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The Human Reference Genome serves as the foundation for modern genomic analyses. However, in its present form, it does

not adequately represent the vast genetic diversity of the human population. In this study, we explored the consensus ge-

nome as a potential successor of the current reference genome and assessed its effect on the accuracy of RNA-seq read align-

ment. To find the best haploid genome representation, we constructed consensus genomes at the pan-human,

superpopulation, and population levels, using variant information from The 1000Genomes Project Consortium. Using per-

sonal haploid genomes as the ground truth, we compared mapping errors for real RNA-seq reads aligned to the consensus

genomes versus the reference genome. For reads overlapping homozygous variants, we found that the mapping error de-

creased by a factor of approximately two to three when the reference was replaced with the pan-human consensus genome.

We also found that using more population-specific consensuses resulted in little to no increase over using the pan-human

consensus, suggesting a limit in the utility of incorporating a more specific genomic variation. Replacing the reference with

consensus genomes impacts functional analyses, such as differential expressions of isoforms, genes, and splice junctions.

[Supplemental material is available for this article.]

In 2003, 15 years of work culminated with the International
Human Genome Sequencing Consortium publishing the first fin-
ished version of the Human Reference Genome (International
Human Genome Sequencing Consortium 2004; https://www
.genome.gov/human-genome-project/Completion-FAQ). Despite
the utility and continuous improvements over the years, it is still
not without flaws, primarily the lack of variation information.
Around 93% of the current GRCh38 assembly is composed of
DNA from just 11 individuals (International Human Genome
Sequencing Consortium 2001; https://www.ncbi.nlm.nih.gov/
grc/help/faq/). Because such a large portion of the reference comes
from such a small pool of individuals, it does not adequately repre-
sent the vast diversity present in the humanpopulation (Chen and
Butte 2010; Rosenfeld et al. 2012; Sherman et al. 2019). To explore
and capture humandiversity, researchers have continued sequenc-
ing thousands of genomes. The first of such projects, The 1000
Genomes Project Consortium, sequenced 2504 individuals across
26 populations. Overall, it was estimated that approximately
3000 genomes would be necessary to capture the most common
variants (Ionita-Laza et al. 2009); however, structural variation
present in the human population has challenged this (Berlin
et al. 2015). One particularly glaring example was shown in a re-
cent construction of an African pan-genome, which contained al-
most 300 million bases of DNA not seen in GRCh38 (Sherman
et al. 2019). This lack of variation information negatively affects
all kinds of genomic analyses that use the reference, such as disease
studies and GWAS analyses (Chen and Butte 2010; Rosenfeld et al.

2012; Stevenson et al. 2013; Buchkovich et al. 2015; Castel et al.
2015; Sherman et al. 2019). However, despite the ubiquity of
RNA-seq alignment and quantification, the improvements inmap-
ping from using a more diverse reference have not been shown.

Although graph genomes are theoretically capable of encap-
sulating all observed variation information (Church et al. 2015;
Paten et al. 2017; Garrison et al. 2018; Valenzuela et al. 2018;
Rakocevic et al. 2019; Sirén et al. 2021), it remains challenging
to use these tools for large-scale expression analyses such as in
RNA-seq quantification. In prior work, we proposed using a con-
sensus genome to inherently capture common variationwhile still
retaining the structure and functionality of the current reference
assembly (Ballouz et al. 2019). A consensus genome is a linear hap-
loid genome that incorporates population variation information
by replacing allminor alleles in the reference genomewith thema-
jor allele of that variant (Fig. 1A; Balasubramanian et al. 2011;
Dewey et al. 2011; Karthikeyan et al. 2017; Barbitoff et al. 2018;
Pritt et al. 2018; Ballouz et al. 2019; Shukla et al. 2019). Because al-
lele frequencies must be defined with respect to a population, a
consensus genome is representative of the population used to
define the major and minor alleles. Prior work has shown that us-
ing a consensus genome can have positive effects on variant call-
ing (Karthikeyan et al. 2017; Pritt et al. 2018; Shukla et al. 2019),
and the construction of population-specific consensus genomes
has been a major goal of multiple projects (Cho et al. 2016;
Fakhro et al. 2016; Higasa et al. 2016; Sherman et al. 2019;
Takayama et al. 2021). Additionally, replacing the current refer-
ence genome with a consensus genome in existing analysis pipe-
lines is straightforward because the consensus genome is still a
linear haploid sequence.5Present address: Department of Physiology and Terrence Donnelly
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Here, we seek to answer the question ofwhich linear reference
representation is best for RNA-seqmapping and downstream anal-
yses.We considered several consensus genomes, built by replacing
all minor alleles in the reference with the major alleles at different
population levels: pan-human, superpopulation, and population.
To work with consensus genomes, we developed ConsDB to con-
struct pan-human and population-level consensuses, as well as
STAR-consensus to streamline RNA-seq mapping to consensus ge-
nomes. We defined the ground truth by mapping the individuals’
RNA-seq reads to their personal haploid genomes and evaluated
the mapping accuracy improvements arising from replacing the
GRCh38 reference with the pan-human consensus, superpopula-
tion, or population consensus genomes. We found that for all in-

dividuals, the pan-human consensus
decreased the mapping error from the
reference by approximately two- to
threefold, whereas the superpopulation
and population consensuses did not
perform significantly better than the
pan-human consensus. To assess the
functional impact, we measured errors
in splice junction expression quantifica-
tion for different genome representa-
tions with respect to the ground truth
of the personal genome. We again found
that the pan-human consensus offers an
improvement over the reference, with
about five times asmany splice junctions
having a larger quantification error for
the reference than for the pan-human
consensus.

