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Given the fact that excessive levels of reactive oxygen species (ROS) induce damage to
proteins, lipids, and DNA, various ROS-generating agents and strategies have been
explored to induce cell death and tumor destruction by generating ROS above toxic
threshold. Unfortunately, hypoxia in tumor microenvironment (TME) not only promotes
tumor metastasis but also enhances tumor resistance to the ROS-generated cancer
therapies, thus leading to ineffective therapeutic outcomes. A variety of nanotechnology-
based approaches that generate or release O2 continuously to overcome hypoxia in TME
have showed promising results to improve the efficacy of ROS-generated cancer therapy.
In this minireview, we present an overview of current nanomaterial-based strategies for
advanced cancer therapy by modulating the hypoxia in the TME and promoting ROS
generation. Particular emphasis is put on the O2 supply capability and mechanism of these
nanoplatforms. Future challenges and opportunities of design consideration are also
discussed. We believe that this review may provide some useful inspiration for the
design and construction of other advanced nanomaterials with O2 supply ability for
overcoming the tumor hypoxia-associated resistance of ROS-mediated cancer therapy
and thus promoting ROS-generated cancer therapeutics.
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INTRODUCTION

ROS (including singlet oxygen (1O2), superoxide radicals (O2
•−), hydroxyl radicals (•OH), and

peroxides (O2
2−)) play a concentration-dependent role in physiological activity (Gorrini et al., 2013).

Low to moderate levels of ROS regulate cell signaling and promote cell proliferation, and elevated
levels of cellular ROS are one of the unique characteristics of cancer, whereas excessive ROS will
induce nonspecific damage to proteins, lipids, and DNA. Because of the heightened basal level of
ROS in cancer cells, cancer cells are more susceptible to exogenous ROS, compared to normal cells
that maintain redox homeostasis (Yang B. et al., 2019). Therefore, modulation of the ROS level at
cancer cells has been emerging as promising strategy for the tumor destruction by generating ROS
above toxic threshold. Hypoxia, mild acid, and overexpressed H2O2 are three characteristic features
of tumor microenvironment (TME) (Dai et al., 2017; Kwon et al., 2019). Because of the aggressive
proliferation of cancer cells and the insufficient blood supply in tumors, the O2 supply in solid
tumors was usually insufficient (partial pressure of O2 < 2.5 mmHg). Hypoxia in TME not only
promotes tumor metastasis but also enhances tumor resistance to the ROS-generated cancer
therapies, such as photodynamic therapy (PDT), radiation therapy (RT), chemotherapy,
chemodynamic therapy (CDT), and sonodynamic therapy (SDT), thus leading to ineffective
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therapeutic outcomes. Tumor oxygenation that aims at greatly
increasing the oxygen concentrations in hypoxic tumors has been
demonstrated to be an effective strategy to overcome tumor
hypoxia and enhance the sensibility of hypoxic tumors toward
the ROS-generated cancer therapy (Li et al., 2018; Yang B. et al.,
2019).

To relieve hypoxia, hyperbaric oxygen therapy, which involves
the breath of pure O2 in a pressurized chamber, has been
developed. Unfortunately, its extensive application is limited
by the intrinsic side effects including hyperoxic seizures and
barotrauma as a result of the overproduced ROS in normal tissues
(Kim et al., 2017). Also, angiogenesis inhibitors have been applied
to transiently normalize the tumor vasculatures and suppress the
consumption of O2. However, the oxygenation improvement
resulting from the normalization of vessels only lasted for a
few days (Liu J. N. et al., 2017). Promoted by recent advances
in nanotechnology, a variety of nanotechnology-based
approaches that generate or release O2 continuously to
overcome hypoxia in TME have showed promising results to
improve the efficacy of ROS-generated cancer therapy. In this
minireview, we present an overview of current nanotechnology-
based strategies for advanced cancer therapy by modulating the
hypoxia in TME and promoting the generation of ROS. To
amplify the therapeutic outcomes, the approach of modulating
tumor hypoxia was usually applied in combination with other
therapeutic/theranostic modalities. This minireview mainly
focused on the O2 supply ability and mechanism of these
nanoplatforms. Future challenges and opportunities of design
consideration are also discussed and summarized.

