
fpsyg-11-566780 December 10, 2020 Time: 20:42 # 1

ORIGINAL RESEARCH
published: 16 December 2020

doi: 10.3389/fpsyg.2020.566780

Edited by:
Roberto Therón,

University of Salamanca, Spain

Reviewed by:
Sunhee Baik,

Lawrence Berkeley National
Laboratory, United States

Ellen Bass,
Drexel University, United States

Donald House,
Clemson University, United States

*Correspondence:
Rickey P. Thomas

rick.thomas@psych.gatech.edu

Specialty section:
This article was submitted to

Human-Media Interaction,
a section of the journal
Frontiers in Psychology

Received: 28 May 2020
Accepted: 25 November 2020
Published: 16 December 2020

Citation:
Parmar S and Thomas RP (2020)

Effects of Probabilistic Risk Situation
Awareness Tool (RSAT) on

Aeronautical Weather-Hazard
Decision Making.

Front. Psychol. 11:566780.
doi: 10.3389/fpsyg.2020.566780

Effects of Probabilistic Risk Situation
Awareness Tool (RSAT) on
Aeronautical Weather-Hazard
Decision Making
Sweta Parmar and Rickey P. Thomas*

Decision Processes Lab, School of Psychology, Georgia Institute of Technology, Atlanta, GA, United States

We argue that providing cumulative risk as an estimate of the uncertainty in
dynamically changing risky environments can help decision-makers meet mission-
critical goals. Specifically, we constructed a simplified aviation-like weather decision-
making task incorporating Next-Generation Radar (NEXRAD) images of convective
weather. NEXRAD radar images provide information about geographically referenced
precipitation. NEXRAD radar images are used by both pilots and laypeople to
support decision-making about the level of risk posed by future weather-hazard
movements. Using NEXRAD, people and professionals have to infer the uncertainty in
the meteorological information to understand current hazards and extrapolate future
conditions. Recent advancements in meteorology modeling afford the possibility of
providing uncertainty information concerning hazardous weather for the current flight.
Although there are systematic biases that plague people’s use of uncertainty information,
there is evidence that presenting forecast uncertainty can improve weather-related
decision-making. The current study augments NEXRAD by providing flight-path risk,
referred to as the Risk Situational Awareness Tool (RSAT). RSAT provides the probability
that a route will come within 20 NMI radius (FAA recommended safety distance) of
hazardous weather within the next 45 min of flight. The study evaluates four NEXRAD
displays integrated with RSAT, providing varying levels of support. The “no” support
condition has no RSAT (the NEXRAD only condition). The “baseline” support condition
employs an RSAT whose accuracy is consistent with current capability in meteorological
modeling. The “moderate” support condition applies an RSAT whose accuracy is likely
at the top of what is achievable in meteorology in the near future. The “high” support
condition provides a level of support that is likely unachievable in an aviation weather
decision-making context without considerable technological innovation. The results
indicate that the operators relied on the RSAT and improved their performance as
a consequence. We discuss the implications of the findings for the safe introduction
of probabilistic tools in future general aviation cockpits and other dynamic decision-
making contexts. Moreover, we discuss how the results contribute to research in the
fields of dynamic risk and uncertainty, risk situation awareness, cumulative risk, and
risk communication.

Keywords: NEXRAD, cumulative risk, risk situation awareness (RSA), weather-hazards, decision-making,
probabilistic estimates, uncertainty
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INTRODUCTION

We argue that cumulative risk is a critical piece of information
to provide decision-makers because it can be coupled to action,
supports what-if simulation, and can reflect the likelihood
that a decision leads to failure of mission-critical goals or
regulatory constraints. We briefly review the psychological
literature concerning decision-makers’ understanding of risk and,
in particular, cumulative risk. Our interpretation of the research
leads us to argue that accurate subjective estimation of cumulative
risk is likely impossible for humans to accomplish unaided.
Moreover, expecting operators to estimate cumulative risk in
decision contexts characterized by strong temporal dynamics,
stress, and high workload seems unreasonable and illustrates
the need to provide model-derived estimates of cumulative risk.
After reviewing the risk communication literature to identify best
practices for communicating cumulative risk, we then review
the aeronautics literature as our application domain. We argue
that many of the errors made by pilots in hazardous weather
operations result from misunderstandings of the risks posed by
hazardous weather and that providing operators forecast-derived
cumulative risk estimates could support decision-making in such
contexts. Finally, we report an original study whose results
indicate that cumulative risk estimates support novices’ decision-
making in a simulated aviation-like navigation task through
convective weather.

Environmental and temporal dynamics are responsible for
much of the uncertainty associated with decision making in
many domains (e.g., tsunamis, hurricanes, earthquakes, aviation
accidents, infectious diseases, and terrorist attacks). Natural
dynamic situations contain much uncertainty as the dynamic
circumstances continually change, leaving the decision-maker
to consider the implications of the current situation and
prospective temporal changes. Due in part to the uncertainty
of a continuously evolving environment, trade-offs must exist
between the cost of action and the risk of non-action (Kerstholt,
1994) have to be balanced. In these decision contexts, the
demand for the tasks will often exceed operators’ available
mental resources (Dörner and Pfeifer, 1993; Kunreuther et al.,
2002; Kowalski-Trakofler et al., 2003). For this reason, the
decision-maker needs to maintain an optimal level of situation
awareness (see Endsley, 1995) about the uncertainty and
risk associated with that uncertainty. However, risk situation
awareness (RSA) is still not a well-studied topic or even a clearly-
defined concept in the situation awareness literature. Although
there is literature concerning how people incorporate available
uncertainty information into their decisions, there is relatively
little work assessing risk situation awareness (RSA) in emergency
decisions under spatially-temporally distributed uncertainty.

It is essential to study how people perceive and assess
risk; however, it is perhaps more important to identify what
characteristics of risk need to be communicated for decision-
makers to understand risk in a particular situation and make
an informed decision. One crucial aspect of risk, and an often
neglected one, is its cumulative nature. Extremely small risk levels
in the near term can accumulate to become extremely hazardous
in the long run when continuous exposure to the same risk

factors occurs for a long duration (e.g., smoking for years) or
simultaneous exposure to multiple factors (e.g., smoking and
drinking). Perceptions of cumulative risk are studied widely in
various socially significant issues like smoking (Weinstein, 1998;
Slovic, 2000), climate change (Crawford-Brown and Crawford-
Brown, 2012), contraceptive failures (Doyle, 1997), floods (De
La Maza et al., 2019), Sexually Transmitted Diseases (Knauper
et al., 2005), stroke risk (Fuller et al., 2004), medical treatments
(Dijkstra et al., 2000), and so on. Most of these risky catastrophic
events have a very low probability of happening in a particular
month or a year; however, those probabilities can aggregate to
a very high cumulative risk over a decade or lifetime, causing
significant losses (Slovic et al., 1978). Although the chance of
injury is 1:10,000 each time one drives, the lifetime chance is 1:3.

Even the simplest forms of the cumulative probability of
encountering an event X at least once in T years, as calculated
by Equation 1 below, is relatively complex and non-intuitive for
humans (De La Maza et al., 2019).

P (X ≥ 1) =

T∑
t=1

p× (1− p)t−1
= 1−

(
1− p

)T (1)

p = annual probability of an event.
t = index for each time period.
People tend to focus on (relatively small) one-time risks and

repeated safe experiences, leading to underestimation of the
cumulative risk posed by rare threats (Slovic, 1987; Slovic et al.,
2007). Although calibrating one’s judgment and choices to the
actual cumulative risk is challenging, it is practically impossible
in situations with dynamic hazards. Risks in dynamic decisions
can accumulate in relatively short, near tactical, timescales due
to the presence of multiple hazardous events that are spatially
distributed, temporally dynamic, that are regularly exhibiting
some form of interdependence. An excellent example of a
dynamic risk is severe storms where the movement of hazardous
storm cells are not independent of one another in the airspace.
The laws of fluid dynamics govern the movement of those red
cells over relatively short time intervals. The weather has a
similar significant influence in the navigation process for UAVs,
submarines, road vehicles, aircraft, etc. Hence, the uncertainty
associated with spatial-temporal hazards makes the computation
of cumulative risk extremely difficult. Thus, models and data
science applications are necessary to estimate these mission-
centric risks for specific decisions.