Results

Pan-human consensus captures

the majority of population deviation

from the reference

The construction of consensus genomes
requires population allele frequency
(AF) information.Currently, several data-
bases contain this information (Sherry et
al. 2001; Church et al. 2015; The 1000
Genomes Project Consortium 2015;
Karczewski et al. 2020). In this study, we
used The 1000 Genomes Project Con-
sortium database, which was established
to discover and catalog human genome
variant information (The 1000 Genomes
Project Consortium 2015; Clarke et al.
2017). To avoid population bias, the indi-
viduals genotyped in The 1000 Genomes
Project Consortium were selected to cre-
ate an even population distribution
across 26 populations,which are grouped
into five superpopulations (Fig. 1B; The
1000 Genomes Project Consortium
2015). This balancebetween thedifferent
populations means that The 1000 Ge-
nomes Project Consortium database is
well suited for creating a draft pan-
human consensus genome, whereas

other popular databases are more skewed toward specific popu-
lations and will therefore produce a biased pan-human consensus
genome. Additionally, the information from The 1000
Genomes Project Consortium is publicly available through the In-
ternationalGenomeSampleResource (IGSR) andcanbedownload-
ed in the form of VCF files, which contain variant genotype
information for all individuals (The1000GenomesProjectConsor-
tium 2015).

We constructed three types of consensus genomes based on
the various population levels present in The 1000 Genomes
Project Consortium: a pan-human consensus genome, a super-
population consensus genome, and a population consensus ge-
nome (Fig. 1B). For the pan-human consensus, we calculated AF
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Figure 1. Construction of the consensus genomewith major allele replacements. (A) Construction of a
consensus genome: Theminor allele in the reference is replaced by themost common (major) allele in the
population. (B) Visual representation of the individuals used to construct consensus genomes of varying
population specificity. (C) ConsDB workflow. (D) Number of major alleles for each population consensus
genome that were replaced in the reference. (E) Number of SNPs and indels shared between different
combinations of the pan-human, superpopulation, and population consensus genomes for the African
population. The bars in the top bar plot show the number of SNPs and indels that are unique to the in-
tersection of genomes indicated in the dot matrix below. The horizontal bars on the bottom left show the
total number of SNPs and indels present in each genome. (F) Number of SNPs and indels shared between
different combinations of the pan-human consensus and all three superpopulation consensus genomes.
The bars in the top bar plot show the number of SNPs and indels that are unique to the intersection of
genomes indicated in the dot matrix below. The horizontal bars on the bottom left show the total number
of SNPs and indels present in each genome.
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using genotype information fromall individuals present in the data-
base. For the superpopulation and population consensuses, we used
genotype information from all individuals of a given superpopula-
tion or population. For the eight individuals whose RNA-seq data
we used in this study, we used the consensus genomes built from
the superpopulation and population each individual belongs to.

To construct these consensuses, we replaced all minor alleles
(alleles with a population AF<0.5) present in the reference with
the major alleles (AF >0.5). This procedure is applied to both sin-
gle-nucleotide variants and insertions/deletions. For simplicity,
we omit overlapping indels. We will call these variants replaced
in the reference the major allele replacements (MARs).

The release of The 1000 Genomes Project Consortium data-
base that we used contained only biallelic variants; that is, each
variant had exactly one minor allele and one major allele.
Additionally, it only contained SNPs and small insertions and de-
letions (<50 bp), whereas large structural variants (https://www
.ncbi.nlm.nih.gov/dbvar/content/overview/) were not considered
in this study. Although structural variants are a large source of ge-
nomic variation, they are understudied and not sufficiently cata-
loged to be used in consensus genomes owing to mapping and
classification difficulties (Mahmoud et al. 2019).

To facilitate working with the large VCF files of The 1000
Genomes Project Consortium database, we developed ConsDB, a
Python package that provides a convenient, class-based interface
to work with the large number of variants contained in The
1000 Genomes Project Consortium database. It also provides the
main script with several runmodes to perform common tasks asso-
ciated with consensus genomes, such as constructing the consen-
sus genome VCF files used in this study. ConsDB operates using a
simple workflow (Fig. 1C). The first step is downloading the data-
base VCF files. For this study, we used The 1000 Genomes Project
Consortium, but ConsDB is also capable of parsing gnomAD VCF
files. The next step is for ConsDB to parse the database VCF files
and save them in the ConsDB format. At this point, files from dif-
ferent databases (if multiple databases are being used) can be com-
bined into one file per chromosome. Finally, ConsDB uses these
parsed files to generate the end result: in this case, a VCF file defin-
ing a consensus genome.

One of ConsDB’s main benefits is that it facilitates working
with large variant databases. Although tools such as BCFtools
(Danecek et al. 2021) can also construct consensus genomes from
VCF files, creating a population-specific consensus requires build-
ing complex expressions for variant inclusion thatmay prove diffi-
cult for someusers. ConsDB is designed to be easy to use and allows
the construction of population-specific consensuses using just a
single additional file with population information. ConsDB also
exposes a powerful and easy-to-use backend that allows more ad-
vancedusers to incorporate its capabilities into theirownpipelines.

