TRIF/TRAM-type 1 IFN IL-1b, TGF-b, TNF-a, IL-12 p40, IFN-a/b
TLR5 Cell surface Flagellin MyD88-NF-kB and p38 MAPK IL-8, TNF-a
TLR6 (with TLR2) Cell surface Diacylated lipopeptides MyD88/TIRAP-NF-kB IFN-g, IL-12, IL-6
TLR7 Intracellular vesicle Virus ssRNA MyD88-IRF-7 TNF-a, IL-12 p40
TLR8 Intracellular vesicle Virus ssRNA, HCM MyD88-NF-kB and MyD88-IRF-1/4/7 IL-1b, TNF-a, IL-6, IL-12, IFN-a/b
TLR9 Intracellular vesicle Unmethylated CpG-DNA MyD88 NF-kB, IL-1b, IL-18, IFN-a/b
TLR10 Cell surface Lipopeptides (–) Inhibit IL-6, IL-10, TNF a, IL-1b
April 2022 | Volume 13 | Article 843891
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cells differentiate into Th1 cells post-stimulation of IL-2 and IFN–g
and expression of transcription factors T-bet and secrete IFN-g,
IL-2 and TNF. Th1 cells enhance cell-mediated inflammation and
participate in type 1 immune response to intracellular pathogens,
such as mycobacteria and viruses (57). Th2 cells are activated by
IL-4 and IL-2 and are defined by the expression of transcription
factor GATA3, subsequently secreting IL-4, IL-5, IL-6, IL-10, and
IL-13. The Th2 cells also participate in type 2 immune response
against large extracellular pathogens, such as worms, and play a
role in the production of antibodies and allergic reactions (58).
Th17 cells, stimulated by TGF-b, IL-6, IL-21, and IL-23 and the
expression of transcription factor ROR-gt, produce IL-17, IL-17F,
IL-22, and IL-21, which leads to tissue inflammation and
promotes participation in type 3 immune response of
extracellular pathogens, including bacteria and fungi. Different
from other Th cells, Tregs differentiate under the stimulation of
IL-10 and TGF-b and the expression of transcription factor Foxp3
to produce anti-inflammatory cytokines, IL-10 and TGF-b (59).
Moreover, Tregs inhibit autoimmune diseases and regulate
immune response to maintain immune cell homeostasis. Type 1
and 3 immune responses mediate autoimmune diseases, such as
SLE, RA, and MES, while type 2 immune responses can lead to
allergic diseases, such as asthma (60). Cytokines crosslink each
other tomaintain Th cells balance. IFN-g and IL-4 antagonize each
other at different levels, and hence the development of Th1 and
Th2 cells is mutually exclusive (61). Th17 cells can promote the
development of autoimmunity, while Treg cells inhibit
autoimmunity; thus, the imbalance of Th17/Treg cells in the
body is considered the leading mechanism underlying
autoimmune diseases (62).

The activation of TLRs has been shown to bridge innate
immunity and acquired immunity. In addition to expression in
antigen-presenting cells (DCs and macrophages), TLRs are also
expressed in T cells playing a costimulatory role in T cell
Frontiers in Immunology | www.frontiersin.org 4
activation and inducing Th cell differentiation (Figure 2) (63).
TLR2 promotes the differentiation of Th17 cells and immune
response by disrupting the balance of Th17/Treg cells (64).
