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ABSTRACT: Evidence suggests that human exposure to airborne
particles and associated contaminants, including respiratory
pathogens, can persist beyond a single microenvironment. By
accumulating such contaminants from air, clothing may function as
a transport vector and source of “secondary exposure”. To
investigate this function, a novel microenvironmental exposure
modeling framework (ABICAM) was developed. This framework
was applied to a para-occupational exposure scenario involving the
deposition of viable SARS-CoV-2 in respiratory particles (0.5−20
μm) from a primary source onto clothing in a nonhealthcare
setting and subsequent resuspension and secondary exposure in a
car and home. Variability was assessed through Monte Carlo
simulations. The total volume of infectious particles on the
occupant’s clothing immediately after work was 4800 μm3 (5th−95th percentiles: 870−32 000 μm3). This value was 61% (5−95%:
17−300%) of the occupant’s primary inhalation exposure in the workplace while unmasked. By arrival at the occupant’s home after a
car commute, relatively rapid viral inactivation on cotton clothing had reduced the infectious volume on clothing by 80% (5−95%:
26−99%). Secondary inhalation exposure (after work) was low in the absence of close proximity and physical contact with
contaminated clothing. In comparison, the average primary inhalation exposure in the workplace was higher by about 2−3 orders of
magnitude. It remains theoretically possible that resuspension and physical contact with contaminated clothing can occasionally
transmit SARS-CoV-2 between humans.

KEYWORDS: SARS-CoV-2, virus, COVID-19, aerosol, droplet, para-occupational human exposure, particle resuspension, clothing,
microenvironment, near-field exposure

■ INTRODUCTION

Exposure to airborne particles and associated contaminants,
including respiratory pathogens, is an important contributor to
the global burden of disease.1−3 Such exposure is especially
important in indoor microenvironments where humans spend
∼90% of their time on average.4,5 While indoors, human
occupants can considerably influence concentrations and
dynamics of airborne particles. For instance, typical human
activities can generate substantial concentrations of airborne
particles indoors relative to background concentrations.
Examples of such activities include cooking and other forms
of surface heating, incomplete combustion (e.g., candles and
incense),6−9 vacuuming, and use of cleaning products,10,11

ultrasonic essential oil diffusers,12 and humidifiers.13 In
addition, nonsedentary activities (e.g., walking) can resuspend
settled particles (dust).14,15

Occupants themselves can also release particles of both
endogenous and exogenous origins. Once released, such
particles can be directly inhaled or deposited onto surfaces
such as clothing and/or skin whereby they can be resuspended
and subsequently inhaled.16−19 Examples of endogenous

particles released by occupants include skin fragments20 and
respiratory particles, which may contain pathogens.21 Examples
of exogenous particles released by occupants include fragments
of clothing fibers20 and particles from external sources that
have deposited onto the occupant’s clothing and/or skin.
These particles may include contaminants such as anemophi-
lous pollen grains and fragments, bacteria, fungal spores, and
particulate matter containing metals and sorbed semivolatile
organic compounds.22−26 Licina et al. have thoroughly
reviewed the potential for clothing to function as a secondary
source of such contaminants.27

Particle emissions from occupants and their activities, and
corresponding exposures, can vary considerably both tempo-
rally and spatially. Regarding temporal variability, empirical
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evidence shows that typical human activities (e.g., cooking)
can induce transient fluctuations in airborne particle
concentrations.8,9 These fluctuations can be investigated
computationally using mass-balance models that are para-
meterized as functions of time-dependent human activities.28

Regarding spatial variability, convective airflows resulting
from metabolic heat production, known as the “thermal
plume”, can efficiently transport particles released near an
occupant into their breathing zone.29,30 During periods of
incomplete air mixing, such particles (and other contaminants)
can accumulate into a “personal cloud”. This cloud is an excess
of concentration in an occupant’s breathing zone relative to the
room-average concentration.15,31 The thermal plume and
associated personal cloud typically exist only under conditions
of relatively buoyant airflow with velocities generally less than
0.2 m·s−1.32 As such, an occupant’s thermal plume can be
readily disrupted when they engage in nonsedentary
activity.15,30 Particles within the personal cloud of one
occupant can also be transported into the breathing zones of
other occupants (or “bystanders”) in the same microenviron-
ment. This phenomenon has been referred to as “cross-
contamination”.15,33