The personal haploid genomes were constructed using the in-
dividual genotypes from The 1000 Genomes Project Consortium
database. For each individual, all homozygous variants that differ
from the reference were inserted into the reference. Additionally,
all heterozygous alleles were randomly chosen with a probability
of 0.5 to be included or excluded. Although these haploid personal
genomes are a crude approximation of the actual diploid genome,
they are sufficient for comparison of mapping accuracy between
haploid consensuses and the haploid reference, and thus, we
used them to define the ground truth for RNA-seq mapping in
this study.

Figure 1D shows the number of minor alleles in the GRCh38
reference that must be replaced with the major alleles for each of

the superpopulation consensus genomes. The European consen-
sus is the most similar to the reference, and it still requires ap-
proximately 2.1 million SNP and indel corrections from the
reference. Other superpopulation consensuses contain even larg-
er numbers of major allele deviations from the reference, with
the East Asian consensus differing most from the reference. We
note that such a large number of minor alleles in the reference
with respect to any population stems from its construction,
which used sequences from only one individual for most of the
genomic loci, and thus incorporated individual-specific low-fre-
quency alleles.

In Figure 1E, we compute intersections of the MARs in the
pan-human, African superpopulation, and Yoruban population
consensus genomes. The pan-human consensus shares most of
the major alleles with the superpopulation and population con-
sensuses (about 1.5 million), whereas the latter two share about
400,000 MARs not present in the pan-human consensus. The
pan-human consensus contains about 300,000 MARs not present
in either superpopulation or population consensuses. Finally, the
Yoruban population consensus has about 50,000 unique MARs.
The intersections of MARs look similar for other populations
(Supplemental Figs. S1, S2) and personal homozygous variants
(Supplemental Figs. S3–S5). Figure 1F shows the intersections be-
tween the MARs for the pan-human consensus and three super-
population consensuses. The MARs shared by all four of these
genomes make up the largest group, containing about 1.2 million
MARs and representing well over half of the MARs in any one ge-
nome. This group is more than three times as large as the next
largest group, showing that most of the population deviation
from the reference is captured in the pan-human consensus.

Consensus genomes significantly improve RNA-seq mapping

Next, we analyzed to what extent the consensus genomes improve
RNA-seq mapping accuracy. The RNA-seq reads were obtained
from theHumanGenome Structural VariationConsortium, which
sequenced three father–mother–daughter trios from The 1000
Genomes Project Consortium (Fairley et al. 2020). One of these in-
dividuals (HG00514 from the East Asian trio) is not present in the
database version used in this analysis and was excluded from our
analyses.

To simplify alignment to the consensus genome, we devel-
oped STAR-consensus, an extension to the RNA-seq aligner STAR
(Fig. 2A; Dobin et al. 2013). It imports variants from a VCF file
and incorporates them into the reference genome sequence, thus
creating a transformed genome for mapping. Importantly, after
mapping the reads to the transformed genome, STAR-consensus
can reverse the alignment coordinates back to the original refer-
ence genome coordinates. This transformation is nontrivial
when insertion or deletion variants are included and allows per-
forming all downstream analyses in the reference coordinate sys-
tem. Such an approach is an incremental step toward taking
advantage of the consensus genome while at the same time using
the conventional coordinate system.

The summary statistics for alignments to the reference and
consensus genomes are presented in Supplemental Table S1. The
changes in the overall mapping rates are marginal because only a
small proportion of reads overlap theMARs. The effect ismore pro-
nounced for reads that overlap personal homozygous SNPs (2.2%
of all reads): The unique mapping rate for such reads increases
from 92.6% to 94.5%, whereas the mismatch error rate is reduced
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Figure 2. Mapping accuracy improvements owing to switching from reference to consensus genomes. (A) Internal workflow of STAR-consensus. (B)
Different types of mapping errors based on the read’s mapping status in the individual’s haploid personal genome and the reference or given consensus
genome. (C ) Overallmapping error rate for each error type for individual NA19238. Genome is shownon the x-axis, and themapping error rate is shownon
the y-axis. (D) Overall mapping error rate for all individuals. Individuals from the same population are grouped together by color, with each marker shape
representing one individual in the population. The dashed line shows the average error rate for the population, and the solid vertical line indicates the range
of the population. (E) Homozygous mapping error rate for each error type for individual NA19238. (F) Homozygous mapping error rate for all individuals.
Individuals from the same population are grouped together by color, with each marker shape representing one individual in the population. The dashed
line shows the average error rate for the population, and the solid vertical line indicates the range of the population. (G) Homozygous mapping error rates
for each error type for simulated reads for individual NA12938. (H) Population-average homozygous mapping error rates for simulated reads for all
individuals.
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from 1.3% to 0.5%. Similar effects are observed for reads overlap-
ping homozygous indels, which constitute only 0.15%of all reads.

To assess the error rate, we needed to compare the read map-
pings in the various genomes to ground truth. However, because
the true mapping location of these reads is unknown, we used
the personal haploid genome alignments as the ground truth.
The personal haploid genomes correctly incorporate individual
homozygous variants and thus can serve as a first-order approxi-
mation to the actual diploid personal genomes. Because typically
both heterozygous alleles are present in RNA-seq reads, choosing
one of them randomly (Supplemental Fig. S36) should be neutral
for alignment accuracy on average (i.e., it should not make the
alignment better or worse). Hence, the haploid genome is a good
proxy for the actual personal diploid genome as it improves the
alignment accuracy of homozygous variants while not affecting
the heterozygous variants.

