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Abstract: Dried Hami jujube has great commercial and nutritional value. Starch-head and mildewed
fruit are defective jujubes that pose a threat to consumer health. A novel method for detecting
starch-head and mildewed fruit in dried Hami jujubes with visible/near-infrared spectroscopy was
proposed. For this, the diffuse reflectance spectra in the range of 400–1100 nm of dried Hami jujubes
were obtained. Borderline synthetic minority oversampling technology (BL-SMOTE) was applied
to solve the problem of imbalanced sample distribution, and its effectiveness was demonstrated
compared to other methods. Then, the feature variables selected by competitive adaptive reweighted
sampling (CARS) were used as the input to establish the support vector machine (SVM) classification
model. The parameters of SVM were optimized by the modified reptile search algorithm (MRSA).
In MRSA, Tent chaotic mapping and the Gaussian random walk strategy were used to improve the
optimization ability of the original reptile search algorithm (RSA). The final results showed that
the MRSA-SVM method combined with BL-SMOTE had the best classification performance, and
the detection accuracy reached 97.22%. In addition, the recall, precision, F1 and kappa coefficient
outperform other models. Furthermore, this study provided a valuable reference for the detection of
defective fruit in other fruits.

Keywords: dried Hami jujube; visible/near-infrared spectroscopy; defective fruit detection; reptile
search algorithm; oversampling technique; non-destructive detection

1. Introduction

Dried Hami jujube is deeply loved by consumers and is a best-selling product in
domestic and foreign markets [1]. During the processing and storage process of dried
jujubes, starch-head and mildewed fruit are prone to be affected by the level of drying
technology and the storage environment [2]. If the defective fruit is not removed in time, the
grade of Hami jujube will decline. Mildewed jujube contains mycotoxins, which can cause
food poisoning and threaten the health of consumers. Due to the influence of moisture, the
starch-head jujube will further develop into mildewed jujube during the storage process,
leaving food safety hazards. The rapid and non-destructive detection of starch-head and
mildewed fruit in dried Hami jujubes is of great significance to ensure food safety and
safeguard the interests of consumers.

Manual visual inspection and machine vision methods are commonly used in the
defective fruit detection of dried jujubes [3,4]. Manual visual inspection is highly subjective
and inefficient. Although machine vision can detect defective fruit, it can only identify fruit
with obvious changes in surface morphology and color. In addition, image information
can only reflect physical properties of dried jujubes, but it cannot provide information on
the chemical properties. In practice, both physical and chemical properties are important
indicators for the quality detection of dried red dates, which can characterize their defect
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information. Visible/near-infrared (Vis-NIR) spectroscopy is a fast, non-destructive and
high-sensitivity detection method [5], which can simultaneously obtain the physical and
chemical information of the measured object, and it has been applied in the field of quality
detection of dried jujubes [6,7]. Some studies applied spectroscopy to detect defective
fruit in peanuts [8], chestnuts [9], almond kernels [10] and macadamia nuts [11]. There
are few studies on the non-destructive detection of mildewed fruit in jujubes by NIR
spectroscopy [12,13], and there is no report on the detection of starch-head fruit.. Hence,
one of the goals of this study is to explore the potential of Vis-NIR spectroscopy to identify
starch-head and mildewed fruit.

Machine learning (ML) has penetrated into the field of spectral analysis. Support
vector machines (SVM), partial least squares (PLS), k-nearest neighbors (KNN), artificial
neural networks (ANN), etc. have shown good potential in quality evaluation [14]. Never-
theless, data imbalance can trigger inaccurate analysis in ML classification. The sample size
of the minority category is less than that of the majority category, which leads the model
to favor the latter and ignore the former in pursuit of global accuracy [15]. Oversampling
methods are often applied to solve data imbalance problems, such as synthetic minority
over-sampling technology (SMOTE) and its improved algorithms. Amirruddin et al. [16]
integrated SMOTE with logistic model tree adaptive boosting for assessing nutrient and
chlorophyll sufficiency levels of oil palm and demonstrated that SMOTE can provide
classification accuracy. Begum et al. [17] used the oversampling algorithm to process imbal-
ance data in coal samples and demonstrated its effectiveness. Similarly, the oversampling
algorithms were used for the detection of moldy apple core [18]. Still, few studies have
focused on the effects of different oversampling strategies on the classification performance
of the model. Thus, various oversampling methods were introduced and compared to
detect starch-head and mildewed fruit in dried Hami jujubes. In addition, the most suitable
oversampling method was determined.