We argue that the disjunctive form of cumulative risk
is potentially beneficial for communicating risk in dynamic
decision-making environments. We contend that the disjunctive
form of cumulative risk should support operators’ decision-
making to minimize exposure to even a single threatening event
(e.g., avoiding a route that intersects any red-cell activity or
hazardous weather even once). Moreover, the cumulative risk can
reflect a mission objective like avoiding all convective weather by
20 NMI or staying out of the operable range of enemy assets in
military operations.

An essential aspect of having models of mission-centric
risk outcomes is understanding how people use the models’
probabilities to calibrate their decision making to the uncertainty.
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Unfortunately, it is important to acknowledge that behavioral
decision theory has documented numerous systematic biases in
how humans process uncertainty information (Gilovich et al.,
2002). Gibbons et al. (2013) reported that although expert
National Airspace System (NAS) operators understand that
weather forecasts have errors and are uncertain, the operators
are biased in their interpretations of weather information
uncertainty (i.e., the probabilities). In other words, even when
the operators in the Gibbons et al. (2013) study were aware
of weather uncertainty, they were unable to account for
the uncertainty appropriately in their decision-making. Thus,
instead of assuming that decision makers can mentally compute
cumulative risk via such a formula as presented via Eq. 1, research
shows that people often engage in heuristic shortcuts (Juslin et al.,
2015). Juslin et al. (2015) show that people often misinterpret
cumulative risk and rely on additive and multiplicative heuristics
when reasoning about cumulative risk. Apart from being prone
to heuristics and biases, peoples’ understanding of cumulative
risk is prone to framing effects (Doyle, 1997). Overall, it is well-
established in the literature that cumulative risk is sensitive to
multiple cognitive factors like motivation, heuristics, biases, risk
information presentation formats, framing effects, etc. Hence, the
need for models to estimate cumulative risk directly quantifying
uncertainty in the system is necessary to improve RSA of
operators in hazardous and dynamically evolving situations.

Even if models successfully calculate cumulative risk, there
is still the challenge of communicating cumulative risk in a
format that operators can understand to calibrate their decision-
making. Doyle (1997) found that understanding of cumulative
risk improved when framed as a disjunctive probability (the
probability that an event will happen at least once), instead
of a conjunctive probability (the probability that an event will
never happen). Hence, providing some evidence representing
uncertainty in terms of disjunctive probability can help calibrate
people’s decisions to uncertainty in the system. We adopt the
disjunctive framing of the cumulative risk in our implementation
of communicating risk in the experiment.

Adopting a disjunctive frame leads to the choice of
communicating risk in a graphical or numerical format.
Numerical formats of risk are often shunned because of
the extensive literature showing people have great difficulty
understanding numerical risks. However, graphical/visual
representations also have drawbacks. Some work has
documented arbitrary cartographic design features (e.g., different
color-schemes for coding probabilities) can influence how people
assess the risk posed by hazardous weather (Klockow-Mcclain
et al., 2020). Moreover, it seems that numerical formats of
risk should be preferred given their precision if people can
understand them. Fortunately, several studies have demonstrated
that providing numerical forecast uncertainty information
can increase the understanding of weather forecasts, which
leads to better calibrated and more beneficial decisions for
both expert meteorologists and laypeople (Joslyn and Nichols,
2009; Joslyn et al., 2009; Nadav-Greenberg and Joslyn, 2009;
Joslyn and LeClerc, 2012; LeClerc and Joslyn, 2015). Joslyn and
LeClerc (2013) argue a need to provide numerical estimates to
support optimal decision-making in weather situations, where

operators are already aware of the uncertainty but ill-equipped
to calculate exact estimates. Thus, we chose to investigate the
viability of a numerical format for communicating cumulative
risk in our study.

Adopting a numerical representation for communicating risk
leads to the critical choice between choosing a probability and a
relative frequency format. Joslyn and Nichols (2009) address the
long-believed notion in the decision-making literature that lay
people find probability formats challenging to understand and
account for in their decisions compared to frequency formats.
Joslyn and Nichols (2009) tested the effects of giving uncertainty
information in both probability (90% chance) and frequency
(9 out of 10 chance) formats for daily wind speed forecasts.
They found that, contrary to previous research, the information
presented in frequency formats was the most difficult for people
to utilize to understand the wind speed warnings. Frequency
formats led to the largest number of errors in both people’s
decision-making and their understanding of uncertainty. They
observed that people were better able to understand wind speed
forecasts with the probabilistic format and made better decisions.
Based on Joslyn and colleagues’ work, we adopt a probabilistic
format for communicating cumulative risk in our experiment.

Nadav-Greenberg and Joslyn (2009) demonstrated that
repeated exposure to weather uncertainty information via
training followed by feedback helps people learn to use the
available uncertainty information for their decisions. We agree
with prior researchers that trial-based training and immediate
feedback about the numerical probability estimates’ accuracy
are critical to learning. Thus, we implement such training
and feedback to support the understanding of disjunctive risk
in our experiment.

We focus on aviation-like navigation because the risk weather
poses to a flight path is continually changing, making it practically
impossible for pilots to calculate such risks on their own without
sophisticated meteorological (probabilistic forecast) modeling.
Our lab-based experimental task was a simplified version
of a General Aviation (GA) pilot route-evaluation task. The
experimental task is most analogous to en-route flight operations
taking place in the vicinity of convective weather hazards under
instrument meteorological conditions (IMC). In layperson terms,
the task has some similarity to the types of evaluations that
pilots might make circumnavigating thunderstorms at night.
Thus, our experiment uses weather-related decision-making in
an aviation-like context as our test case for investigating the
use of cumulative risk in a dynamic decision-making task.
Specifically, we investigated how well people can use mission-
centric cumulative risk estimates of uncertainty to make flight-
route evaluations.

According to the National Transportation Safety Board
(NTSB, 2014), hazardous weather is a significant contributor
to general aviation accidents, identified as a factor in 35% of
all fatal accidents from 1982 to 2013 (Fultz and Ashley, 2016).
Specifically, the two most common factors associated with such
accidents are non-adherence of pilots to the FAA recommended
minimum separation distance of 20 NMI from hazardous
weather (FAASTeam, 2008; FAA, 2013), and the tendency of
pilots to select risky routes for circumnavigating convective
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weather (Boyd, 2017). This risk underestimation by pilots
results from the high level of complexity involved in weather-
related decision-making and associated workload. Operations in
inclement weather require pilots to make multiple evaluations
and decisions, including identification of the presence of a
hazard, estimation of the proximity of weather, estimation
of hazard’s impact to the flight path, and take appropriate
actions (Burgess and Thomas, 2004; Elgin and Thomas, 2004).
The weather-related information that the pilot receives comes
from many sources, including meteorological briefings, inflight
weather reports, visual information from the cockpit, and on-
site reports (Hunter et al., 2003). Because of the dynamic
environment of the aircraft cockpit and the weather itself, data
change very quickly. Pilots have to monitor for changes and
update their mental representation of the situation accordingly
to maintain both situation awareness (SA) and risk situation
awareness (RSA).