We classified mapping errors into five types based on the
change of the read’s alignment status in the reference/consensus
genome compared with the ground truth (Fig. 2B). The different
error types are as follows: reads that are mapped uniquely in the
personal genome butmapped tomultiple loci in the other genome
(unique to multiple), reads that are mapped to multiple loci in the
personal genome butmapped uniquely in the other genome (mul-
tiple to unique), reads that mapped to the personal genome but
not to the other genome (mapped to unmapped), reads that did
notmap to the personal genome but didmap to the other genome
(unmapped to mapped), and reads that mapped uniquely in both
genomes but to different positions (different mapping loci). The
mapping error rate for an error type is defined as the number of er-
roneously mapped reads normalized by the total number of reads
from an individual.

For each individual, we calculated the error rates for mapping
to the reference and their respective consensus genomes (pan-hu-
man, superpopulation, population). Figure 2C shows the overall
error rates for each error type for the individual NA19238. The
most significant error comes from the reads that switch frommap-
ping uniquely in the personal genome tomapping tomultiple loci
in the reference/consensus genomes, followed by reads that map
to multiple loci in the personal genome but map uniquely in the
reference/consensus.

We also separately plotted the error rate for reads that overlap
indel variants (Supplemental Fig. S6), which are very small com-
paredwith the overall error rates in Figure 2C. These plots look sim-
ilar for the other individuals (Supplemental Figs. S7–S20).

Figure 2D shows the overallmapping error rate for all eight in-
dividuals, summed over the five error types. We see a noticeable
decrease in the error rate when the reference genome is replaced
with the pan-human consensus. Additionally, increasing popula-
tion specificity to the superpopulation or population consensus
does not result in a significant further reduction of the error rate.
This trend mirrors the observation about the minor alleles dis-
cussed above (Fig. 1E,F) and supports the conjecture that the ma-
jority of the mapping accuracy improvement is captured by the
pan-human consensus, with little additional benefit from the
superpopulation or population consensuses.

Replacement of the minor alleles in the reference with the
major alleles in the consensus can only correct the mapping errors
caused by the homozygous alternative alleles in an individual. Of
course, the actual individual genome is diploid and contains mil-
lions of heterozygous variants (i.e., both the major and minor al-
leles are present), which cannot be truthfully represented in a
haploid reference or consensus genome. To elucidate this issue,

we defined the homozygous mapping error rate as the number of
erroneously mapped reads that overlap homozygous variants nor-
malized by the total number of reads overlapping homozygous
variants for an individual. The homozygous mapping error rate
shows the effect of different genomes, specifically on read align-
ments that can be affected by these genomes. Because the genomes
used in this study are all haploid, we do not expect reads that over-
lap heterozygous variants to be significantly affected by the specif-
ic genome used.

We plotted the homozygous mapping error rates for the indi-
vidual NA19238 (for each error type) in Figure 2E and all eight in-
dividuals (summed over all error types) in Figure 2F. Compared
with Figure 2C and D, the homozygous error rates (Fig. 2E,F)
show a much steeper decrease when the reference genome is re-
placed with the pan-human consensus. Additionally, the hetero-
zygous error rate is higher than the homozygous error rate and
stays relatively constant across all genomes (Supplemental Figs.
S21–S28). This supports the notion that consensus genomes signif-
icantly improve themapping accuracy of the reads that overlapho-
mozygous variants; however, owing to their haploid nature, they
cannot improve the alignment of the reads overlapping heterozy-
gous loci.

Wehave investigated the robustnessofour resultswith respect
to the consensus allele definition (Supplemental Fig. S30). We see
significant improvement in mapping accuracy even for relaxed
(AF>40%) or stringent (AF>60%) major allele frequency
thresholds, only slightly different from the standard definition
(AF>50%). These results show that the consensus genomebenefits
do not strongly depend on the precise definition of the consensus
alleles or the databases used to calculate allele frequencies. This is
not surprising because themain accuracy improvements are owing
to the elimination of relatively rare minor alleles from the refer-
ence. We find the same trends for RNA-seq data for 100 European
and African individuals sequenced by the Geuvadis (Lappalainen
et al. 2013; Fairley et al. 2020) consortium (Supplemental Fig. S29).

In the calculations above, the error rates were defined relative
to the personal genome alignments, which were considered the
ground truth. To corroborate our findings, we simulated reads
from the personal genomes of each individual and calculated the
error ratewith respect to the true read loci (Fig. 2G,H). The simulat-
ed error rates show a significant reduction when switching from
the reference to the pan-human consensus, and a much smaller
decrease for superpopulation and population consensuses, very
similar to the results obtained for real RNA-seq data (Fig. 2E,F).

To further test the robustness and generalizability of these re-
sults, we also analyzed themapping error rate reduction in consen-
sus genomes for another popular RNA-seq aligner, HISAT2 (Kim
et al. 2019). Supplemental Figure S31 shows that the trends for
HISAT2-mapped reads are qualitatively similar to our STAR results
(Fig. 2). These results show that consensus genomes will be advan-
tageous regardless of the alignment algorithm used.