The parameters of ML models are mostly set using empirical settings or grid searches
(GS), which have the shortcomings of being highly subjective and consuming compu-
tational resources. Meta-heuristic algorithms are one of the most popular optimization
approaches that perform global and local searches for a specific problem by simulating
relevant behaviors in biology, physics, and other fields to achieve optimization. The use
of meta-heuristic algorithms for the parameter optimization of ML models is an idea of
powerful combination that can fully integrate the advantages of both and expand the
application scope of the models. More and more meta-heuristic algorithms have been
developed in the field of spectral analysis, such as genetic algorithm (GA) [7], particle
swarm optimization algorithm (PSO) [19], gray wolf optimizer algorithm (GWO) [20],
marine predators algorithm (MPA) [21] and so on. Reptile search algorithm (RSA) is a
novel meta-heuristic algorithm inspired by the group hunting patterns of crocodile pop-
ulations [22]. RSA has obvious advantages such as strong robustness, fast convergence
speed and good optimization effect. However, as with other meta-heuristic algorithms, the
population diversity of RSA decreases when the search approaches the global optimum,
and it is easy to fall into a local optimum solution. So, this paper attempts to improve the
RSA by introducing chaotic initialization and Gaussian random walking strategy. Then,
the modified RSA was applied in the parameter optimization of the ML model in order to
improve the detection accuracy of starch-head and mildewed fruit in dried Hami jujubes.

The specific objectives of this study were the following: (1) to obtain Vis-NIR spec-
tra of dried Hami jujube and determine chemometrics for defective jujube detection;
(2) to evaluate the impact of different oversampling methods on classification models
and determine the most suitable strategy; (3) to propose a modified reptile search algorithm
(MRSA) and use it for parameter optimization of machine learning models; and (4) to
establish classification models based on different meta-heuristic algorithms and compare
their performance.
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2. Materials and Methods
2.1. Sample Preparation

The same batch of naturally dried Hami jujubes with moisture content of about 28%
was purchased from an agricultural market in Hami, China and transported to Shihezi
University for sample preparation. A total of 600 dried Hami jujubes with similar color,
shape, and weight, without apparent defects, physical injuries or disease infection were
selected. Each sample surface was wiped with 75% ethanol aqueous solution, distilled
water for 10 s, and then air-dried. According to the reasons for the formation of starch-head
jujube and mildewed jujube during the drying and storing process [2], the corresponding
environment was simulated to prepare samples in different states. Four hundred samples
were randomly selected, 2 mL of distilled water was injected by a micro syringe into the
subcutaneous 5 mm of each sample through the calyx shoulder region and then stored
in a thermostatic container kept at 30 ◦C and 85% relative humidity (RH) for 7 days. The
remaining 200 dried Hami jujube samples were directly placed in another thermostatic
container kept at 25 ◦C and 40% RH, which were regarded as normal jujubes. The state of
the dried Hami jujube was determined according to the comprehensive conditions of the
appearance, fruit shape, texture and smell. Jujube samples in different states are shown
in Figure 1. Normal jujube: the peel is purple-red and shiny, the fruit shape is plump, the
color of pulp is light yellow and uniform, the pulp is firm, and it has a strong fruit aroma.
Starch-head fruit: the peel is slightly discolored, the local moisture content is high, the pulp
is rotten, inelastic or even pus-like, and it will further develop into mildewed fruit. The
starch-head fruit was hard to identify by the naked eye directly. Mildewed fruit: the peel
color appears dull, the pulp is deteriorated and emits wine or a musty odor, and mycelium
appear on its surface. It should be noted that in this study, mildew degree was slight,
that is, only a small amount of mycelium appeared in the mildewed jujube. In the end,
200 normal jujubes, 302 starch-head fruit, and 98 mildewed fruit were obtained, respectively.
Samples were then separated into the training set and test set based on a 7:3 ratio. Among
them, 420 dried Hami jujubes were used as the training set (including 140 normal jujubes,
211 starch-head fruit and 69 mildewed fruit) to establish the classification model, and the
remaining 180 samples constituted the test set (including 60 normal jujubes, 91 starch-head
fruit and 29 mildewed fruit) to evaluate the performance of the model. The training set and
the test set were completely independent to better evaluate the robustness of the model.

Figure 1. Dried Hami jujube samples and spectral data acquisition.
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2.2. Spectral Data Acquisition

A dried Hami jujube diffuse reflection spectrum acquisition system based high
performance-spectrometer was developed independently, as shown in Figure 1; it com-
prised the following: a high performance-spectrometer (QE Pro-FL, Ocean Insight, USA),
600 µm diameter optical fiber (QP600-2-VIS-NIR, Ocean Insight, USA), halogen light source
(rated voltage of 12 V, power of 20 W), arched lamp bracket, a jujube tray, loading platform,
fan, darkroom and computer. The halogen light sources were fixed on arched lamp bracket,
and the lighting angle was about 60◦. We kept the optical fiber probe perpendicular to the
sample and about 40 mm from the surface of the dried Hami jujube. The acquisition range
of the high-performance-spectrometer was 348–1141 nm, with a total of 1044 bands. We
turned on the spectrometer and light source to warm up for 30 min before operation. We
also set appropriate parameters of the spectrometer and used white and dark references
for correction. In particular, the integration time was set to 121 ms, the moving smoothing
width was set to 4, and the average number of scans was set to 8. At the equatorial plane of
each sample, four positions were uniformly selected (90◦ apart) to collect diffuse reflection
spectral information, and the average value of four data points was taken as the original
spectral of the jujube.