Research shows that even after pilots receive information
that signals a need to revise their plan, they often continue
to follow the original flight plan (Orasanu et al., 2001). This
tendency, known as plan continuation errors, could theoretically
be mitigated by presenting continuously updated cumulative
risk information in real-time for the flight plan and alternative
projected paths. This argument seems plausible, particularly since
plan continuation errors are most common with pilots who tend
to inadequately monitor their airspace (Muthard and Wickens,
2002). Plan continuation errors are costly in the real world. They
often happen when pilots decide to continue on a flight path,
constructed under Visual Flight Rules, that they should divert as
weather conditions deteriorate to IMC (Wiegmann et al., 2002).
Providing cumulative risk estimates could also help alleviate
some of the unwarranted optimism about the weather situation
observed in pilots, leading them to continue flying through
hazardous weather for extended amounts of time before making
the correct decision to divert (Wiegmann et al., 2002).

One of the primary and ubiquitous cockpit weather
information products used by pilots is NEXRAD. NEXRAD
provides geographically referenced precipitation activity
uplinked to cockpits through Flight Information Services Data
Link (FISDL) (Wu et al., 2010). NEXRAD mosaic images provide
cues to storm movement, and the reflectivity color-coding can be
considered a rough proxy of the risk posed by weather hazards.
Unfortunately, to our knowledge, all studies reported in the
scientific literature using both professional and student pilots
indicate that a substantial number of them approach weather
hazards dangerously close, often penetrating red-cell activity
(in simulation), or grossly overestimate their distance from the
weather hazards (Novacek et al., 2001; Yuchnovicz et al., 2001;
Beringer and Ball, 2004; Burgess and Thomas, 2004; Lemos and
Chamberlain, 2004; Wu et al., 2011, 2012, 2013; ATSC, 2013).
Delayed weather information is one of the primary contributors
to navigation decision error (Latorella and Chamberlain, 2002).
Hua et al. (2015) found that student pilots were prone to error
projecting future storm positions from delayed weather radar
information, even when the pilots had NEXRAD Looping.
Although there has been significant progress addressing the
latency and error in NEXRAD (Rude et al., 2012), there is still

the problem that there will always be some latency in NEXRAD
composite images due to the physical limitations of the radar and
the time it takes to update the base data, generate and transfer the
composite radar images to the cockpit (Elgin and Thomas, 2004;
ATSC, 2013). Again, we argue that the provisioning of model-
derived cumulative risk estimates could account automatically
for the uncertainty imposed by the temporal delay and the effects
of projected weather cell movements on the cumulative risk
to the flight path. In current operations, pilots have to make
these estimations unaided and likely under a high workload. Our
experiment provides NEXRAD images to the participants that
are precisely 15 min old with zero latency to simplify the task.

We are not the only researchers to argue and conduct
research on the idea that one way to support pilot inferences
about the uncertainty in weather-aviation products is to leverage
probabilistic forecasts that explicitly render the uncertainty.
Rockwell Collins’ Enhanced Weather Radar (EWxR) system
combined NEXRAD and onboard radar to overcome the
attenuation and range limitations of the onboard radar
(Kronfeld, 2003). It also characterized the cells as hazardous,
possibly-hazardous, or non-hazardous based upon attributes
like reflectivity level, storm speed, and height. Therefore, the
EWxR attempts to represent uncertainty by using the term
“possibly hazardous”; however, the extent of uncertainty in
quantitative format was missing, and the understanding of
uncertainty depends on how the operator interprets the risk
and uncertainty associated with the term “possibly hazardous.”
Similar work was conducted by Spirkovska and Lodha (2002)
when they provided go or no-go deterministic decisions about
the current flight route to reduce plan continuation errors.
Busquets et al. (2005) provided alert notifications for impending
hazards in the pilots’ current flight route; however, without
any risk information related to uncertainties associated with
those hazards. Matthews and DeLaura (2010) developed the
Convective Weather Avoidance Model (CWAM) that provided
both deterministic and probabilistic weather avoidance fields
(WAFs); however, the pilots in the study underestimated the
risk associated with WAFs and intersected WAFs even when
the probabilistic information was provided. All these attempts
show that there is a need for more similar efforts to what Joslyn,
Doyle, and others mentioned previously did in presenting clear
uncertainty and risk estimates in a quantitative format.

Many state-of-the-art weather forecasting products and
prototypes are being developed by the NCAR (National Center
for Atmospheric Research) and UCAR (University Corporation
for Atmospheric Research). Table 1 describes several relevant
weather-forecast products for convection, icing, turbulence, and
some of these products provide forecast uncertainty. Most
notably, the National Convective Weather Forecast-2 (NCWF-
2) provides probabilistic hazard fields for severe convective
activity. The development of probabilistic hazard fields is an
important advancement. However, probabilistic hazard fields
might be interpreted in a deterministic manner and suffer similar
misuse by pilots as the polygon projections of the original
NCWF or the probabilistic WAFs (Burgess and Thomas, 2004;
Matthews and DeLaura, 2010). The operator or pilot would also
be responsible for estimating the flight-path disjunctive risk from
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TABLE 1 | Descriptions of several meteorological aviation-weather products.

Weather product Product characteristics

NEXRAD: Next-Generation RADAR Composite
(NOAA)

Geographically referenced precipitation activity
Challenges:

– It has data latency issues.
– Consequences of red-cells movements is not known. Provides no uncertainty information.

NCWF: National Convective Weather Forecast
(NCWF Product Website)

Provides where current convective hazards near aircraft exists and where they are expected to be in 60 min via
extrapolated polygons.
It updates every 5 min.
Challenges:
It is a deterministic product.

– Not able to predict on areas less than 512 km2.
– Not able to accurately forecast for shorter lived isolated storms.

NCWF-2: National Convective Weather
Forecast-2 (NCWF-2 Product Website)

Provides current convective weather and future location prediction of hazardous weather through probabilistic
extrapolated polygons for lead times of 30, 60, 90, and 120 min.
Updates every 5 min.
Provides information on storm trends represented as areas of decreased or increased probabilities.
Challenges:

– Not able to accurately forecast for shorter lived isolated storms.
– Does not handle initiation or dissipation of storm events well.

TITAN: Thunderstorm Identification, Tracking,
Analysis, And Nowcasting (TITAN Product
Website)

Uses volume-scan weather radar data for automated identification, tracking, and extrapolation based
short-term forecasting of thunderstorms (Dixon and Wiener, 1993).
Uses weighted linear fit to the storm track history data
Challenges:

– It requires that the storm history exceeds the forecast lead time in order to predict with accuracy.
– Does not handle forecast for storm initiation, can only extrapolates existing storms.

GTG: Aviation Turbulence Forecasting (GTG
Product Website)

Provides contours of turbulence potential out to 12 h lead time.
Numerical weather prediction model forecasts multiple turbulence diagnostics which are weighed and
combined using ensemble average to minimize errors due to uncertainties in individual diagnostic performance
and thresholds.
Challenges:

– Provides mid- and upper-level turbulence aviation forecasts. The GTG is not appropriate for supporting
low-altitude and low turbulence operations (Muñoz-Esparza and Sharman, 2018).

CIP/FIP: Current (Forecast) Icing Product (CIP/FIP
Product Website)

Provides calibrated icing probability, icing severity and potential for SLD (supercooled large drop).
Extends prediction from hourly to 12 h.
Challenges:

– Probabilities range from 0 to 85%. Probabilities never reach 100% because of uncertainty in diagnosing icing
from the available data.
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the probabilistic hazard fields; and, as we reviewed above, pilots
likely cannot do this unaided. Also, it is important to study
how accurate probabilistic estimates need to be for effective
use. This paper attempts to do that by investigating the effects
of disjunctive risk on decision-making. One of the significant
limitations of current aviation meteorological tools is that they
do not render mission-centric risk (e.g., flight-path risk). Thus,
we explore the potential benefit of providing cumulative flight-
path risk in a direct numerical format to evaluate if this supports
decision making to avoid dynamic hazards.