Mapping RNA-seq reads to unrelated consensus genomes

outperforms the reference

We investigated the effects of mapping an individual’s RNA-seq
reads to consensus genomes of different populations (Fig. 3A)
and other personal haploid genomes (Fig. 3C). We used the same
reads, individuals, and genomes as previously discussed and
mapped all individuals to all genomes. The homozygous
mapping error rate is calculated as before and is shown in Figure
3, B and D.
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Figure 3. Mapping accuracy improvements owing to switching from reference to consensus genomes when mapping to alternative genomes. (A) Each
individual from each population is independently mapped to the reference, pan-human consensus, and all population and superpopulation consensus
genomes. (B) Homozygous mapping error rate when mapping to different consensus. The color of the marker indicates the population to which that in-
dividual belongs, whereas the shape of themarker identifies the individual within the trio. The color of the background rectangle indicates the population of
the genome. The dashed line in each column represents themeanmapping error for that combination of genome and individuals. (C ) Each individual from
each population is independently mapped to the reference, pan-human consensus, and all personal haploid genomes. (D) Homozygous mapping error
rate when mapping to different personal haploid genomes.

Consensus genome improves RNA analyses accuracy

Genome Research 743
www.genome.org



As expected, Figure 3B shows that the unrelated consensus
genomes perform worse than both the related population con-
sensus and the pan-human consensus because each population
consensus contains many major alleles unique to that popula-
tion. On the other hand, unrelated consensus genomes still per-
form better than the reference. This is explained by the fact that
the reference contains a large number of minor alleles specific to
the individuals who contributed to the reference assembly.
Conversely, the personal genomes of unrelated individuals are
unlikely to share many MARs. This is illustrated in Figure 3D:
The mapping error rate to personal genomes from different pop-
ulations is higher than mapping to the pan-human consensus
and is comparable with mapping to the reference. Even mapping
to the unrelated individual genome from the same population
(mother to father and father to mother) does not improve the ac-
curacy significantly. However, because the daughter in each trio
will share many of her MARs with her parents, we see the error
rates for mapping daughters’ RNA-seq reads to their parents’ ge-
nome (and vice versa) are slightly better than mapping to the
pan-human consensus.

The results show that the reference genome performs worse
than any consensus genome, even consensuses from a different
population. The accuracy of mapping to the reference is compara-
ble to mapping to unrelated personal genomes. On the other
hand, the pan-human consensus outperformsmapping to the un-
related individual genomes of the same or different population,
and its performance is comparable with mapping to the genomes
of related individuals (parent to child).

MARs affect gene sequences

To investigate the genomic mechanisms underlying these map-
ping errors, we classified the genomic loci of the error-causing var-
iants by overlapping error-causing reads with the GENCODE v29
annotations. Only a small proportion of the error-causing variants
occur in the coding regions, whereas most are located in the
intronic regions, followed by UTRs and intergenic regions (Fig.
4B). Because poly(A)+ RNA-seq reads should generally not map to
introns, these errors are likely attributable to reads switching be-
tween being uniquely mapped andmapping to multiple locations
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Figure 4. Functional effects of replacing the reference genome with a consensus. (A) Histogram of the number of MARs in the exons of noncoding, pro-
tein-coding, and disease-associated genes. (B) Counts of variants in the personal haploid genome that cause mapping errors in the reference, classified by
the genomic feature in which the variant is located. For each set of bars, the left bar shows the number of homozygous variants, and the right bar indicates
the number of heterozygous variants. (C) The gene expression log2 fold change between the pan-human consensus and the reference genome as a func-
tion of the maximum expression in counts per million of the T cell cluster. Red circles indicate genes with an adjusted P-value < 0.1. (D) Comparison of the
gene expression log2 fold change between T cells and monocytes in the pan-human consensus and the reference genome. The log2 fold change values
were capped between −10 and 10.

Kaminow et al.

744 Genome Research
www.genome.org



(unique to multiple and multiple to unique error types). This cor-
responds with the previous observation that the largest sources of
errors were the unique to multiple and multiple to unique error
types.

The distribution of MARs in the exons of annotated genes is
shown in Figure 4A. Overall, 12,000 protein-coding and 11,000
noncoding genes contain at least one exonic MAR. Approximately
50% of the protein-coding genes containing MARs have known
disease associations (Piñero et al. 2016). Althoughmost genes con-
tain fewer than 10 MARs, 235 genes carry more than 10 MARs.
These results show that the many transcript sequences in the cur-
rent reference containminor alleles, which are replaced withmore
representative major alleles in the consensus genome. Of course,
even larger numbers of MARs per gene are located in the intronic
regions (Supplemental Fig. S32).

MARs affect gene expression

Here, we exemplify the effects of replacing the reference with a
consensus genome on gene expression in a single-cell RNA-seq
data set. The prevalent droplet-based single-cell sequencing tech-
nologies allow studying the differential transcriptomic programs
between cell types. Because a large proportion of reads generated
by these technologies originate fromUTRs and introns, they are es-
pecially susceptible to incorrect mapping owing tominor alleles in
the reference. In this example, weused the peripheral bloodmono-
nuclear cell data set generated by the 10x Chromium v3 protocol.
The changes in the gene expression between the pan-human and
reference genomes are shown in Figure 4C for the T cell cluster.
Although the gene expression changes are small for the majority
of the genes, several genes (red circles) show a significant change
in expression when minor alleles in the reference are replaced
with major alleles (Supplemental Table S2). The genes that show
increased expression (23 genes, 12 protein-coding, seven disease-
associated) in the pan-human consensus represent an improve-
ment in sensitivity. On the other hand, the genes whose
expression is higher in the reference (51 genes, 31 protein-coding,
22 disease-associated) are false positives that are eliminated in the
consensus genome.