2.3. Spectral Data Processing
2.3.1. Spectral Pre-Processing

The raw spectral data usually carry some information and noise irrelevant to sample
composition, which will affect the correspondence between spectral information and
classification labels, and then affect the stability of the classification model. It is necessary
to pre-process raw spectra before modeling. All raw spectral data were pre-processed by
multiple scatter correction [23].

2.3.2. Handling of Class Imbalance

The classification accuracy depends on the amount and quality of the modeled dataset
in machine learning models. In this study, a total spectral data of 600 dried Hami jujubes
were obtained, and the number of different states was 200 for normal jujube (33.3%), 302 for
starch-head fruit (50.4%), and 98 for mildewed fruit (16.3%), respectively. Obviously, the
data distribution was imbalanced. This imbalance persisted after randomly splitting the
spectral data into training and test sets. Hence, an oversampling technique was applied
to handle the imbalance in these data during training. We analyzed four frequently used
approaches for data augmentation, namely random oversampling (ROS), synthetic minor-
ity oversampling technique (SMOTE) [24], borderline synthetic minority oversampling
technique (BL-SMOTE) [25] and adaptive synthetic sampling (ADASYN) [26], and we
compared them to the model without any data augmentation.

The ROS method randomly replicates samples from the minority class and increases
them to the training data to alleviate the imbalance between samples. The essential idea
of SMOTE is to synthesize new samples by linear interpolation based on the KNN. The
BL-SMOTE is another oversampling method improved by SMOTE. We calculated the
k-nearest neighbor of the minority class samples and divided them into noise, safe and
danger categories according to the distribution densities. Finally, we used random linear
interpolation to generate new samples only for danger samples. The ADASYN works simi-
larly to SMOTE, but it focuses more on sample synthesis at the boundaries of the minority
and majority classes. This method uses weighted distribution to adaptively synthesize
minority class samples according to the learning difficulty level, where more synthetic
data are generated for difficult-to-learn samples. The number of k-nearest neighbors for all
approaches was set to 5.

2.3.3. Variable Selection Strategy

Redundant variables in the raw spectral data complicate the classification model
and affect the accuracy and stability of the model. Thus, appropriate variable selection
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strategies are necessary. In this study, competitive adaptive reweighted sampling (CARS),
successive projections algorithm (SPA) and iteratively retains informative variables (IRIV)
were used to identify the effective variables from full spectra. For CARS, the number of
Monte Carlo sampling runs was set to 50, and five-fold cross-validation was applied to
determine the optimal spectra set. For SPA, we set the variable selection range to 5–20 and
the selection step to 1. As for IRIV, the maximum principal component and the number of
cross-validation was 15 and 5, respectively. The specific steps of algorithms can refer to
previous studies [27–29] and will not be described in detail here.

2.4. Support Vector Machine Based on Modified Reptile Search Algorithm
2.4.1. Support Vector Machine (SVM)

SVM is based on VC dimension theory and the structural risk minimization principle,
which can solve the problem of constructing high-dimensional models with a limited
number of samples [30]. A radial basis function (RBF) with good stability was introduced
as the kernel function for operation. In the SVM model, the penalty parameter c and the
kernel parameter g are extremely important and were determined by grid search. The main
function of penalty parameter c is to control the tolerance limit of credibility, in other words,
to determine the model’s tolerance for wrong samples. The kernel parameter g determines
the form of the classification hyperplane. Determining the optimal combination of c and g
within a certain range can improve the classification accuracy of SVM.

2.4.2. Reptile Search Algorithm (RSA)

The RSA is a novel meta-heuristic algorithm to solve complex optimization and
engineering problems. The main idea of RSA comes from the behavior of crocodiles in
nature to hunt prey. Crocodiles continue to approach the prey through the encircling
phase and the hunting phase until the prey is captured. Key processes of the RSA can be
summarized as follows:

(1) Parameter initialization.
Several parameters are set: the number of candidate solutions (N); the dimension size

of the search space (D); the upper bound (ub) and lower bound (lb) of the solution; and the
maximum number of iterations (T). So, the initial candidate solutions can be described as
shown in Equation (1).

X =



x(1,1) · · · x(1,j) x(1,D−1) x(1,D)

x(2,1) · · · x(2,j) · · · x(2,D)

· · · · · · x(i,j) · · · · · ·
...

...
...