Specifically, the experiment evaluates a probability-based Risk
Situation Awareness Tool (RSAT). RSAT is integrated with
NEXRAD and provides a quantitative estimate (cumulative
disjunctive risk) of the probability that hazardous weather will
impact the current projected flight path within the FAA’s 20
NMI safety margin. This study’s primary objective is to evaluate
whether the probabilistic RSAT improves the decision-making
and uncertainty comprehension of the operators. The study also
assessed the extent to which training and experience with the
RSAT facilitate performance to a more ecologically-valid transfer
task. Another goal was to determine the accuracy required for the
probabilistic RSAT to support operator performance in terms of
decision-making and calibration.

The hypotheses for the experiment are listed below. In general,
the hypotheses reflect predictions that the disjunctive form of
cumulative risk will support operators’ evaluations of flight-
path risk.

• Hypothesis 1: The participants receiving RSAT will make
more accurate flight-path decisions (high proportion
correct and high sensitivity) and confidence judgments
(low Brier score) in order of the level of accuracy of
the RSAT. The high accuracy RSAT will lead to better-
calibrated participant decisions to the system, compared
to the participants receiving lower support.
• Hypothesis 2: The accuracy of the participants’ flight-path

decisions and confidence judgments will improve with
training. We also predict that learning will transfer from
training to the test phase.
• Hypothesis 3: Performance will improve across

training blocks as participants receive feedback and
gain experience throughout the training phase.
• Hypothesis 4: Performance will improve across storms

as participants receive feedback and gain experience
throughout the test phase.
• Hypothesis 5: A storm’s unfolding behavior will improve

the participants’ performance on later (within-storm)
trials. We predict that the participants will utilize
emergent cues to storm movement and make better flight-
path decisions as the storm moves (on later trials).
• Hypothesis 6: Performance on double-route trials

(relative judgment task) will be higher than performance
on single-route trials (the absolute judgment task) for all
four groups. This prediction is based on the findings from
the area of sensation and perception, which shows that
people find it easier to make judgments on relative tasks
compared to absolute tasks (Weber and Johnson, 2009).

• Hypothesis 7: The participants’ trust in the RSAT will
change depending on the manipulated accuracy of the
RSAT. We expect that trust will be positively correlated
with the level of support.

MATERIALS AND METHODS

Participants
Three-hundred and forty-three Georgia Tech undergraduate
students participated in this study. The participants were
recruited via an online experiment management system, and
they received course credits for their participation. Participants
provided informed consent before the experiment. Participation
in this experiment was voluntary and in agreement with the
guidelines of the Institute Review Board (IRB). Only Three-
hundred and twenty-four participants were included in the
data analysis. All the participants with available response
data for more than 85% of the test trials were included in
the analysis.

Design and Materials
The study was designed using Qualtrics and PsychoPy (Peirce
et al., 2019) software for participants to make weather-
related flight-path safety decisions. The experiment design
(Figure 1) was a 2 (trial type) × 2 (experiment phase) × 4
(RSAT) mixed design. Both the trial type and the experiment
phase manipulations were within-subject factors, and the
RSAT manipulation was a between-subjects factor. The RSAT
manipulation had four levels: (1) no support (NEXRAD only),
(2) low support (NEXRAD + baseline-accuracy RSAT), (3)
moderate support (NEXRAD + moderate-accuracy RSAT),
and (4) high support (NEXRAD + high-accuracy RSAT).
The trial type manipulation had two levels: (1) a single
route trial (absolute judgment), and (2) a double route
trial (relative judgment). The experiment phase manipulation
had two levels: (1) the training phase, and (2) the test
phase. The study had the following dependent variables:
performance (proportion of correct weather-related decisions),
trust score [trust in automation scale by Jian et al. (2000)],
calibration (Brier score and Brier skill score), sensitivity
and bias (signal detection theory). Participants were assigned
randomly to the four between-subject conditions, N (No support
condition) = 73, N (Baseline support condition) = 81, N
(Moderate support condition) = 88, and N (High support
condition) = 82.

The probabilistic Risk Situation Awareness Tool (RSAT)
was simulated to produce probabilities for the forecasts
from the available historical hazardous storm data NEXRAD
images extracted from (NOAA). To support replication of the
experiment, we include all NEXRAD images, storm descriptions,
flight paths, and RSAT probability for each condition on a
publicly accessible repository (DropBox Repository). The RSAT
rendered flight-path cumulative risk as a probability that the
projected flight path will come within 20 NMI radius (FAA
recommended safety distance) of hazardous weather within the
next 45 min of flight. Half of the routes were constructed to
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FIGURE 1 | Overview of experimental design.

intersect hazardous weather in the next 45-min of sustained
flight, and the other half were constructed to be “safe.” The
route generation was not automated. Routes were manually
constructed to meet several criteria: no routes had red-cell
activity rendered in the starting range ring, for the double-
route trials- one route was always “safe,” and the other
intersected hazardous weather. All projected flight paths were
superimposed on each NEXRAD at a length of 40.28 statute
miles (35 nautical miles), reflecting every 15 min (one flight
segment) of flight time at 140 knots. We also counterbalanced
the labels (A&B) to “safe” and “unsafe” routes such that
the labels were not indicative of outcomes to avoid biasing
evaluations. All the trials were created using different, extremely
hazardous storms in the United States—it would be unsafe
to penetrate these storms, given the significant amount of
red reflectivity and high echo tops at the ceiling of most
general aviation aircraft. We intentionally chose such powerful
storms to simplify the task, so routing (vectoring) was the only
viable escape maneuver. The range ring aided these judgments
and provided a symbolic representation of the 20 NMI FAA
safety recommendation.

The outcome index of the routes (scored 0s if safe and 1s
if they intersected weather) were used to generate probabilities
for the RSAT that reflected different levels of pre-specified
aggregate accuracy as measured via the Brier Score (BS) (Brier,
1950; Murphy and Winkler, 1977; Yates, 1990). In other words,
we generated probabilities that conformed to different target
BS values for each support condition. The RSAT disjunctive
probabilities were simulated such that the Brier Score of the
baseline accuracy RSAT was 0.17 [level of accuracy reflecting
current meteorological capabilities (ATSC, 2015)], moderate
accuracy RSAT was 0.09 (level of accuracy achievable with
some technological innovation), and high accuracy RSAT was

0.04 (level of accuracy that could only be achieved in aviation
weather context with considerable technological advancement).
Note that the probabilities were generated with knowledge of
the outcome of a route, but not the characteristics of the
storm or the rendering of the flight-path itself. Basically, the
probabilities were randomly assigned to routes respecting only
the outcome index. To be clear, the only difference between
the support conditions is the accuracy of the probabilities
displayed next to the flight routes. In other words, in the
high-support condition, probabilities (flight-risk estimates) were
closer, on average, to 100% for routes that would intersect
weather and closer to 0%, on average, for routes that would
not intersect weather compared to the lesser support conditions.
For example, in the moderate-support condition a Brier score
of 0.09 implies a 70% (30%) probability will be presented
on average for routes that ultimately intersect (not intersect)
weather hazard. In comparison, in the high-support condition,
a Brier score of 0.04 implies an 80% (20%) probability, on
average, will be presented for routes that will intersect (not
intersect) weather hazard. Again, RSAT probabilities for each
condition are available on a publicly accessible repository
(DropBox Repository).