TLR2/6 ligand is a bacterial lipopeptide that can induce DC
tolerance and promote the differentiation of IL-10-producing
Tregs through the c-Jun N-terminal kinase (JNK) pathway both
in vivo and in vitro. On the other hand, the activation of TLR2/1
promotes the DCs to produce a high level of IL-12 p40 and a low
level of IL-10 through p38 MAPK signaling pathway, thereby
triggering the differentiation of Th1 or Th 17 cells (65). TLR4
eliminates Th1 response through IRF1 and IFN-a/b receptor-
dependent mechanisms. The lack of TLR4 promotes Th1 cell
differentiation by enhancing STAT1 pathway, inhibits Th17 cell
differentiation by inhibiting STAT3 pathway, and interferes with
immune response (66, 67). Bacterial LPS also aggravates allergic
inflammation through the production of Th2 cytokines and
participates in the immune response of the body post-TLR4
activation (68). Soluble bacterial flagellin stimulates the body to
induce Th2 response through TLR5 and inhibits Th1 response to
bacterial infection (69). TLR5 promotes DCs in the intestinal
tract to differentiate into Th17 cells and respond to pathogen
invasion (70). TLR8 induces the expression of IL-12B and IL-
23A, promotes the differentiation of IL-23-dependent Th17 cells,
and produces immune responses after activating human
neutrophils (71). The co-stimulation of TLR7/8 ligands and
TLR4 or TLR3 ligands produce IL-12p70 that is the key
cytokine to induce Th1 immune response (72). Therefore,
ligand co-stimulation is crucial to induce Th1 response. TLR9
is essential in the production of proinflammatory cytokines and
other inflammatory responses and to initiate Th1 response and B
cell proliferation (73). The interaction between CpG-DNA and
TLR9 rapidly activates DCs through the Toll/IL-1 receptor
signaling pathway, promoting the differentiation of Th1 cells
and the production of cytokines (IL-12 and IL-18) (74). TLR9
FIGURE 1 | Differentiation of naïve CD4+T cells. Naive CD4+T cells can differentiate into Th1 cells under the stimulus of IFN-g and IL-2, secrete IFN-g, IL-2, and TNF, and
participate in type 1 immune response. Under the stimulus of IL-2 and IL-4, naive CD4+T cells differentiate into Th2 cells that can secrete IL-4/5/6/10/13 and participate in type
2 immune response. The differentiation of Th17 cells need TGF-b, IL-6, IL-21, and IL-23, and participate in type 3 immune response through secreting IL-17/17F/21/22; TGF-b
and IL-2 are required for naïve CD4+T cells to differentiate into Treg cells that secrete IL-10 and TGF-b regulate the immune response.
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ligands also bind to Th cells to promote the proliferation of cells
and upregulate the cytokines (75). TLRs-induced immune
response is involved in various diseases (9). Presently, several
TLR agonists are being tested as adjuvants in the treatment of
autoimmune diseases by balancing the immune response.
ROLE OF Th RESPONSES IN VMC

Th responses play an important role in the pathogenesis of VMC,
but different Th responses have different effects on VMC, which
may have opposite effects. Besides, the dominant Th responses
are different in different stages of VMC.
Th1/Th2 RESPONSES

The imbalance of Th1/Th2 cells can be observed in the process of
VMC (Figure 3). Fuse et al. (76) observed the changes in Th1/
Th2 ratio of peripheral blood lymphocytes in a patient with acute
VMC. In the acute inflammatory phase (day 6), Th1 cells were
dominant, while in the recovery phase (days 13 and 20), the
proportion of Th2 cells increased. The induction of VMC was
related to the dominance of Th1 cells, while the recovery was
related to the increased proportion of Th2 cells. However, Th2
immune response induces ventricular remodeling that promotes
myocarditis to develop into DCM and HF in the pathogenesis of
VMC, while Th1 response alleviates VMC by inhibiting Th2
response and virus replication, but increases acute myocardial
inflammation (77). Therefore, when Th2 response begins to be
Frontiers in Immunology | www.frontiersin.org 5
active, the inflammation of VMC decreases, and if Th2 response
persists, it will promote myocardial fibrosis and ventricular
remodeling. The study also demonstrated that Suramin
(a growth factor blocker) inhibits myocardial inflammation in
myocarditis by regulating the environment of Th1/Th2 cytokines
(78). Therefore, elucidating the Th1/Th2 response might help to
understand the activity of VMC. Based on these results, several
drugs, such as atorvastatin, tanshinone IIA, apigenin, and
cyclooxygenase-2 inhibitors, have been shown to have
protective effects on rat model of myocarditis by regulating
Th1/Th2 balance (79–82). However, the above drugs can
promote Th2 response, which may aggravate the progression
of VMC to DMC or HF. Therefore, it is necessary to clarify the
therapeutic effect of drugs in the stage from myocarditis to DCM
or HF.