Tumor Hypoxia-Regulating Approaches
Based on Nanotechnology
Based on their different mechanisms and involved materials,
nanotechnology-based tumor hypoxia-regulating approaches
can be classified into the following categories: delivering O2 by
natural or artificial oxygen-carrying materials, the hydrolysis of
exogenous peroxide, catalytic decomposition of intracellular
H2O2 by utilizing catalase or catalase-like nanozymes, and
generating O2 by water-splitting photocatalysts.

Delivering O2 by Natural and Artificial
Oxygen-Carrying Materials
Red blood cells (RBCs), the primary source of O2 in mammals,
contain 270 million hemoglobin (Hb) molecules per cell; each Hb
molecule binds up to four O2. Hb allows efficient binding of O2

under high O2 pressure and rapid O2 release under hypoxic
environment. Because of the good biocompatibility and long
circulation, RBCs have been widely investigated as biological
drug carriers and O2 shuttles for cancer therapy (Squires,
2002; Wang et al., 2013; Wang et al., 2014; Sun et al., 2015;
Wang et al., 2017). Tang et al. (2016) demonstrated that RBCs
tethered with photosensitizers (ZnF16Pc) onto the RBCs surface
(P-FRT-RBCs) could realize the codelivery of O2 and
photosensitizers (Figure 1A). The sustained O2 supply
adjacent to photosensitizers by RBCs enabled efficient PDT

even under hypoxic conditions. However, the micrometer sizes
of RBCs may limit their extravascular diffusion ability and reduce
their chance to approach tumor cell. The oxygen-carrying ability
of RBCs is limited by the inherent oxygen-binding ability of Hb.
However, cell-free Hb suffers from severe problems, including
short circulation time, potential side effect, and poor stability.
Hb-based O2 carriers via chemical modification or encapsulation
with biodegradable materials could overcome the disadvantages
of cell-free Hb and demonstrate the similar oxygen-carrying
capability as that of natural RBCs (Gundersen and Palmer,
2008; Duan et al., 2012; Jia et al., 2012; Paciello et al., 2016;
Zhou et al., 2016; Cao et al., 2018; Jansman and Hosta-Rigau,
2018; Yu et al., 2018; Hu et al., 2020). Compared to RBCs with
micrometer sizes, nanodimensional Hb-based O2 carriers can
perfuse tumor tissues within the narrow vascular structure and
thus can supply more O2 in hypoxic tumor (Jia et al., 2016; Luo
et al., 2016; Zhao et al., 2016). Inspired by the biological nature of
RBCs, Liu W. L. et al. (2018) developed an aggressive man-made
RBC (AmmRBC) as oxygen self-supplied PDT system to combat
the hypoxia-mediated resistance of tumors to PDT (Figure 1B).
This biomimetic platform was prepared by encapsulating
methylene blue (MB) adsorbed Hb-polydopamine complex
into the biovesicle engineered from the recombined RBC
membranes. Polydopamine played the role of the antioxidative
enzymes to prevent Hb from the oxidation damage during the
circulation.

In recent years, an artificial blood product, perfluorocarbon
(PFC) compounds with good biocompatibility and high oxygen
dissolving ability, has been extensively used as O2 carriers to
modulate the hypoxic TME (Squires, 2002; Lee et al., 2015; Que
et al., 2016; Liang et al., 2020). By loading a near-infrared
photosensitizer (IR780) into PFCs nanodroplets, Cheng et al.
(2015) developed an oxygen self-enriching PDT (Oxy-PDT)
nanoplatform (Figure 1C). Owing to the higher oxygen
capacity and longer 1O2 lifetime of PFCs, the PDT effect of
the loaded photosensitizer was significantly enhanced. Gao et al.
(2017) reported erythrocyte-membrane coated PFC
nanoparticles as artificial RBCs to deliver O2 and enhance
radiation response.

Though having high oxygen solubility, PFC releases O2 simply
by diffusion through the O2 concentration gradient, usually
resulting in a low delivery efficiency. Using near-infrared
(NIR) light or ultrasound (US) as trigger could accelerate the
release of O2 and promote the tumor oxygenation (Song G. S.,
Liang C. et al., 2016; Chen et al., 2017). Song et al. utilized the
photothermal effect of Bi2Se3 induced by NIR laser irradiation to
trigger the burst release of O2 from PFC loaded inside the hollow
Bi2Se3 nanoparticles, thereby greatly promoting the tumor
oxygenation and overcoming the hypoxia-associated
radioresistance of tumors (Song G. S., Liang C. et al., 2016)
(Figure 1D). Song X. J. et al. (2016) used an external low-
frequency/low-power US treatment to trigger the release of O2