Figure 2 represents a single-route decision trial. Figure 3
represents double-route decision trial providing a probability of
89% for path A and 29% for path B. Meaning that path A has
an 89% chance of intersecting the red cells in the 20 NMI range
ring (at least once) during the 45 min projected route, and path
B has a 29% chance of intersecting the red cells (at least once).
Ideally, if the RSAT was deterministic, the participant should
always choose to select the route with the lower probability.
However, it is impossible to design a completely accurate system
for hazardous storms due to uncertainty. So, people need to
account for this uncertainty in RSAT while using it to inform their
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FIGURE 2 | Single route trial with RSAT. The disjunctive risk (37%) is located next to the ownship icon and represents the probability that at least one red-cell is
forecasted to intersect the projected flight-path in the next 45 min of flight (the solid line).

situation awareness about risk. The same Brier Score will be used
to measure Confidence Judgment (CJ) calibration.

Procedure
Participants were presented with a simulated flight path in an
adverse weather condition, and they had to decide whether
the route was safe to continue flying based on the FAA’s 20-
NMI rule. Again, Figures 2, 3 represent examples of two
different decision trials and the corresponding decision that
the participant had to make. The 20 NMI-radius circle (range-
ring) on the flight route represents the safe area around the
current flight location, which served as a guide for participants
to keep clear of any red weather cells. The solid black line
on the route was the projected 45 min future flight path for
which participants had to make safety-decisions. The black
ticks represent 15 min time intervals for the given route. The
dashed line represents the aircraft’s previous flight path. All
of the display features mentioned above were present for all
participants on every trial. Participants also were to assume
constant altitude (cruising altitude) and constant speed (140
knots) for the entire experiment. It is important to acknowledge
that real pilots want to know their altitude and consider
escape maneuvers via altitude. However, we intentionally selected
powerful thunderstorms from the archival record that were

not escapable via altitude changes (high echo tops) and
where it wouldn’t be advisable to approach the storm at a
flight level with low reflectivity due to the potential for (low
or no reflectivity) turbulence. We suspect that storms this
powerful could generate air turbulence 3,000–5,000 ft from red-
cell reflectivity.

The experiment consisted of a training phase followed by
a test phase (See DropBox Repository for all trial images).
Both the experiment phases had single and double route trials
randomly presented. The operators rated their confidence for
every flight-path decision immediately after they made that
decision. The training phase had 20 trials with both single
and double route trials in equal proportion, presented at
random. All the trials of the training phase were extracted
from a different hazardous scenario (or storm). Figure 4
shows an example trial of the training phase. Before every
decision trial, three NEXRAD images for every 15 min interval
before the decision time were looped once, providing the
participants with the 45-min historical weather data. Following
every decision trial, participants rated their confidence in
their flight-path decisions. Immediate feedback was provided
by three NEXRAD images (looped once) for every 15 min
interval after the decision time point, indicating whether the
flight-path intersected a weather hazard within the 20 NMI
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FIGURE 3 | Double route trial with RSAT. The disjunctive risk estimates are located near their corresponding paths and are 89% for Path A and 29% for Path B. The
disjunctive risk represents the probability that at least one red-cell is forecasted to intersect each projected flight-path in the next 45 min of flight (the solid line).

range ring. The test phase presented 10 different storms
with four unfolding trials each (Figures 5, 6) presented at
random. One initial NEXRAD loop, similar to Figure 4, was
presented before the first trial of each storm, and the feedback
loop (for all four unfolding decisions) was shown after the
fourth trial. The test phase evaluated whether the learning
on the probabilistic RSAT and/or NEXRAD from the training
phase transferred to the more ecologically-valid test-phase task
(unfolding storm trials).

The goal was to evaluate whether the RSAT support
significantly improves upon the no support condition in terms
of both decision-making performance and calibration to the
uncertainty in the weather situation. Moreover, we expected
performance to improve with the increased accuracy of the
probabilities presented across the different RSAT conditions
(baseline, moderate, and high). All the trials were the same
in all four conditions. The only difference between conditions
was the absence or presence of the disjunctive probability
values and their accuracy. It was feasible to simulate the
probabilities from the accuracy (BS) benchmark because
radar images from the past hazardous storms were publicly
available, so those storms’ future outcome was known (via

the available radar record of the entire storm event). Also,
we did not provide any explicit information regarding the
accuracy of the NEXRAD display to the participants because
such information can distort use and expectations (Barg-
Walkow and Rogers, 2016). We wanted to investigate the
effects of experiential learning as cleanly as possible. Thus,
we expected the participants to learn the display’s accuracy
from the feedback provided to them. We evaluate learning in
the four conditions via the participants’ bias and sensitivity
scores across the RSAT trials. The transfer of learning is
through the relationship between training performance and
test performance.

Dependent Variables
The dependent measures were sensitivity and bias (signal
detection theory), Brier and Brier skill scores (calibration), the
trust in automation scale, and the proportion correct (accuracy).

Calibration
The most common metric for the analysis of confidence
judgment is the probability score known as the Brier Score (Brier,
1950; Murphy and Winkler, 1977; Yates, 1990). The Brier score
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FIGURE 4 | Elicitation for double route trial in the training phase: Initial NEXRAD loop followed by decision trial and confidence judgment, and final feedback loop.

(BS) is a proper scoring rule that provides a measure of the
accuracy of confidence judgments:

BS =
1
N

N∑
T=1

(ct − ot)
2 (2)

The Brier score is described by Eq. 2, where N is the total number
of probability or confidence assessments, ct is the tth confidence
judgment, and ot is the outcome index for the tth confidence
judgment. If the event occurs, then ot = 1, and if the event
does not occur, then ot = 0. Thus, the Brier score is the average
squared deviation between the confidence of the decision-maker
and the outcome index (Brier, 1950; Murphy and Winkler, 1977;

Yates, 1990). The lower the Brier score for a set of predictions, the
better their calibration (i.e., less error).

Another measure, the Brier Skill Score (BSS), acts as an overall
measure of the system’s performance (Wilks, 1995). It measures
the relative skill of a forecast above a reference, the BSref term
in Eq. 3. We adopted the baseline or control group BS as the
reference forecast accuracy.

BSS =
(1− BS)

BSref
(3)

The BSS ranges from minus infinity to 1. BSS = 0 implies no skill
compared to the reference forecast. BSS = 1 is a perfect score.
Hence, BS is a measure of the accuracy of predictions or forecasts.
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FIGURE 5 | Elicitation for unfolding trials in the test phase. The four NEXRAD images depict four 45-min segments for a 3-h flight.

FIGURE 6 | Flow diagram of test phase trials.

BSS is a measure of the proportion of improvement in accuracy
over the reference (Dance et al., 2010).

Performance
The proportion of correct decisions is used as a measure of the
accuracy of simulated flight-path decisions. Of course, it is well-
known that the response to a stimulus depends on the individual’s
sensitivity to the stimulus and the individual’s decision criterion
(or bias). Thus, in addition to simple proportion correct, we use
measures of both sensitivity and bias to model decision making
in our uncertain situation (Swets et al., 2000). Sensitivity or
Discriminability Index (d′) measures the operators’ ability to tell
that two signals are different. Response Bias or Criterion (C)
reflects an individual’s implicit decision threshold above which
they respond “yes” to the presence of a signal and below which
they respond “no” to the presence of a signal.

Trust in Automation Scale
We measured if changes in trust in the tool were related to the
manipulated accuracy of the provided disjunctive probabilities.
At the end of the test phase of the experiment, participants rated

the 12-item Trust in Automation scale (Figure 7), developed by
Jian et al. (2000). It is one of the most used instruments in the
literature to measure human trust in systems and equipment.
The total score on the scale is indicative of the level of trust
in the automation with high scores interpreted as overtrust in
the system, and the lower scores interpreted as distrust in the
system. We also consider the per trial confidence judgments as
a surrogate measure of trust at the trial level of analysis. In the
results section, we explore the relations between trust rating and
subjective confidence.