...
...

x(N−1,1) · · · x(N−1,j) · · · x(N−1,D)

x(N,1) · · · x(N,j) x(N,D−1) x(N,D)


(1)

where X is a set of the candidate solutions that are randomly generated using Equation (2),
and x(i,j) denotes the jth position of the ith solution.

x(i,j) = rand∈[0,1] × (ub− lb) + lb i ∈ {1, . . . , N} and j ∈ {1, . . . , D} (2)

(2) Encircling phase (exploration).
The purpose of the encircling phase is to perform global search, which includes two

actions strategy: high walking and belly walking. The position update in this phase can be
calculated by

x(i,j)(t + 1) =

{
Bestj(t)×−η(i,j)(t)× β− R(i,j)(t)× rand∈[0,1] t ≤ T

4
Bestj(t)× x(r1,j) × ES(t)× rand∈[0,1] t ≤ 2 T

4 and t > T
4

(3)
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where Bestj(t) is the jth position in the best-obtained solution so far; t is the number of the
current iteration; η(i,j) denotes the hunting operator for the jth position in the ith solution; β
is a sensitive parameter to control the exploration accuracy for the encircling phase, which
is fixed equal to 0.1; reduce function R(i,j) is a value used to reduce the search area; r1 is
a random number between [1, N] and x(r1,j) denotes a random position of the ith solution;
Evolutionary Sense (ES(t)) is a probability ratio that takes randomly decreasing values
between [1,−2] throughout the number of iterations. Equations (4)–(6) show the calculation
methods of R(i,j), ES(t) and η(i,j).

R(i,j) =
Bestj(t)− x(r2,j)

Bestj(t) + ε
(4)

ES(t) = 2× r3 ×
(

1− 1
T

)
(5)

η(i,j) = Bestj(t)× P(i,j) (6)

where r2 is a random number between [1, N] while r3 is a random integer number between
[−1, 1]. In addition, ε denotes a small value to ensure that the denominator is not zero. In
Equation (6), P(i,j) is the percentage difference between the jth value of the best solution and
its corresponding position in the current solution. It is defined as:

P(i,j) = α +
x(i,j) −M(xi)

Bestj(t)×
(

ub(j) − lb(j)

)
+ ε

(7)

where ub(j) and lb(j) are the upper and lower boundaries of the jth position. α is an
another sensitive parameter, which is fixed equal to 0.1 in this paper. M(xi) stands for the
average solutions.

(3) Hunting phase (exploitation).
The purpose of the hunting phase is to perform local search, which includes two

actions strategy: coordination and cooperation. The position update in this phase can be
calculated by

x(i,j)(t + 1) =

{
Bestj(t)× P(i,j)(t)× rand∈[0,1] t ≤ 3 T

4 and t > 2 T
4

Bestj(t)− η(i,j)(t)× ε− R(i,j)(t)× rand∈[0,1] t ≤ T and t > 3 T
4

(8)

In this equation, variables are defined and calculated in the same way as in Equation (3).
The standard RSA’ pseudo-code is provided in [22].

2.4.3. Modified Reptile Search Algorithm (MRSA)

This part presents the details of the MRSA and how it enhances the population
diversity and solution accuracy. In addition, this section explains how to prevent being
trapped at local optimal solutions. In MRSA, chaotic mapping and Gaussian random walk
strategies are used, which can guarantee to alleviate the issues of declining population
diversity, falling into a local optimal solution and slow convergence more effectively.

(1) Tent chaotic mapping.
The location of the population initialization can directly affect the convergence speed

and solution quality of the algorithm. The RSA algorithm usually uses randomly generated
data as the initial population information, which will make it difficult to preserve the
diversity of the population and result in poor optimization results of the algorithm. Chaotic
sequences have the characteristics of randomness, regularity and ergodicity [31], which can
increase the diversity of the initial population and improve the global search ability. In this
study, Tent mapping is adopted to initialize the population due to its traversal uniformity
and fast iteration speed. Equations (9) and (10) show the calculation method of the Tent
chaotic sequence and initial location of the population.
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zi+1 =

{
2× zi 0 ≤ zi ≤ 1/2
2× (1− zi) 1/2 < zi ≤ 1

(9)

x(i,j) = zi,j × (ub− lb) + lb i ∈ {1, . . . , N} and j ∈ {1, . . . , D} (10)

where zi is the ith chaotic sequence and zi,j denotes the jth chaotic value in the zi sequence.
In addition, z1 is the 1× D dimensional vectors generated by uniform random numbers in
[0, 1).

(2) Gaussian random walk strategy.
In the later stage of the iterative process, the swarm diversity of RSA is reduced,

and it is easy to converge prematurely. In order to reduce the probability of prematurity
and local optimal probability, the Gaussian random walk strategy (GRW) was introduced
in this paper, which was applied after the search process. The GRW uses the current
optimal individual to adjust the positions of all individuals, thereby increasing the distur-
bance to the whole population and enhancing the ability of the algorithm to jump out of
the local optimum [32]. The GRW based on the current optimal individual is shown in
Equations (11) and (12).