from nano-PFC to relief tumor hypoxia for enhanced PDT and
RT (Figure 1E). Given that several formulations of PFC
emulsions have been either approved for clinical application or
in late-phase clinical trials as blood substitutes, PFC-based
nanomaterials may hold great potential in cancer treatment
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for future clinical translation. However, extensive exposure to
PFCs may cause some side effects, including hypotension,
cutaneous flushing, fever, pulmonary hypertension, chest
tightness, and elevated central venous pressure (Zhou et al.,
2016).

Hydrolysis of Exogenous Peroxide to
Produce O2
Because the hydrolysis of peroxide will generate O2, various
peroxides (such as hydrogen peroxide, calcium peroxide,
sodium percarbonate, and pyridine endoperoxides) have been
utilized as O2-producing materials (Harrison et al., 2007; Oh
et al., 2009; Wang et al., 2011; Li et al., 2012; Pedraza et al., 2012;
Benz et al., 2013). However, the release of O2 by the hydrolysis of
exogenous peroxide in the absence of a catalyst or trigger was
usually slow and limited. It will be more favorable if on-demand

and uniform O2 delivery to the cells for a sufficiently long time
period can be achieved (Liu J. N. et al., 2017). Huang et al. (2016)
reported an implantable oxygen-generating depot by coloading
CaO2 and catalase into the Ca2+-crosslinked microencapsulated
alginate pellets. Catalase (CAT) in the alginate pellets could
catalyze the breakdown of H2O2 into O2, whereas the Ca2+-
crosslinked alginate matrix could temper the hydrolytic reactivity
of CaO2/catalase by limiting the infiltration of H2O into the
pellets, thus prolonging the generation of O2. Upon implantation
close to the tumor, this in situ oxygen-generating depot effectively
alleviated the hypoxic regions in tumor and thus resulted in
increased chemotherapeutic effect of DOX by promoting ROS
production. Liu L. H. et al. (2017) encapsulated CaO2 and
methylene blue (MB) into liposome to fabricate an O2 self-
sufficient nanoplatform (LipoMB/CaO2) to enhance PDT
efficacy in hypoxic tumor. CaO2 inside liposomes could react
with H2O or weak acid to release O2 slowly. Upon laser

FIGURE 1 | (A) Schematic illustration of the formation and working mechanism of P-FRT-RBCs (Tang et al., 2016) (Copyright 2016, reproduced with permission
from JohnWiley and Sons). (B) Schematic illustration of AmmRBCs that accumulate in the tumor site and boost 1O2 generation for enhanced PDT. Polydopamine (PDA)
in AmmRBC functions like CAT and superoxide dismutase (SOD) in RBCs to protect Hb from oxidant damage during the circulation (Liu W. L. et al., 2018) (Copyright
2018, reproduced with permission from John Wiley and Sons). (C) Schematic illustration of the structure and design of the Oxy-PDT agent. Photosensitizer and
perfluorocarbon are coencapsulated by lipids. Photosensitizers are uniformly dispersed inside the lipid monolayer and PFC in the core of the nanoparticle. When
irradiated by laser, photosensitizer (PS) transfers energy to the oxygen enriched in PFC, producing 1O2 (Cheng et al., 2015) (Copyright 2015, reproduced with permission
from Nature Publishing Group). (D) Schematic illustration of hollow PEG-Bi2Se3 nanoparticles with PFC loading as an oxygen carrier and the burst release of oxygen
under stimulation by a NIR laser (Song G. S., Liang C. et al., 2016) (Copyright 2016, reproduced with permission from JohnWiley and Sons). (E) Schematic illustration of
the mechanism of US-triggered local oxygenation in the tumor using nano-PFC as the oxygen shuttle (Song X. J. et al., 2016) (Copyright 2016, reproduced with
permission from American Chemical Society).
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irradiation, 1O2 activated by the photosensitizer could induce
lipid peroxidation to break the liposome and then enlarge the
contact area of CaO2 with H2O, resulting in accelerated O2

release.