Statistical Analysis
The Generalized Estimating Equations (GEE) for categorical
data was used to derive parameter estimates for both sensitivity
and bias within a single model specification [via the use of a
probit link function, DeCarlo (1998)]. Parameter estimates for
each factor manipulation represents the changes in decision
threshold (in beta units), and parameter estimates for each factor
manipulation crossed with “truth,” the actual occurrence of the
storm, represents changes in discriminability (in d′ units). The
BS and BSS were analyzed using a GEE with an identity link
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FIGURE 7 | Trust in automation scale by Jian et al. (2000).

function and normally distributed errors, because the scores
were continuous. To assess learning, we analyzed proportion
correct using a GEE with a probit link and binomial distribution
because the percent correct is a binary variable. To evaluate
learning transfer, we relied on both the parametric Pearson
Correlation and the non-parametric Kendall’s Tau correlation
for both performance (percent correct) and BS. The trust in
automation scores was evaluated via one-way ANOVA, followed
by post hoc comparisons and correlations.

RESULTS

Sensitivity and Decision Bias
The RSAT should facilitate people’s ability to discriminate if
their flight path will intersect hazardous weather (sensitivity).
Although it is important to separate accuracy or sensitivity
from a support tool’s effects on people’s risk aversion (response
thresholds), both aspects of decision-making are necessary to
evaluate (Swets et al., 2000). The class of Generalized Estimating
Equations (GEE) for categorical data can estimate sensitivity
and bias parameters within a single model specification (via a
probit link function). Using the probit link function, parameter
estimates for each factor manipulation represents the changes
in decision threshold (in beta units), and parameter estimates
for each factor manipulation crossed with “truth,” the actual
occurrence of the storm, represents changes in discriminability
(in d′ units) (Table 2). Sensitivity or discriminability improved as
the accuracy of the RSAT increased (the mean trend is illustrated
in Figure 8). Discriminability improved (p < 0.0001) in the
test phase compared to the training phase with the increase
in the level of accuracy of the RSAT (Truth × Experiment
Phase × Condition), and it also improved more in double route

TABLE 2 | Summary statistics for Type 3 generalized estimating equations
analysis, displaying flight-path safety decisions regressed on information
characteristics and task outcome.

Independent variable Df Wald
Chi-square

statistic

RSAT condition 3 9.30*

Trial type 1 13.51***

Truth 1 945.16****

Experiment phase 1 45.74****

RSAT condition × Trial type 3 7.91

RSAT condition × Truth 3 89.14****

RSAT condition × Experiment phase 3 5.68

Trial type × Truth 1 106.70****

Trial type × Experiment phase 1 104.18****

Truth × Experiment phase 1 89.49****

RSAT condition × Trial type × Truth 3 15.32**

RSAT condition × Trial type × Experiment phase 3 15.49**

RSAT condition × Truth × Experiment phase 3 32.46****

Trial type × Truth × Experiment phase 1 3.24

RSAT condition × Trial type × Truth × Experiment phase 3 4.29

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

trials (p < 0.01) compared to single route trials with the increase
in the accuracy of the RSAT (Truth × Trial Type × Condition).
The decision thresholds significantly increased as the level of
support increased (Figure 9). This finding is consistent with
the idea that the decision-makers adopted more conservative
thresholds as the accuracy of the RSAT increased.

Confidence Judgment Calibration
Brier scores (BS) were used to evaluate the calibration of
confidence judgments. The lower the BS, the better calibrated
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FIGURE 8 | Mean discriminability trend across conditions.

FIGURE 9 | Mean bias trend across conditions.

the confidence judgments. There was a significant decrease in
the mean Brier Score as the accuracy of the RSAT increased,
χ2(3) = 90.73, p < 0.0001 (Table 3). Moreover, the Brier Scores
were significantly lower in the relative judgment trials compared
to the absolute judgment trials, χ2(1) = 77.99, p < 0.0001, and in
the test phase, compared to the training phase, χ2(1) = 108.87,

p < 0.0001. Although the participants’ calibration increased as
the accuracy of the RSAT increased, the mean BS was still lower
than the corresponding BS for the RSAT itself (Table 3). Thus,
the participants were less calibrated than the RSAT and failed
to exploit all the information it provided. Another important
observation to note was that the mean BS for NEXRAD-only
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TABLE 3 | Group-wise mean brier score and brier skill scores.

RSAT condition Mean BS for RSAT Mean BS for participants Mean BS for participants Mean BSS for participants (ref-no support)

Training phase Test phase

No support – 0.24 0.26 0.24 –

Baseline support 0.18 0.22 0.25 0.22 0.08

Moderate support 0.09 0.18 0.21 0.16 0.26

High support 0.04 0.14 0.18 0.12 0.41

condition was approximately equal to mean BS of 0.25 for
chance performance. We should note that the high-support
condition did show a minor deviation in kurtosis from normality
(Table 4). The statistical inferences and the interpretations of
the results were unchanged after reanalyzing with a square root
transformation of the BS.

We also calculated the Brier Skill Score (BSS) to scale the
improvement in accuracy provided by the RSAT compared to
the control (NEXRAD only) condition. Referring to Table 3,
the higher the BSS for the support conditions, the better the
calibration was over the control condition.

Learning Effects
Transfer of Learning
The training phase’s participant performance predicted the test
phase’s performance (Table 5), indicating the transfer of learning.
Performance in Table 5 is the mean proportion of correct
decisions. Interestingly, the transfer (τb) increased with the
increase in the level of support, except for the non-significant
transfer of learning for the no support condition. A similar
pattern emerged for the Brier Scores, indicating the transfer of
calibration (Table 5). For both Brier Score and performance, the
strength of the correlation increased with the increase in the
level of support, indicating that probabilistic support facilitated
transfer to a more ecologically-valid task environment.

Training Phase Learning
We employed a generalized linear model for repeated measures
to test for performance differences across training blocks,
conditions, and scenarios. We included a scenario factor in
the model for all the within-subject learning because the
hazardous storms varied in strength, movement, uncertainty,
and, ultimately, difficulty. The block factor divided the 20
trials of the training phase into five sets of 4 trials each in
the order they were presented. The analysis indicates that the

TABLE 4 | Brier Score descriptive statistics (standard error in parentheses).

No support Baseline
support

Moderate
support

High
support

Mean 0.24 (0.005) 0.22 (0.004) 0.18 (0.008) 0.14 (0.01)

Median 0.24 0.22 0.18 0.15

Variance 0.002 0.002 0.006 0.008

Skewness 0.71 (0.28) 0.37 (0.27) 0.15 (0.26) 0.151 (0.27)

Kurtosis 0.52 (0.56) 0.45 (0.53) −0.742 (0.51) −1.32 (0.53)

main effect of training blocks is significant, i.e., performance
significantly increased across training blocks, χ2(4) = 24.36,
p < 0.0001 (Figure 10). Thus, providing support for learning
within the training phase. There is no significant interaction
between condition and training blocks, χ2(12) = 13.24, p > 0.05,
indicating that the performance over subsequent training
blocks doesn’t change significantly with the change in the
level of support.

Test Phase Learning
In the test phase, each scenario had four different unfolding
trials in which the same storm was evolving in time. To address
our predictions regarding learning within the test phase, we
employed a Generalized Linear Model for repeated measures
to test the differences in performance between conditions,
storm presentation order, unfolding trial order, and scenario.
The main effect of storm presentation order is significant,
χ2(9) = 18.24, p < 0.05, providing additional support for learning
(Figure 11). Moreover, the interaction between condition and
storm presentation order is also significant, χ2(27) = 51.6,
p < 0.01, indicating that performance improved within the test
phase and improved more for the high support condition than
the other support levels.