This effect can also be observed in the differential gene ex-
pression between the different clusters. Figure 4D shows how the
differential gene expression between T cells and monocytes
changes when the reference is replaced with the consensus ge-
nome. Although, as before, only several genes are impacted, the bi-
ological interpretation for such genes will be significantly altered
by the consensus genome. Given these observations, we can con-
jecture that other gene expression–based analyses, such as eQTL
and TWAS, can also be improved by replacing the reference ge-
nome with the pan-human consensus. Furthermore, we found
that analyses that go beyond gene expression, such as alternative
splicing and differential isoform expression, are also noticeably af-
fected by the reference replacement with the consensus
(Supplemental Figs. S34, S35).

Discussion

In any data analysis, often a first central question is how much
variation to include. This might be accomplished by dimension
reduction, quality control, feature selection, stratification, or oth-
er techniques. The human genome is no exception, and consid-
ering how best it should be summarized remains a crucial
problem, which may have a use-dependent solution: What is es-

sential for disease variant detection may not be necessary for
RNA-seq alignment, and vice versa. The current reference ge-
nome has had enormous utility, and before tearing down the in-
frastructure that has been built up to exploit it, it is important to
consider alternatives carefully. Graph genome methods are one
promising option, and they resolve the primary deficiency in
the reference: effectively incorporating all variation (or aspiring
to). However, this comprehensiveness comes with its own host
of issues, such as the lack of a simple coordinate system, difficul-
ties with visualization, and significantly inflated computing re-
quirements. The wide adoption of a graph-based reference
genome will likely take a long time, given the history of switch-
ing from one version of the linear reference to the next: GRCh38
was released in December 2013 (https://genome.ucsc.edu/FAQ/
FAQreleases.html), and at the time of this writing, over eight
years later, studies are still being published using GRCh37.

Although the full adoption of a graph genomemay be several
years in the future, the path there need not be a straight line. We
may explore methods that partially improve on the current refer-
ence while imposing a fraction of the costs of the graph methods.
By progressively assessing the role of population variation (in es-
sence, moving from low principal components to higher ones),
we can develop intermediate formsmoving from the current refer-
ence to more accurate reflections of population variation, particu-
larly ones that still opt to summarize variability to some degree.
The consensus genomes have substantial utility at the pan-human
level and then show a fall off past that point, suggesting that the
pan-human consensus can be considered a first step in the direc-
tion of adding population variation information to the reference.
Although consensus genomes are unable to represent all human
genotypic variation comprehensively, they are still a desirable al-
ternative to the reference as they eliminate themillions of spurious
minor alleles present in the current reference genomewhile main-
taining a simple linear coordinate system.

Second-order approximations to the consensus reference
have also been proposed. For instance, in the MajorFlow (Chen
et al. 2021) algorithm, reads aremapped to a collection of reference
genomes incorporating population variation, and the reference
with the best alignment for each read is selected. Applying this
methodology to RNA-seq data is an exciting possibility to be ex-
plored in future work.

Consensus genomes have a straightforward representation in
graph genomes: The consensus sequence is the locally most prob-
able linear path in the variation graph genome (i.e., the pathwhere
alternative variants with the highest population frequency are se-
lected). Thus, consensus genomes can be thought of as a first-order
approximation of the full variation graph genome. Graph-based
aligners, such as VG (Hickey et al. 2020), HISAT2 (Kim et al.
2019), andminigraph (Li et al. 2020), have been shown to increase
the accuracy of mapping. We can envision that after computing
alignments as paths through the variation graph, these aligners
can project the graph alignments into the linear consensus path,
hence allowing for a more straightforward output that is more
compatible with the downstream processing pipelines.

This study explored the advantages and limitations of using
consensus genomes for RNA-seq mapping. We used read align-
ments to the haploid personal genome as a proxy for the ground
truth to quantify the rate of erroneous alignments to the reference
genome and compared it to the three levels of consensus: pan-hu-
man, superpopulation, and population.

The overall mapping error rate caused by reference shortcom-
ings is relatively small at only ∼0.5%–0.6% of all reads for the
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reference genome and further reduced to 0.3%–0.4% for the con-
sensus genomes, leaving relatively small room for further improve-
ments (Fig. 2D). However, for some analyses, such as allele-specific
expression or de novo variant calling, the only reads of interest are
those that overlap the variants. If we normalize the number of the
erroneous reads by the number of reads that overlap the personal
variants for each individual, we observe much higher correspond-
ing error rates of ∼8%–10%, which decrease to ∼2%–4% when us-
ing a consensus genome.

The homozygous error rate (defined for reads that overlap
only homozygous variants) is substantially decreased (by approxi-
mately two- to threefold) when the pan-human consensus re-
places the reference genome. Using the superpopulation or
population consensuses does not further improve themapping ac-
curacy, indicating that the pan-human consensus captures most
population variation information that can be captured in a linear
haploid genome. Using the superpopulation or population con-
sensus genomes may not be worth the loss of generality: For in-
stance, it will severely complicate interpopulation comparisons
owing to the lack of a standard coordinate system.