Catalytic Decomposition of Intracellular
H2O2 by Utilizing Catalase or Catalase-Like
Nanozymes.
Due to the overexpressed H2O2 in tumor (100 μM–1 mM),
various natural enzymes (catalase) and metals or metal-oxide
based nanozymes have been applied to overcome tumor hypoxia
by catalyzing the in situ transformation of endogenous H2O2 to
O2. Catalase (CAT) is a catalytic enzyme with a high turnover
number to decompose H2O2 into O2 and thus can be employed to
relieve tumor hypoxia. However, the nonnegligible disadvantages
of CAT, including immunogenicity, the protease-induced
degradation, and short half-life, usually restrict its in vivo
functions after systemic administration. Chemical modification
or encapsulating CAT within inorganic or polymer
nanostructures has been demonstrated to be an effective
approach to overcome these limitations (Chen et al., 2015;
Cheng et al., 2016; Zhang R. et al., 2017; Li et al., 2017). Chen
et al. (2014) chose PLGA nanoparticles as a carrier to load CAT
and platinum anticancer drug. Synergistic release of anticancer
drugs and O2 triggered by H2O2 could overcome hypoxia-
induced multidrug resistance and thus resulted in improved
therapeutic efficacy. By encapsulating CAT into hollow
tantalum oxide (TaOx), Song et al. obtained a bionanoreactor
(TaOx@Cat-PEG) combining high-Z element (Ta) and CAT for
relieving tumor hypoxia and enhancing RT outcomes. The
mesoporous shell of TaOx protected CAT from outside
proteases to improve its stability (Song G. S., Chen Y. Y.,
et al., 2016). Wang H. et al. (2018) reported an in situ free
radical polymerization method by using a photosensitizer (meso-
tetra(p-hydroxyphenyl) porphine (THPP)) as the crosslinker to
modify CAT for tumor hypoxia modulation and enhanced PDT.
In the obtained CAT-THPP-PEG nanocapsules, the PEG chains
polymerized on the surface of CAT could prevent the direct
contact between serum proteins and CAT and thus enhanced the
enzyme stability, maintained its catalytic activity, and reduced its
immunogenicity. Phua et al. (2019) reported that the integration
of hyaluronic acid (HA) with CAT could not only improve the
physiological stability of the system but also enable active
targeting to tumors. The photosensitizer (Ce6)-loaded
nanosystem (HA-CAT@aCe6) could target CD44-
overexpressed cancer cells, relieve hypoxia by converting
endogenous H2O2 to O2, and consequently improve PDT efficacy.

Apart from natural enzymes, various nanomaterial-based
artificial enzymes show catalase-like activity; one of the typical
representatives is MnO2. Various MnO2 nanostructures have
been designed and incorporated into multifunctional
nanoplatforms to induce the decomposition of endogenous
H2O2 into O2, thus alleviating tumor hypoxia and improving
therapeutic efficacy (Prasad et al., 2014; Fan et al., 2015; Abbasi
et al., 2016; Yi et al., 2016; Wang Z. et al., 2018). Moreover, MnO2

could be decomposed into soluble Mn2+ in TME, thus reducing

unwanted in vivo accumulation and long-term toxicity (Zhu et al.,
2016). The released Mn2+ could mediate the Fenton-like reaction
to convert H2O2 into the highly reactive •OH, further enhancing
the therapeutic potency by introducing extra CDT (Sun et al.,
2020). Apart from the abovementioned benefits, MnO2 could also
be used for drug release, glutathione (GSH) depletion, the
regulation of pH, and T1-weighted magnetic resonance (MR)
imaging, consequently achieving multimodal theranostic effects
and tumor-specific enhanced combination therapy (Fan et al.,
2016; Zhang C. et al., 2017; Zhu P. et al., 2018; Zhu H. et al., 2018;
Yang G. et al., 2018; Zhang et al., 2019; Pu et al., 2020). For
example, Yang et al. (2017) designed an intelligent theranostic
platform based on hollow mesoporous MnO2 (HMnO2)
nanoshells for tumor-targeted drug delivery, pH-triggered
controllable release, and TME-responsive generation of O2 to
alleviate tumor hypoxia. Ce6 and DOX were coloaded into
HMnO2 to achieve combined chemo-photodynamic therapy
(Figure 2A). Fluorescence signal of Ce6 and T1-weighted MR
signals of the released Mn2+ were applied to track the
nanoparticles after the injection. Despite great progresses and
promising results, the rapid consumption of MnO2 during the
reaction in TMEmay restrict its extensive application to a certain
extent (Zhang et al., 2018).