Th17/TREG RESPONSES

Th17 cells secreted IL-17, promoting myocardial fibrosis after
myocarditis through protein kinase C b/extracellular signal-
regulated kinases 1 and 2/NF-kB pathway, which is an
indispensable link in the process of DCM (83). In addition,
Tregs can protect mice from CVB3-induced myocarditis
progression to cardiomyopathy (84). CVB3 infection stimulates
the differentiation of Th17 cells and promotes the secretion of IL-
17 by inhibiting the expression of Nucleoporin 98 and
aggravating VMC (85). In the acute phase of VMC, Th17 cells
stimulate B cells to produce autoantibodies and participate in
humoral immune response. The Th2 cells participate in humoral
FIGURE 2 | TLRs signaling pathway and related Th responses. TLR1, TLR2, TLR4, TLR5, TLR6, and TLR10 are expressed on the cell surface, while TLR3, TLR7,
TLR8, and TLR9 are expressed on intracellular vesicles. TLRs can recognize different ligands and recruit adapter proteins, MyD88, Mal, TRIF, or TRAM, activating the
downstream signaling pathway. TLR10 is an orphan receptor and lacks a classical downstream signaling pathway. Some TLRs promote the differentiation of Th
cells. TLR2/6 promotes Treg cell differentiation through the JNK pathway. TLR2/1 promotes Th1 and Th17 cell differentiation through p38 MAPK pathway. TLR4
eliminates the Th1 response through IRF1 and promotes Th17 cell differentiation by STAT3 pathway. TLR5 can stimulate the body to induce Th2 response, inhibit
Th1 response, and promote DC differentiation into Th17 cells. TLR8 induces the expression of IL-12B and IL-23A, promotes the differentiation of IL-23-dependent
Th17 cells. TLR9 promotes the differentiation of Th1 cells. Green lines: TLR signaling pathways; black lines: TLRs related to Th cell differentiation; red lines: co-
stimulation of TLRs induced to Th1 cell.
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immune response at the late stage of VMC, which is consistent
with the above conclusion (86). In the pathogenesis of VMC, the
imbalance of Th17/Treg cells plays a critical role in the immune
mechanism. MicroRNA-155 (miR-155) is a key regulator of the
immune system and promotes the development of myocarditis
via differentiation of Th17 cells leading to the imbalance of
Th17/Treg cells. The inhibition of miR-155 relieves myocardial
injury and the disease (87). Other drugs, such as valproic acid
and fenofibrate have also been found to inhibit inflammation,
reduce CVB3-induced VMC, and improve prognosis by directly
inhibiting the differentiation of Th17 cells (88). Thus, VMC can
be treated by promoting the differentiation of Treg cells and
regulating the balance of Th17/Treg cells (89). In addition,
estrogen inhibits the differentiation of Th17 cells that are
mainly induced in males with CVB3 infection but less in
females. Thus, Th17 cells show gender bias in myocarditis: the
incidence of myocarditis has a male-to-female ratio of 2:1 (90).
This indirectly indicates that Th17/Treg cell balance plays a key
role in the epidemiological characteristics of myocarditis.