GXG
i = Guassian

(
XG

best, τ
)
+
(

g1·XG
best − g2·XG

i

)
(11)

τ =
log(G)

G

(
XG

i − XG
best

)
(12)

where XG
i is the ith individual in iteration G, XG

best is the best individual in iteration G, and
GXG

i represents new individuals generated after GRW. g1 and g2 are uniformly distributed
random numbers in [0, 1]. τ is the step length of random walk, which negatively correlated
with the number of iterations.

Through the guidance of the current optimal individual, a new population is generated
near the optimal individual, which is conducive to the rapid convergence of the algorithm.
At the same time, the number of iterations is used to control the step size adaptively to
ensure that the MRSA has a large τ value at the initial stage of iteration, so it has strong
exploration ability. As the number of iterations increases, the τ value decreases gradually,
which improves the exploitation ability of the MRSA.

The basic steps of MRSA are as follows:
Step 1: Initialize parameters of MRSA, including the number of candidate solutions

(N), the dimension size of the search space (D), the upper bound (ub) and lower bound (lb)
of the solution, the maximum number of iterations (T), and two sensitive parameters (α
and β).

Step 2: Apply Tent mapping to initialize the solutions’ positions. Generate N D-
dimensional chaotic sequences and carry their components to the value range of spatial
variables of the original problem through Equation (10).

Step 3: Calculate the fitness function for the candidate solutions and find the best
solution so far. Then, update the R, ES, η and P parameters using Equations (4)–(7).

Step 4: According to the relationship between the current number of iterations (t)
and the maximum number of iterations, two main methods (exploration and exploitation)
with four strategies are used to update the position. Candidate solutions use Equation (3)
to attempt to expand the search area when t ≤ T/2 and use Equation (8) to attempt to
converge toward the near-optimal solution when t > T/2.

Step 5: After one iteration, calculate the fitness value of each crocodile and find the
current optimal individual.

Step 6: Apply the Gaussian random walk strategy to disturb the position of crocodiles.
The fitness function value after disturbance is calculated and compared with that before
disturbance. If the individual after the random walk becomes better, the candidate so-
lution is changed to the position after the random walk; otherwise, keep the original
individual unchanged.
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Step 7: Determine whether the MRSA algorithm runs to the maximum number of
iterations. If so, jump out of the loop and output the optimization results; otherwise, return
to step 3.

2.4.4. MRSA-SVM

Apply the proposed MRSA to optimize the penalty parameter c and the kernel param-
eter g. The basic idea of the MRSA-SVM model is that parameters c and g are regarded as
individual position variables of the crocodile population. In the two-dimensional space
composed of c and g, the SVM classification accuracy for five-fold cross-validation of the
training set is used as the fitness function to evaluate the individual position. On this
basis, we update the location information of the crocodile population by two main methods
(exploration and exploitation) with four strategies: high walking, belly walking, hunting
coordination and hunting cooperation. MRSA outputs the optimum parameters c and g,
and it transfers them to establish an SVM classification model. The trained SVM model is
applied to detect the test set. The MRSA-SVM flowchart is shown in Figure 2.

Figure 2. MRSA-SVM flowchart.

2.5. Evaluation of Model Performance

In addition to the commonly used accuracy as the evaluation index, other evaluation
indexes were used for the comprehensive evaluation of model performance, such as recall,
precision, F1, and kappa coefficient. For all these indexes, values closer to 1 imply a better
classification performance of the model. The calculated equations are as follows:

Accuracy = (TP+TN)
(TP+FP+TN+FN)

Recall = TP
TP+FN

Precision = TP
TP+FP

F1 = 2×Precision×Recall
Precision+Recall

Kappa = p0−pe
1−pe

(13)

in which {
p0 = TP+TN

TP+FP+TN+FN
pe =

(TP+FP)×(TP+FN)+(TN+FN)×(TN+FP)
(TP+FP+TN+FN)2

(14)

In these equations, TP is the true positive (positive jujube samples are detected as
positive samples); FP is the false positive (negative jujube samples are detected as posi-
tive samples); TN is the true negative (negative jujube samples are detected as negative
samples); and FN is the false negative (positive jujube samples are detected as negative
samples). F1 is the weighted average of recall and precision. The kappa coefficient is an
indicator of a consistency test that can penalize the preference of the model in the case
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of an unbalanced sample number. In this study, all of the processes described for the
development, optimization, and evaluation of models were implemented in Matlab R2019b
(MathWorks, Natick, MA, USA).