Differentiated from the aforementioned self-sacrificingMnO2,
ferrite materials with catalase-like activity and enhanced stability
could be served as a superior candidate for continuous O2 supply.
For example, Kim et al. (2017) developed continuous O2-evolving
MnFe2O4 nanoparticle-anchored mesoporous silica
nanoparticles to enhance the PDT effects against hypoxic
tumor. The MnFe2O4 nanoparticles were not consumed
during the catalytic reaction and thus could continuously
catalyze H2O2 into O2, enabling the subsequent ROS
generation from activated photosensitizer Ce6. Yin et al.
(2019) reported that MnFe2O4@MOFs core-shell
nanostructure exhibited dual catalytic ability in continuously
triggering the decomposition of H2O2 to release O2 and
persistently depleting endogenous GSH, resulting in improved
PDT. Also, MnFe2O4 nanoparticles were not consumed during
the reaction. Liu Y. et al. (2018) developed CuFe2O4 nanospheres
that integrated PDT, PTT, photoenhanced CDT, and MR
imaging functions along with TME-modulating capacity. The
CuFe2O4 nanospheres regulated the TME through the
decomposition of H2O2 to O2 and the depletion of GSH,
which relieved the tumor hypoxia and antioxidant capability,
thus further improving the photoenhanced CDT and PDT
efficiency (Figure 2B).

Various Fe-doped nanoplatforms have been reported to
catalyze the conversion of endogenous H2O2 to O2 and thus
could enhance the therapeutic effects against hypoxic tumor,
including Fe-doped polydiaminopyridine nanofusiforms (Fe-
PDAP) (Bai et al., 2018), FeIII doped C3N4 nanosheets (Ma
et al., 2016), and Fe3+-driven assembly of
fluorenylmethyloxycarbonyl (Fmoc) protected amino acids
(Fmoc-Cys/Fe) (Li Y. et al., 2020). Lan et al. (2018) developed
a nanoscale MOF (Fe-TBP, constructed from Fe3O clusters and
5,10,15,20-tetra(p-benzoato)porphyrin (TPB)) as a
nanophotosensitizer to overcome tumor hypoxia for PDT-
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primed cancer immunotherapy. Intracellular H2O2 could be
decomposed by the Fe3O clusters to generate O2 through a
Fenton-like reaction, whereas the produced O2 was converted
to cytotoxic singlet oxygen (1O2) by photoexcited porphyrins.
Prussian blue (PB), a clinical medicine approved by U.S. FDA for
the treatment of radioactive exposure, has been proven with
catalase-like activity (Cai et al., 2016; Zhou et al., 2018). Yang
Z. L. et al. (2018) fabricated a PB-based integrated nanoplatform
to elevate O2 and ROS for highly efficient PDT.

Other noble metals or metal oxide–based nanozymes with
catalase-like activity have also been applied to overcome tumor
hypoxia via H2O2-activated catalytic O2 generation, thereby
augmenting effect of ROS-generated cancer therapy, such as
CeO2 (Dong et al., 2020), RuO2 (Huang et al., 2020; Xu et al.,
2020), V2O5 (Li C. et al., 2020), mesoporous manganese cobalt oxide
derived from MOFs (Wang et al., 2019), Pd@Pt nanoplates (Wei
et al., 2018), gold nanoclusters (Liu, C. P., et al., 2017), MOF–Au
nanohybrid (He et al., 2019), Pt nanoparticles decorated on MOFs
(Zhang et al., 2018), Pt-based core-shell nanoplatform (Wang X. S.
et al., 2018), two-dimensional Pd@Au bimetallic core-shell
nanostructure (Yang Y. et al., 2019), etc. By taking the advantage
of dual enzyme-mimic catalytic activity of ultrasmall CeO2, Dong
et al. (2020) fabricated a nanocomposite with hyperthermia-
enhanced peroxidase-like activity, catalase-mimic activity, and
GSH depletion for efficient tumor therapy in the NIR-II window.
Huang et al. (2020) reported that a multifunctional artificial
metalloprotein nanoanalogue, RuO2-hybridized ovalbumin