These mapping results call into question the time and re-
sources spent on constructing consensus genomes for particular
populations (Cho et al. 2016; Fakhro et al. 2016; Higasa et al.
2016; Sherman et al. 2019; Takayama et al. 2021). One would ex-
pect that more specific consensus genomes would increase the
mapping accuracy for the populations they represent. However,
our results indicate that a universal pan-human consensus ge-
nome is sufficient to attain the best possible accuracy that can be
achieved with a haploid reference, and the expensive efforts to
construct more population-specific references are likely futile for
improving the accuracy of RNA-seq analyses.

On the other hand, the heterozygous error rate (for reads that
overlap heterozygous variants) is not significantly reduced by re-
placing the reference with a consensus of any population level.
This is not surprising given that the haploid genome can only in-
clude one of the alleles of a heterozygous locus and hence cannot
truthfully represent it. Graph genomes or other nonlinear refer-
ence representations will be required to reduce error rates for het-
erozygous loci.

Although there is still work to be performed on improving the
reference genome, the pan-human consensus already offers no-
ticeable improvements in downstream analyses, as indicated by
the difference in splice junction expression quantification. We
showed that the accuracy of the splice junction quantification is
significantly improved by switching from the reference to the
pan-human consensus. These improvements imply important
consequences in functional analyses such as alternative splicing,
transcript abundance quantification, and differential isoform
usage. Splice junction differences are subtle, but the fivefold differ-
ence in the number of splice junctions with a higher quantifica-
tion error in the reference than in the pan-human consensus
shows that the pan-human consensus offers meaningful improve-
ments over the reference. Results from a similar analysis of gene
isoform expression (Supplemental Information) provide addition-
al support for this claim.

At the same time, mapping to the consensus genome instead
of the reference leads to marginal increases in computational time
(∼2%) (Supplemental Fig. S33) andmemory (∼10%, from 29GB to
32 GB). These increases are driven mainly by the need to convert
the consensus alignment coordinates to the reference coordinates,
which will be eliminated if the consensus genome becomes the
reference.

This study was focused on the benefits of a consensus refer-
ence for RNA-seq analyses. To illustrate that these results can be
generalized for other types of functional sequencing assays, we cal-
culatedmapping error rates for theH3K4me3histonemodification
ChIP-seq data set from the ENCODE consortium (Supplemental
Fig. S37). Similar to theRNA-seq results, the error rate for reads over-
lapping homozygous variants is reduced from 6.1% to 1.9% when
the reference is replaced with the pan-human consensus, whereas
population-specific consensuses do not improve the accuracy
significantly.

This study only considered single-nucleotide variants and
small insertions/deletions. Large structural variants can add or re-
move large sequence fragments from the genome (Sherman et al.
2019) and thus may have an even bigger effect on mapping accu-
racy. The new generation of long-read technologies shows promise
for the confident detection of large structural variants. However, at
this time, allele frequency information is unavailable for large
structural variants, and thus, they cannot be included in the con-
sensus reference construction.

Ultimately, the best reference sequence for each individual is
their own personal genome. As sequencing costs are rapidly de-
creasing, personal genomes are becoming more available.
Nevertheless, there will be a need for a common reference capable
of representing the analysis results in a universal coordinate
system.

The pan-human consensus appears to be a strict improve-
ment over the current reference with minimal costs, and thus,
we propose replacing the current reference with the pan-human
consensus. Besides the question of absolute utility, we also advo-
cate using consensus genomes as a mechanism to develop prac-
tices to improve genome representation more generally. Recent
years have seen genomics pipelines using the reference become
entrenched, to varying degrees, by researchers unwilling to up-
grade. Because the consensus genome requires minor changes
in pipelines, it can be used as a straightforward, first-order ap-
proximation to assess and explore the sensitivity of specific geno-
mic analyses to genome variation. For instance, the benefits of
the consensus genome for RNA-seq mapping can be explored
via the STAR-consensus pipeline, which aligns reads to the con-
sensus genome and then transforms the coordinates to the refer-
ence genome coordinates, thus eliminating the need for changes
in the downstream processing. By incorporating consensus ge-
nomes, we envision not only improvements in the absolute per-
formance of diverse research projects but also a greater
understanding of the dependencies in those methods, thus
setting the stage for a more flexible and robust future for
genomics.

Methods

Calculating consensus alleles

We calculated the consensus allele for each variant on a per-hap-
lotype basis: The number of occurrences of each allele was count-
ed, and the most common allele was selected. For the pan-human
consensus, the alleles were counted across all individuals. For
each superpopulation and population consensus, the alleles
were counted across all individuals within that group. This
counting was performed in Python by ConsDB by reading
through each VCF file one line at a time and parsing the geno-
type for each individual in the group for which the consensus
is being constructed.
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Genome generation and read mapping

All genome generation and read mapping were performed with
STAR v2.7.7a (Dobin et al. 2013). We used GRCh38 (Schneider
et al. 2017) as the reference FASTA file and GENCODE v29
(Frankish et al. 2019) as the reference GTF file. We masked the
PAR regions on the Y Chromosome to avoid any sex-based differ-
ences in mapping. For the generation of consensus and personal
haploid genomes, we used the ‐‐genomeTransformType

Haploid option and the ‐‐genomeTransformVCF option with
the appropriate VCF file. For the read mapping, we used the
‐‐genomeTransformOutput SAM SJ and the ‐‐quantMode

GeneCounts TranscriptomeSAM options. We also used the
‐‐outSAMreadID Number option in order to keep track of reads
in the analysis steps more easily. Other than these options, we
used the default STAR parameters.