The test phase’s performance for unfolding trials was
expected to increase from the first trial to the fourth due to
familiarity with storm movement. However, the performance was
found to decrease with the unfolding storm trials consistently,
χ2(3) = 183.78, p < 0.0001 (Figure 12). This might be due to
the information available from the initial NEXRAD loop, which
became increasingly old as the trials unfolded.

Trust in Automation
Twenty-Seven participants failed to click the link that directed
them to the trust scale at the end of the experiment. The omnibus
trust score was calculated by reverse scoring the first five items
in the trust scale (distrust questions) and then taking an average
of all 12 responses (Figure 7). Researchers have reported that
responses on the Jian et al. (2000) trust scale suffer from positive
skew (Gutzwiller et al., 2019); however, the trust scores collected
in this experiment did not exhibit skewness inconsistent with
normality. Moreover, the trust ratings conformed to normality
and variance assumptions of ANOVA (Table 6). A one-way
ANOVA indicated a significant mean difference in trust score
across support level, F(3,293) = 6.52, and p = 0.0001 < 0.05.
Tukey’s HSD test for post hoc comparisons to test where the mean
difference existed only indicated significant mean differences in
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TABLE 5 | Kendall’s Tau and Pearson’s correlations [τb (r)] matrix between training and test phase.

Test phase performance

No support Baseline support Moderate support High support Total

Training phase performance 0.14 (0.16) 0.20** (0.29) 0.47**** (0.61) 0.66**** (0.77) 0.45**** (0.61)

Test phase brier score

Training phase brier score 0.25** (0.38) 0.26**** (38) 0.53**** (0.69) 0.60**** (0.76) 0.48**** (0.71)

**p < 0.01; ****p < 0.0001.

FIGURE 10 | Mean performance (proportion correct) trend for subsequent training blocks across conditions.

trust scores between the baseline support (M = 4.02, SD = 0.91)
and the moderate support (M = 4.57, SD = 0.93) conditions,
p = 0.003 < 0.008 and the baseline (M = 4.02, SD = 0.91) and the
high support (M = 4.58, SD = 1.07) conditions, p = 0.003 < 0.008.
Hence, there was only partial evidence for the trust score
predictions that the trust scores will increase with the increase
in the level of accuracy of RSAT.

We suspect that the trust items in the automation scale
(Figure 7) did not fit the context of a probabilistic RSAT. The
distrust items seem a particularly ill-fit to the RSAT context,
and the distrust items also suffered significantly more attrition
(46–69% response rate) than the trust items (81–91% response
rate). We decided to replicate the omnibus trust score analysis
using only the trust items to address the missingness problem.
The analysis of the mean score of the trust items met ANOVA’s
assumptions (Table 6), and the statistical inferences and pattern
of findings were unchanged from the omnibus trust score results.
A one-way ANOVA indicated a significant mean difference in
component trust score across support level, F(3,290) = 6.54 A

one-way ANOVA indicated a significant mean difference in trust
score across support level, F(3,293) = 6.52, and p = 0.0001 < 0.05.
Tukey’s HSD test for post hoc comparisons to test where the
mean difference existed indicated significant mean differences in
component trust scores between the baseline support (M = 4.07,
SD = 1.01) and the moderate support (M = 4.70, SD = 1.03)
conditions, p = 0.001 < 0.008 and the baseline (M = 4.07,
SD = 1.01) and the high support (M = 4.66, SD = 1.17) conditions,
p = 0.004 < 0.008.

Because one could argue that Confidence Judgment (CJ)
and Brier Score (BS) are logical surrogates of trust (reliance)
in the system at the trial level of analysis, we decided to
conduct ad hoc analyses evaluating the relationship between the
trust scale items and calibration (Table 7). The overall trust
score and the component trust score obtained from the trust
items were significantly correlated with CJ (p < 0.0001) and
BS (p < 0.0001) in the expected direction for only the high
support condition (Table 7). A similar trend was found for
all 7-individual trust items—six out of the seven trust items
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FIGURE 11 | Mean performance (proportion correct) trend for subsequent storms presented across conditions.

FIGURE 12 | Mean performance (proportion correct) trend for unfolding trials across conditions.

were significantly correlated with BS and CJ for only the high
support condition, and most of the correlations for the other
support conditions were not significant. The component distrust

score (from five items) and five individual distrust items were
not correlated with CJ and BS except for a small significant
correlation between the BS and the component distrust score (for
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TABLE 6 | Trust and component trust scores descriptives statistics (standard error in parentheses).

Mean Median Variance Skewness Kurtosis

Omnibus trust score

No support 4.16 (0.11) 4.20 0.85 −0.22 (0.29) −0.66 (0.57)

Baseline support 4.02 (0.10) 4.00 0.83 −0.08 (0.27) −0.99 (0.53)

Moderate support 4.57 (0.11) 4.67 0.87 −0.58 (0.27) −0.08 (0.54)

High support 4.58 (0.13) 4.71 1.15 −0.51 (0.29) −0.70 (0.56)

Component trust score

No support 4.27 (0.12) 4.43 0.90 −0.29 (0.29) −0.79 (0.57)

Baseline support 4.07 (0.11) 4.00 1.02 −0.15 (0.27) −0.92 (0.54)

Moderate support 4.70 (0.12) 4.86 1.06 −0.76 (0.27) −0.11 (0.54)

High support 4.66 (0.14) 4.93 1.38 −0.70 (0.29) −0.61 (0.57)

high support), the BS and the wary item (for no support), and
the BS and the deceptive system item (for moderate support) (see
Supplementary Materials for item-wise correlations).

DISCUSSION

The results indicate that operators did rely on the flight-
path RSAT to improve their performance over the no-support
condition. The Brier Skill Score for the high support condition
in reference to the no support condition was 0.41. Thus,
operator performance improved in terms of both calibration
and resolution as the accuracy of the tool increased. However,
the results suggest caution as performance is relatively low
in conditions most similar to the current capability of
meteorological forecasts (no support, BSS = 0, or baseline
support, BSS = 0.07). Therefore, suggesting a need for similar
research with pilots followed by the validation of training regimes
for the safe introduction of high-accuracy probabilistic tools in
general aviation cockpits.

A myriad of performance and calibration measures show
consistent and statistically reliable differences between the levels
of support. However, the calibration level (to the uncertainty)
reached by the operators was still well below the tool’s calibration
accuracy (Table 3), so there is further room for improvement. It
could be that an alternative format of uncertainty (probability)
presentation or explicitly telling operators the expected accuracy
of the tools could lead to more reliance on the tool and a better
understanding of the uncertainty (Barg-Walkow and Rogers,
2016). As we discuss next, training and instruction on these tools
is necessary for people to utilize them to their full potential
as cumulative risk and probability are not intuitive concepts.
The literature we reviewed suggest that professionals often have
trouble understanding cumulative risk, and we suspect that pilots
will require training to calibrate their weather-hazard decision-
making to uncertainty.

The substantial transfer of learning effects from the training
phase to the test phase (unfolding storms) in the RSAT
conditions implied that the participants understood and used
the probabilistic rendering of risk. The training and test phase’s
learning effects indicate the potential importance of enhancing
learning via multiple trials- and scenario-based training. This

finding has implications for implementing experience-based
modules for many professional domains, including training
pilots on probabilistic weather tools to improve their risk
situation awareness.

We had predicted performance increments for flight-path
decisions as a storm unfolded (i.e., unfolding trails), so we were
quite surprised that there was a strong performance decrement
trend. We interpret the performance decrement as an indicator
that the NEXRAD initial loop after the first unfolding trial
was important for operators to extract cues indicative of storm
movement. Also, the absence of feedback compared to the
training phase could have hindered the participant’s ability
to update and correct their mental representation of storm
movement and temporal dynamics. This finding also suggests
that additional looping after every flight-path decision during the
unfolding trial might have improved performance. These findings
emphasize a need for continuous feedback and access to historical
data to facilitate real-time decisions about hazardous weather
and other dynamic risks. However, further research on the
benefits of looping is needed. Several studies suggest that looping
NEXRAD does not support pilots making safe flight decisions
under hazardous weather conditions (Burgess and Thomas, 2004;
Knecht, 2016a,b).