(OVA) nanoanalogues, not only exhibited photothermal/
photodynamic effect under NIR light irradiation but also
effectively alleviated tumor hypoxia via catalysis of intracellular
H2O2 to produce O2, thereby concurrently enhancing PDT and
reversing the immunosuppressive TME. Yang B. et al. (2019)
reported a two-dimensional Pd@Au core-shell nanostructure
(TPAN) that could continuously catalyze endogenous H2O2 to
generate O2 for relieving tumor hypoxia to overcome hypoxia-
induced RT resistance. Moreover, the catalytic activity of TPAN
toward H2O2 could be enhanced via the surface plasmon resonance
effect triggered by NIR-II laser irradiation (Figure 2C). Wei et al.
(2018) reported that Pd@Pt-PEG-Ce6 nanocomposite could not
only deliver photosensitizers to tumor sites but also trigger the
decomposition of endogenous H2O2 to produce O2 for a long period
of time. Moreover, the moderate photothermal effect of Pd@Pt-
PEG-Ce6 under 808 nm laser irradiation accelerated its catalytic
decomposition ofH2O2 toO2. Liu C. P. et al. (2017) reported that the
amine-terminated, PAMAM dendrimer-encapsulated gold
nanoclusters (AuNCs-NH2) can produce O2 to improve PDT via
the catalase-like activity. Importantly, AuNCs-NH2 exhibited the
catalase-like activity over a broad pH range (pH 4.8–7.4).

Generating O2 by Water-Splitting
Photocatalysts
Compared to the limited intracellular concentration of H2O2,
H2O is the most abundant compound in living organisms.

FIGURE 2 | (A) Schematic illustration of H-MnO2-PEG loaded with DOX and Ce6 for pH-responsive drug delivery and oxygen-elevated PDT (Yang et al., 2017)
(Copyright 2017, reproduced with permission from Nature Publishing Group). (B) Schematic illustration of synthetic process and therapeutic mechanism of CuFe2O4

nanospheres (Liu Y. et al., 2018) (Copyright 2018, reproduced with permission from American Chemical Society). (C) Schematic illustration of Pd@Au for catalysis of
H2O2 and continuous production of O2 (Yang Y. et al., 2019) (Copyright 2016, reproduced with permission from John Wiley and Sons).
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Consequently, using H2O as an alternative O2-generating
reactant, the water-splitting strategy could provide unlimited
raw materials for in vivo O2 release. As a typical paradigm,
Zheng et al. (2016) reported the use of carbon-dot-decorated
C3N4 nanocomposite as a water-splitting catalyst to produce O2

to overcome tumor hypoxia and improve the PDT effect. The
carbon dots were doped to decrease the band gap of C3N4, and a
630 nm laser was applied as the trigger to induce the water
splitting. Chen et al. (2020) reported that in situ photocatalysis
of TiO porphyrin encapsulated in folate liposome could not only
conquer tumor hypoxia but also generate sufficient ROS to
suppress the tumor growth. Analogous to the aforementioned
photocatalysts, the photosensitizer nanoparticle-loaded
photosynthetic bacteria were developed for tumor-targeted
photosensitizer (indocyanine green, ICG) delivery and in situ
photocatalyzed O2 generation. This biomimetic system combined
the photosynthetic capability of Synechococcus 7942 (a natural
photosynthetic cyanobacterium) and the theranostic effect of
ICG-encapsulated human serum albumin nanoparticles (Liu
et al., 2020). Since hypoxic tumors are usually located in the
deep tissues, the penetration depth of the laser is a limitation.

CONCLUSION AND CHALLENGES

We herein present an overview of current strategies to overcome
the tumor hypoxia in ROS-generated cancer therapy. Despite
great progresses and promising results, most attempts still remain
at early stages of development. These strategies suffer from some
disadvantages, for example, side effects after intravenous

injection, H2O2 dependence in H2O2-mediated O2 production,
rapid consumption or easy inactivation/instability of natural
enzyme and nanozymes, and poor light penetration in
photoactivated O2 production. Moreover, to achieve enhanced
therapeutic efficacy, integration of multiple therapeutic/
diagnostic capability and oxygen-supply ability into one
nanosystem has become the most commonly used strategy to
treat hypoxic tumors. Consequently, complicated and tedious
preparation procedures are usually needed. To maximize their
capabilities and minimize the side effects, toxicity and
immunogenicity of all the involved components should be
comprehensively evaluated before clinical trials. In addition,
the degradability of the materials should be guaranteed, which
will enable the body to clear them after performing the designated
pharmacological functions.
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