ROLE OF TLRs IN VMC

As key members of PRRs, TLRs participate in the upstream
signaling pathway that activates innate immune cells and T cells,
resulting in the production of proinflammatory cytokines and the
activation of T cells. TLRs are considered to be the main factors in
the development of autoimmunity, participating in and promoting
the occurrence of autoimmune inflammatory diseases (91). The
above observations indicate gender differences in the incidence of
VMC. Roberts et al. (92) demonstrated that high expression of
TLR2 in early infected female mice exerted a protective effect, while
that of TLR4 in male mice was lethal. This differential expression
between genders resulted in disease resistance in female mice and
susceptibility in male mice (Figure 4). Hence, TLRs are deemed to
Frontiers in Immunology | www.frontiersin.org 6
play a critical role in gender difference with respect to myocarditis
and understanding the underlying mechanisms would illuminate
the epidemiological characteristic of myocarditis (93). TLR3
recognizes dsRNA intermediates produced during CVB3
replication and activates TRIF and TRAF6 to transmit signals to
NF-kB (94). TLR3-TRIF signaling pathway helps the host to defend
against CVB3 infection. The mechanism might be ascribed to the
induction of type II IFN expression, rather than IFN-a/b, and
TLR3-TRAF6-III IFN signaling pathway also has antiviral effects
(95, 96). The lack of TLR3 increases virus replication and aggravates
myocardial inflammation. It also worsens cardiac function and
increases the susceptibility to CVB3 (97). The genetic variation of
TLR3 affects the host’s susceptibility facing VMC by inhibiting the
signal transduction of NF-kB (21). These results proved that TLR3
has a protective effect on the myocardium in the process of virus
infection. In addition, neutrophils also interact with and recognize
CVB3 through TLR8, activating NF-kB and its downstream factors,
resulting in VMC development (98). It also upregulates the
expression of TLR4, promotes the expression of NF-kB, and
induces myocarditis (99). Based on these results, astragalus
polysaccharides have been shown to protect TLR4-induced
myocardial injury and inflammation by inhibiting the CVB3-
related signaling pathway (100), which provides a potential target
to treat myocarditis. TLR7 preferentially promotes the
differentiation of Th17 cells and the expression of inflammatory
factors, such as IL-17 after CVB3 infection, while TLR8 promotes
the production of Th1 cytokines and IFN-a/b response, which are
involved in the pathogenesis of myocarditis (101). The potent
autoantigen HCM is released from damaged heart during viral
infection. HCM peptides S2-16 and S2-28, as an endogenous
ligands, can bind to TLR2 and TLR8, and promote the release of
pro-inflammatory factors such as IL-8, IL-6, IL-23 and TGF-b,
whichmainly induce the differentiation of Th17 cells and contribute
to DCM or HF (29, 102). Although TLR9 can recognize various
DNA viruses unlike the indirect way of recognizing RNA viruses,
FIGURE 3 | Myocarditis and Th responses. An imbalance of Th cells is observed in the pathogenesis of myocarditis. Th1 and Treg cells are predominant in the
acute phase of myocarditis, while Th2 and Th17 cells dominate the chronic phase of myocarditis. Some drugs regulate the balance of Th cells in myocarditis. (A)
Atorvastatin; (B) Tanshinone IIA; (C) Apigenin; (D) Cyclooxygenase-2 inhibitors; (E). Valproic acid; (F) Fenofibrate.
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TLR9-MyD88 signaling pathway mediates myocardial injury in
acute phase rather than chronic phase CVB3-induced myocarditis
(103). Nonetheless, the mechanisms of other TLRs in myocarditis
are yet to be clarified.
CONCLUSIONS

TLRs and Th responses play a critical role in the pathogenesis of
VMC and have become the focus of current research. TLRs are a
new class of innate immune receptors that mediate CD4+T cell
differentiation, induce Th1 and Th2 immune responses, and
participate in VMC pathogenesis. Except that CVB3 can directly
bind to TLRs to promote Th responses, the release of HCM from
damaged heart can also promote DCM or HF through TLRs and
Th responses after viral infection. Blocking or activating a single
Frontiers in Immunology | www.frontiersin.org 7
TLR or regulating TLR signaling pathway may affect innate
immunity, host resistance, and VMC pathogenesis, indicating
that specific TLRs agonists or antagonists comprise new
immunotherapy for VMC. In addit ion, some anti-
inflammatory drugs have been found to reduce myocardial
injury and improve VMC by interfering with TLR signaling
pathways and Th immune responses. However, the role of other
TLRs and Th responses in VMC has not yet been reported.
Therefore, clarifying the role of TLRs and Th responses in VMC
can provide novel ideas for the treatment of VMC.
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