3. Results
3.1. Spectral Characteristics

The signal-to-noise ratio at both ends of the spectral data was low, which could not pro-
vide effective spectral information. Therefore, spectral bands in the range of 400–1110 nm
(934 bands in total) were selected for modeling and analysis. Figure 3 showed the mean
spectral reflectance curves and their standard deviations of dried Hami jujube in different
states. The similar trends and peak positions come from the common compounds and
structures, while the differences should be caused by the changes in chemical components
such as moisture and protein during the formation of starch-head and mildewed fruit. In
detail, the spectral reflectance in the visible light region of 400–600 nm is relatively low,
which may be caused by the strong absorption of light by the pigments in the dried Hami
jujube. Approximately in the 600–750 nm spectral range, the reflectance rises sharply, which
could be ascribed to the ‘red edge’ of individual organisms [33]. The weak valley near
890 nm corresponded to the third overtone of C-H [34]. Another valley around 990 nm
was related to the moisture content of dried Hami jujube and might be associated with
the second overtone of O-H [35]. Compared with normal jujube and starch-head fruit,
the spectral curves of mildewed fruit had a large deviation distribution, which would be
caused by the influence of different mildew degrees. Mold erosion made the mildewed
fruit dull in color, attached to mycelium, and deteriorated in pulp. These changes altered
the transmission path of light and improved the absorption ability of mildewed fruit to
light, resulting in a significant decrease in spectral reflectance. This is in agreement with the
findings of other studies [36,37]. The spectral curve of starch-head fruit was between the
mildewed fruit and the normal jujube, and it is closer to the mildewed fruit, which further
proved that the continuous development of starch-head fruit would become mildewed
fruit. The difference of spectra provided a detection basis for the detection of starch-head
and mildewed fruit. Unfortunately, the spectral curves of different groups overlapped, and
we cannot classify the jujube’s state by spectral information directly. Therefore, spectral
data processing and model building were necessary to make an accurate classification.

3.2. Comparison of Imbalanced Class Handling Methods

The oversampling methods were applied to solve the data imbalance problem: that
is, more starch-head fruit than normal jujubes and mildewed fruit. Table 1 showed the
classification accuracy of the models built on datasets generated by different oversampling
methods. To better discriminate the effectiveness of oversampling methods, PLS-DA
linear models were also established, and the latent variables (LVs) were determined by
five-fold cross-validation. It was apparent from this table that the classification effects of
SVM models were generally better than those of PLS-DA models. This indicated that the
nonlinear relationship between spectral data and classification labels was stronger, and
SVM models can handle this relationship better.
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Figure 3. Spectral reflectance curves of dried Hami jujube in different states. (a) Mean reflectance
spectral curves, and spectral curves with standard deviation for (b) normal jujube, (c) starch-head
fruit, and (d) mildewed fruit.

Table 1. The discrimination results based on different oversampling methods.

Model Over-Sampling
Accuracy for Training Set (%) Accuracy for Test Set (%)

NM a SH b MD c Total NM SH MD Total

SVM

Null 100.00 92.89 82.61 93.57 100.00 89.01 55.17 87.22
ROS 99.05 95.26 100.00 98.10 96.67 98.90 51.72 90.56

SMOTE 100.00 95.74 95.74 97.16 98.33 95.60 68.97 92.22
BL-SMOTE 99.53 94.79 98.10 97.47 100.00 95.60 72.41 93.33
ADASYN 99.52 94.31 97.60 97.12 98.33 97.80 65.52 92.78

PLS-DA

Null 98.57 72.04 71.01 80.71 98.33 69.23 55.17 76.67
ROS 97.63 83.41 91.94 91.00 96.67 67.03 68.97 77.22

SMOTE 96.68 78.20 87.20 87.36 98.33 81.32 72.41 85.56
BL-SMOTE 98.57 82.00 89.57 90.56 96.67 87.91 72.41 88.33
ADASYN 98.06 81.52 92.31 90.05 96.67 82.42 75.86 86.11

a,b,c represent normal jujube, starch-head fruit and mildewed fruit in dried Hami jujubes.

The discrimination accuracy of models based on null oversampling training data was
unsatisfactory. It was due to the high similarity of spectral data between mildewed fruit
and starch-head fruit. In addition, another more important reason was that the data of
mildewed fruit was relatively few, which caused the modeling effect to be biased. The
accuracy of the models based on the balanced data processed by oversampling methods
had been greatly improved, especially for mildewed fruit. The validity of the new synthetic
data and its positive effects on modeling were demonstrated. In terms of imbalanced data
handling, BL-SMOTE was more efficient than other methods. The overall accuracy of the
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SVM model increased to 93.33%, and that of the PLS-DA model increased to 88.33%. In
particular, the classification accuracy of mildewed fruit increased by 17.24%.