Mapping error calculations

Before calculating the mapping error, we made several prepara-
tions. First, we used awk to construct VCF files that contained
only the individual’s phased genotype. Next, we used these full
VCFs to partition the variants for each consensus genome for
each individual into four separate VCF files: one for homozygous
SNPs, one for heterozygous SNPs, one for homozygous indels,
and one for heterozygous indels. These four split VCFs needed to
be generated for each individual, including individuals fromwith-
in the same population, because variants may be homozygous in
one individual but heterozygous in a different individual.

For each individual, filtered alignments for the reference,
pan-human consensus, superpopulation consensus, and popula-
tion consensus were compared with the filtered alignment for
their personal haploid genome using an awk script. We compared
the genomes on a per-read basis, checking for differences in map-
ping position and number of mapped loci. To determine what
types of variants each read overlapped, we overlapped the filtered
BAM files with each of the four split VCF files using BEDTools,
for each genome and each individual. We compared the read
IDs from this overlap with the read IDs obtained from the ge-
nome mapping comparisons using grep in order to find error-
causing variants.

The final steps of read counting and plotting were performed
using a Python script. For each individual, we summed the read
counts for each combination of error type and homozygous/het-
erozygous variants across all four genomes being analyzed. The
two normalization constants used for these figures were the total
number of mapped reads for each individual and the total number
of reads that overlapped personal homozygous variants. The total
mapped read numbers were extracted from the STAR Log.final.out
file. The counts of reads overlapping personal homozygous vari-
ants were found by counting the number of reads present in the
previously found overlap files for reads overlapping homozygous
variants in the personal haploid genome.

We applied the samemapping error calculationmethodology
to the ENCODE H3K4me3 ChIP-seq data set for the GM12878 cell
line derived from The 1000 Genomes Project Consortium individ-
ualNA12878.TheFASTQfiles ENCFF598WCXandENCFF825QGB
were downloaded from the ENCODE portal. STAR was run with an
additional –alignIntronMax 1 option to prohibit spliced
alignments.

Special considerations for reads aligned with HISAT2

Because HISAT2 does not have the same consensus-to-reference
transformation capabilities as STAR-Consensus, themapping error
calculation pipeline must be adjusted to work with HISAT2. First,

each individual’s personal VCF file and all consensus VCF files
were collapsed to remove overlapping variants, following the
same procedure that the BCFtools consensus command uses.
This variant filtering was performed using a custom Python script
available in the accompanying GitHub repository. Following the
VCF filtering, a FASTA file was generated for each individual and
each consensus using these reduced VCF files with BCFtools. At
this point, the standard HISAT2 index-generation and mapping
commands were used. Because the coordinate system for the
HISAT2 alignments was specific for each genome used, we used
levioSAM (Mun et al. 2021) in conjunction with the previously
generated VCF files to transform the alignment coordinates back
to the reference. Other than this liftOver step, the comparison of
alignments was identical to the pipeline used with the STAR-
Consensus results.

Simulating reads with personal variants

We used the following procedure to simulate personal reads and
compare their alignments to the consensus genomes with the
true coordinates. First, the sequences of all annotated transcripts
were extracted from the reference genome, and each base of these
sequences was associated with the reference coordinate. Next, we
modified the transcript sequences for each individual using their
personal single-nucleotide variants and indels, both homo- and
heterozygous, which resulted in two haplotypes for each tran-
script. We then extracted the 50-bp read sequences from both per-
sonal haplotypes, covering all transcripts uniformly. The true
coordinates of these reads in the reference genome were taken
from the information recorded in the first step. Sequences that ap-
peared multiple times in the personal genome were eliminated.
Finally, we aligned the reads to the consensus genomes using
STAR-Consensus and transformed the alignments to the reference
coordinates, allowing us to compare their mapped positions to the
true simulated coordinates.

Finding error-causing variant locations

To find the genomic annotations of error-causing variants, we first
selected the error-causing variants as described above. We next
used BEDTools to intersect these variants with the GENCODE
v29 (Frankish et al. 2019) GTF file and find all genomic annota-
tions that each variant overlaps. Because certain genomic annota-
tions always fall within other genomic annotations (e.g., an exon
will necessarily be locatedwithin a gene), a given variant is likely to
have multiple genomic annotations that it overlaps. We used a
Python script to determine the most specific genomic annotation
overlapped by each variant and count the number of variants fall-
ing within each type of genomic annotation.

Processing single-cell RNA-seq data set

We used the STARsolo gene/count matrix generated with the
‐‐soloFeatures GeneFull_ExonOverIntron option as a start-
ing point for the SCANPY (Wolf et al. 2018) 1.6.0 pipeline. We
used the Leiden clustering algorithm to identify fourmain clusters:
T cells, B cells, natural killer (NK) cells, and monocytes. The differ-
entially expressed genes in each cluster were evaluated using
SCANPY’s implementation of the t-test.

Software availability

The ConsDB package is available at GitHub (https://github.com/
kaminow/consdb). STAR-consensus is available at GitHub (https
://github.com/alexdobin/star). Scripts to reproduce the analysis
in this study, including the Supplemental Information and
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Supplemental Figures, are also available at GitHub (https://github
.com/kaminow/ConsDB_analysis) and as Supplemental Code.
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