The operators’ trust scores didn’t reflect their performance
or the quality of the RSAT provided to them. This finding is
somewhat surprising given that the performance and calibration
measures imply that the participants relied on the RSAT.
Interestingly, the exploratory analysis showed that the tool’s trust
level was only calibrated to the operator’s objective performance
when the tool was highly accurate. Thus, the non-intuitive trend
in trust scores might be attributed to the structure of the trust
scale itself, which seems suitable for a higher level of automation
or a warning system instead of a tool that renders uncertainty
via numerical probability. Our results also indicate the possibility
of people calibrating their trust in the system to their accuracy
only when the system was highly accurate. It may be the case
that some level of accuracy has to be achieved by operators for
them to trust a system, even if the system’s accuracy is invariant.
If true, this would account for the positive correlation between
trust and calibration in the high-accuracy RSAT condition. In
other words, relatively few participants seemed to achieve a level
of accuracy necessary to trust the tool, suggesting the threshold
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for trust was most likely to manifest when the tool itself was
highly accurate.

The fact that we utilized university students using a
simplified task rather than expert pilots using higher-fidelity
simulation is an important limitation of the study. Pilots receive
training on weather decision-making (see U.S. Department of
Transportation, 2016) and access many weather products in the
cockpit when making real-world operational decisions. One of
the benefits of using naïve or student-pilots as participants is
that they might have fewer preconceived notions (both positive
and negative) concerning forecasts’ performance. More realistic
tasks have greater ecological validity, but it could overwhelm
participants if they try to use all the weather information
typically provided in the cockpit. Even expert pilots might find
it challenging to use their typical products with the added
workload of trying to learn and understand the cumulative risk
probabilities. Under such conditions, participants might choose
to ignore the probabilities in favor of more familiar products—
everyone has seen NEXRAD images on their locale weather
station. Acknowledging the students and task limitations, the
study established that the participants utilized disjunctive risk
estimates, and follow-up work with experts in higher-fidelity
tasks seems prudent. We think that presenting cumulative risk
estimates is one of the best options for minimizing the amount of
weather information required in the cockpit.

Overall, the results of this paper have implications for
new interventions in the aviation industry. It has implications
for display designers in terms of introducing products with
probabilistic weather information into the market place as well
as introducing the regulatory regime for the entry of such
products into the cockpit. These results guide the development
of probabilistic tools that increases the risk situation awareness of
operators. Thus, it addresses some of the issues faced by earlier
attempts by Kronfeld (2003), Matthews and DeLaura (2010), and
others in introducing qualitative probabilistic risk information in
cockpits, which pilots misunderstood. The transfer of learning
and within-phase learning can help develop and improve
training programs for weather displays. These findings should
reinforce the need for training to include dedicated modules for
weather displays and the interpretation of probabilistic weather
products, which is only a negligible portion of the training pilots
receive currently.

The results also contribute to basic research in judgment and
decision-making of how to facilitate people’s understanding of
cumulative risk and uncertainty. The findings are relevant to
the long-believed notion that people find probability formats too
challenging to understand and incorporate into their decision-
making (Tversky and Kahneman, 1974; Slovic, 1997). The results
also suggest that participants did gain some understanding of the
risk estimates in probability format and were able to calibrate
their decision-making to the accuracy of the risk estimates.
Hence, our research provided further evidence that people can
use probability formats effectively, at least in some contexts
[c.f., the work of Joslyn and Nichols (2009), who showed that
non-experts could understand probabilistic rain forecasts].

The results also have implications for some of the challenges
demonstrated in conveying cumulative risk in various domains
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like breast-cancer medication risk (Zikmund-Fisher et al., 2008),
contraception methods related risk (De La Maza et al., 2019),
stroke risk (Fuller et al., 2004), flood risk (De La Maza et al.,
2019), etc. mentioned before. The results show that via scenario-
and feedback-based training, it is possible to calibrate people’s
judgment and decision-making to the numerical risk estimates
and the inherent uncertainty in the complex mission-centric task
of flight-route judgments. Thus, it seems reasonable that these
findings can extend to domains with less complexity in which the
events are independent and homogenous.

Model-derived risk estimates should, in theory, be useful to
operators, particularly operators under time and workload stress.
However, to make risk estimates useful, operators will need to
understand how the estimates are derived and have some nominal
level of trust in the provided cumulative probabilities to rely
on them. As stated earlier, we believe that simulation-based
experiential training could be a pivotal component to operators
understanding uncertainty in their domain and ultimately
gaining a level of familiarity with the system to engender trust.
This type of simulation training might focus on emergencies
because they should be relatively rare and unfamiliar situations
to the operator operationally and are the conditions under
which operators will undoubtedly experience a high workload
(Baumgart et al., 2008). Another advantage of model-derived
uncertainty is that it can be adapted to What-If simulations—the
risk estimate could be tailored to the specific actions an operator
is considering. Similarly, the cumulative risk posed to the mission
goal could inform operators working in command and control
settings. What-If capabilities should facilitate operator intuitions
to the uncertainty inherent in the domain and their ability to
assess risk. Such What-If tools should also facilitate trust because
they can evaluate how well the tool matches the risk evaluation of
their actions (e.g., the cumulative risks associated with operator-
generated routes).

Future research could build upon this study’s findings by
developing a suite of algorithms that leverage ensemble modeling
utilizing archival big weather data to build a product capable
of real-time cumulative risk estimates operationally. An obvious
ecologically-valid extension of this study is the use of high-fidelity
flight simulators and professional pilots to evaluate how the
current findings extend to a more specific operational context.
Methods to build operator trust in these kinds of probabilistic
systems also should be explored. Although the trust items on
Jian’s trust scale apply to predictive decision support systems,
the distrust items don’t fit well conceptually, as indicated by the
high attrition rate on those items. Thus, the trust in automation
results highlights the need to develop and validate a trust in
automation scale that is more applicable to predictive decision-
support systems.

Another idea might be to investigate the RSAT as a discrete
warning system instead of providing weather uncertainty as
a metric appropriate for providing continuous support. Many
domains have warning systems. For example, in aviation, there
are warning systems for collision avoidance of terrain (TAWS),
ground (GPWS), and traffic (TCAS). Maybe a hazardous weather
system that relies on cumulative risk is a reasonable decision
support technology to pursue.

Another limitation of the experiment is that we utilized
NEXRAD images that were precisely 15 min old with no
variance. Recent advances in the area of providing more timely
radar data are exciting. The potential for gap-filling radars to
support aviation weather products is important, as more precise
and updated radar data supported meteorologist assessments
and warning decisions (Rude et al., 2012). Another area of
consequence for enhancing aviation weather products is CASA
(Collaborative Adaptive Sensing of the Atmosphere) (Brotzge
et al., 2010), which may mitigate some of the challenges that
delayed weather information pose to pilots for navigating around
convective weather. Radar composite image age and latency are
challenges that should be addressed in future work.

Presenting cumulative risk estimates seems to have the
potential to minimize weather information required in the
cockpit and supporting weather-avoidance decisions. The relative
success of the RSAT in a simplified weather-hazard situation
could mean that similar metrics and tools could support situation
awareness of cumulative risk in other dynamic decision-making
domains characterized by strong temporal dynamics. Of course,
the calculation of cumulative probability in most domains with
strong temporal dynamics requires specialized models tailored
to the distinctive dynamics and decision context. As such
models advance, continued work on how best to interface
the outputs with human operators will be necessary for safe
adoption and deployment.
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