In order to comprehensively evaluate the impact of oversampling methods on the
model performance, Figure 4 presented the radar charts based on the accuracy, recall,
precision, F1, and kappa coefficient of the test set. The overall value located in the outermost
circle of the radar chart indicated that the comprehensive performance of the model was
excellent. The overall distribution of the SVM model was more biased toward the exterior
than that of the PLS-DA model, thus indicating that the SVM model was more suitable for
the detection of dried Hami jujube. What stood out in the Figure 4 was that the red lines that
represented the BL-SMOTE method were at the outermost circle in each dimension, again
proving that BL-SMOT outperformed the other methods. The accuracy, recall, precision, F1,
and kappa coefficient of the test set based on the SVM model established by BL-SMOTE
data were 93.33%, 89.34%, 91.64%, 90.34% and 85.00%, respectively. Thus, the SVM model
combined with the BL-SMOTE balanced training set was used for subsequent analysis.

Figure 4. Comprehensive evaluation indexes (%) of test set: (a) SVM model; (b) PLS-DA model.

3.3. Analysis of Variable Selection Strategies

Figure 5a showed the distribution of feature variables extracted by different variable
selection strategies. The number of variables extracted by the three algorithms was signifi-
cantly reduced compared to the full spectrum. With the CARS, IRIV and SPA algorithms,
the number of spectral variables was reduced from 934 to 52, 95 and 12, accounting for
5.57%, 10.17% and 1.28% of the full wavelength, respectively. The distributions of the
variables selected by CARS and IRIV were similar. Overall, the selected variables were
mostly distributed above 700 nm, which might be related to the stronger penetration ability
of the near-infrared. These spectral data contained more information about organic com-
pounds such as moisture, sugar and protein [38,39], which could better characterize the
difference between dried Hami jujubes in different states. The extracted variables were used
to construct SVM models, and the results of the test set are shown in Figure 5b. Only the
proper variable selection strategy can help obtain a more accurate and robust classification
performance. In this study, CARS obtained superior results. IRIV might retain too many
variables and cause redundancy, while SPA deleted important variables and caused feature
loss. After CARS variable selection, the accuracy, recall, precision, F1 and kappa coefficient
of the test set were 94.44%, 89.69%, 96.44%, 92.26% and 87.50%, respectively.
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Figure 5. (a) Distribution map of feature variables. (b) Test set results of SVM model based on
these variables.

3.4. Establishment of MRSA-SVM

Although the SVM model obtained based on BL-SMOTE and CARS methods can
detect dried Hami jujube, the accuracy still has room for improvement. To further improve
the classification performance, MRSA was introduced to optimize the parameters of SVM
model, and then, it was compared with RSA, GA and PSO. In all experiments, we set the
population size to 20 and the maximum number of iterations to 50. The optimization range
of penalty parameter c and the kernel parameter g was set to

[
2−2, 28]. Table 2 showed the

results of parameter optimization and the test set. The optimization algorithms improved
the classification performance of the SVM model except for GA. Obviously, MRSA-SVM
obtained the best detection results.

Table 2. Detection results of test set base on SVM optimized by different algorithms.

Optimizer c g Accuracy (%) Recall (%) Precision (%) F1 (%) Kappa (%)

MRSA 10.13 5.49 97.22 94.25 98.05 95.86 93.75
RSA 8.34 5.28 96.11 92.74 96.31 94.25 91.25
GA 3.76 12.89 93.33 87.39 95.84 90.32 85.00
PSO 6.48 6.85 95.56 91.40 97.06 93.63 90.00

Figure 6 was the optimization process for the models. In terms of convergence speed,
MRSA converged around the 12th generation, which was slightly faster than RSA. Mean-
while, GA and PSO were not converged in the 30th generation. According to the fitness
value, MRSA jumped out of the local optimum well and finally stabilized at 89.73%, indi-
cating that MRSA has a stronger search ability. The fitness values of PSO and RSA were
stabilized at 89.42%, and there was still room for optimization, namely that they had not
jumped out of the local optimum. In addition, MRSA-SVM also performed the best on
the test set, which further proved the excellent robustness of the model. Figure 7 was the
confusion matrix of the test set based on the MRSA-SVM model. We can see that both
normal jujubes and starch-head fruit were accurately discriminated. Among the mildewed
fruit samples, one was mistakenly judged as normal jujube, and four were mistakenly
judged as starch-head fruit. The overall accuracy of the test set was 97.22%. All results
showed that the MRSA-SVM model could be used to detect starch-head and mildewed
fruit in dried Hami jujube.
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Figure 6. Optimization process of MRSA, RSA, GA and PSO algorithm.

Figure 7. Confusion matrix of test set based on MRSA-SVM. NM, SH and MD represented normal
jujube, starch-head fruit and mildewed fruit, respectively.

4. Discussion

Vis-NIR spectroscopy is an effective method to realize the rapid and non-destructive
detection of jujube quality [40–42]. Most of these studies have focused on fresh jujubes.
Actually, jujubes are mostly marketed in dried form, so it is significant to eliminate defective
fruit in dried jujubes. Compared with fresh jujube, the epidermal cuticle of dried jujube
was changed, and there were many irregular folds on the surface. These characteristics lead
to defects hidden deep that are difficult to identify, which increases the difficulty of non-
destructive detection. In addition, there are few reports on the detection of starch-head fruit.
The starch-head fruit is between normal jujube and mildewed fruit, and its surface has no
obvious defect characteristics, so it is not easy to identify with the naked eye. Starch-head
fruit will develop into mildew fruit when it is not removed, causing food safety hazards.
In this study, we achieve the rapid detection of starch-head and mildewed fruit in dried
Hami jujube to further expand the application range of Vis-NIR spectroscopy. In addition
to Vis-NIR spectroscopy, machine vision and hyperspectral imaging are commonly used
methods for defective fruit detection [37,43,44]. Machine vision has a high detection rate
for defects with obvious changes in external characteristics, but it is not easy to identify
defects without obvious characteristics. In this study, the peel of mildewed fruit has
plaque, which is quite different from normal jujube and can be identified by the machine
vision method. However, for the starch-head fruit, the appearance of the sample is less
different from that of the normal jujube, and it is not easy to identify by machine vision.
Compared with machine vision, spectral information can reflect the changes in the content
and types of compounds in starch-head and mildewed fruit, and further analysis can realize
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the category discrimination. The hyperspectral imaging integrates machine vision and
spectroscopy, which can simultaneously acquire the spatial and spectral characteristics
of samples and can detect the internal and external defects of fruits. However, the price
of hyperspectral imaging equipment is high, the sampling time is long, and the acquired
data have the problem of dimensional disaster. Compared with hyperspectral imaging,
Vis-NIR spectroscopy has a fast sampling speed and simple detection method, which is
more suitable for enterprise production. The proposed method can provide technical
reference for the development of an automatic defect detection device for dried jujubes.

Balanced distribution and representative experimental samples were the keys to con-
struct classification models for dried Hami jujube. Oversampling techniques combined
with appropriate machine learning models can solve the class imbalance problem and
further improve the classification performance of the model [18]. In this study, BL-SMOTE
and ADASYN improved the model significantly, and BL-SMOTE was slightly better. In
addition, oversampling methods combined with SVM models outperformed PLS-DA mod-
els. ROS randomly replicated the minority class samples, although it can also improve the
performance of models, but the effects were not obvious, especially for mildewed jujubes.
Both BL-SMOTE and ADASYN were improved algorithms based on SMOTE, which might
be the reason why they are better than SMOTE. Although some previous studies [45–47]
have also adopted oversampling methods, there are few reports on applying multiple
oversampling methods to balance spectral data and compare their effects. Our research
results can be used as a reference. It is worth mentioning that the optimal oversampling
method needs to be determined according to the detection results of the model, combined
with specific cases.

A suitable meta-heuristic optimizer can effectively optimize the parameters of the
SVM model, thereby improving the classification performance. The previous research
results confirmed this conclusion [19,47]. A comparison of the classification results for
dried Hami jujube based on different models revealed the superiority of the MRSA-SVM
model. Moreover, the fast convergence speed and good fitness value further confirmed the
improvement effect of our improvement measures on RSA. Tent chaotic mapping optimized
the initial solution [48], while the Gaussian random walk strategy enhanced the exploration
ability and improved the local exploitation ability of the algorithm [49]. Other algorithms
can also be tried to further optimize the model to obtain better classification results. This
study facilitates the non-destructive detection of quality for dried jujubes and other dried
fruits, thereby accelerating the development of agro-products.

5. Conclusions

In this study, a non-destructive detection method of starch-head and mildewed fruit
in dried Hami jujube using visible/near-infrared spectroscopy based on BL-SMOTE and
MRSA-SVM was proposed. The BL-SMOTE successfully handled imbalanced spectral
data and improve the model performance. Furthermore, the MRSA-SVM using variables
extracted by CARS adaptively selected the parameters for defective fruit detection of jujube
samples and demonstrates superior classification accuracy compared with other models.
High accuracy and evaluation metrics verified the effectiveness of the proposed method.
In brief, this method can be used to detect the starch-head and mildewed fruit in dried
Hami jujubes, avoiding the hidden dangers of food safety. The established models have the
potential for practical application, which is of great significance for dried jujubes’ future
quality detection, grading and automatic screening. In addition, these methods could
provide technical reference for quality detection of other kinds of dried fruits. In further
work, this method will be combined with a microbiological test to species identification
and quantitative detection of fungi in mildewed fruit. In addition, other varieties of dried
fruits will be added to optimize the robustness and effectiveness of this detection model.
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