An additional, though less understood, factor that can
influence particle exposure and variability is that occupants can
visit multiple microenvironments (e.g., work, car, and home)
throughout a typical day. Potential implications of visiting
multiple microenvironments are twofold. First, an occupant
may transport airborne particles across microenvironments and
subsequently expose themselves and other occupants. This
phenomenon has been hypothesized in the context of “para-
occupational” exposure, whereby an individual “takes home”
contaminants that had accumulated on their clothing and/or
skin while in a workplace.23,25,26,34 Second, visiting multiple
microenvironments that contain a given contaminant would
influence one’s time-integrated or “cumulative” exposure to
that contaminant. Accordingly, one’s cumulative exposure
would be a function of the time spent, activities, and other
factors (e.g., ventilation) influencing contaminant dynamics
within each microenvironment visited.
Cumulative exposure across microenvironments can be

measured, given advances in particle sampling technology
and statistical methods. Specifically, one can measure time-
resolved particle concentrations in a person’s breathing zone
through personal sampling and apportion them to different
recorded microenvironments and activities.35,36 Such appor-
tionment can provide accurate exposure estimates across
microenvironments. However, it can be challenging to isolate
and compare exposure pathways and other influential factors
from measured data alone.
The purpose of this study was to develop a computational

modeling framework to examine the joint influence of time-
dependent human activities and indoor microenvironments on
cumulative exposure to particles and associated contaminants.
This framework leverages principles of mass balance, including
fundamental processes of particle emission, transport, and fate,
while accounting for temporal, spatial, and interindividual
variabilities. In this study, the resulting framework was applied
to an exposure scenario regarding severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), the virus responsible
for the COVID-19 pandemic.
Abundant evidence suggests that the transmission of SARS-

CoV-2 occurs predominantly indoors through inhaling
relatively small, micron-scale respiratory particles.2,3 Empirical

evidence also suggests that clothing can mediate the transport
and transmission of airborne viruses. For instance, clothing
accumulated inhalable and respirable particles (≤10 μm) from
indoor air in experiments, which were then resuspended during
typical human activities.16−19 Such resuspension may have
caused airborne SARS-CoV-2 genetic material (RNA) in
protective-apparel removal rooms in a hospital environment.37

Resuspension (or “aerosolized fomite”) is also a suspected
cause of the transmission of SARS-CoV-2 and influenza virus
in controlled animal studies.38−40 However, the potential for
clothing to transmit SARS-CoV-2 between humans remains an
open question.41

This study was motivated by the hypothesis that clothing
can function as a transport vector for respiratory particles
containing viable SARS-CoV-2 and, accordingly, a source of
secondary exposure. The term “respiratory particles” is used
herein to refer generally to aerosols or droplets that are
expelled during human respiratory activities (e.g., breathing,
speaking, etc.). This study focused on assessing the transport
and fate of respiratory particles containing viable SARS-CoV-2
and associated inhalation exposure. Infection risk was not
assessed because of associated uncertainties discussed in the
Discussion section.

■ METHODS
Model Description and Components. This study

further developed a computational modeling framework by
Kvasnicka et al.28 Herein, the algorithm is referred to as the
Activity-Based Indoor Contaminant Assessment Model
(ABICAM). ABICAM is a multicompartmental mass-balance
modeling framework designed to simulate the dynamics of
indoor contaminants and associated human exposure (for
more information, visit https://abicam.org/). This study
expanded the particle simulation module of ABICAM to be
scalable across multiple indoor microenvironments and human
occupants, facilitated by object-oriented programming. The
resulting version of ABICAM had the following main
components: indoor microenvironments, mass-balance models,
human occupants, activities, activity schedules, data inputs,
simulations, and exposure histories. Each of these components
is described in the Supporting Information.

Model Formulation. In ABICAM, the dynamics of a given
contaminant are represented by a system of coupled, first-
order, ordinary, linear, inhomogeneous differential equations
with time-dependent coefficients. Equation 1 represents this
system of equations in a generalizable matrix notation. The
Supporting Information includes a component-wise descrip-
tion of the specific mass balance developed and applied in this
study (eqs S1−S7).
For a given mass-balance model associated with micro-

environment e and contaminant c (which could be particles
within a specific size range)

÷ ◊÷÷÷÷ ÷ ◊÷÷÷÷ ÷ ◊÷÷÷
K t

m t
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where
÷ ◊÷÷÷÷
m t( )e

c is a time-dependent vector of the mass of
contaminant and Ke

c(t) is a square matrix (possibly sparse) of
order n containing time-dependent mass transfer and removal
rate coefficients [T−1], where n is the number of compart-
ments. Diagonal elements of Ke

c(t) represent the sums of
intercompartmental mass transfers and removals from the
indoor system (e.g., through viral inactivation). Off-diagonal
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elements represent intercompartmental mass transfers (e.g.,

resuspension from clothing to air).
÷ ◊÷÷÷
E t( )e

c is a vector of
contaminant emission rates or source terms [M·T−1], which
can also be time-dependent (e.g., exhalation of respiratory

particles to air). The time dependences of Ke
c(t) and

÷ ◊÷÷÷
E t( )e

c

arise from the influence of human activities, as described by
Kvasnicka et al.28

A near-field/far-field modeling approach was used to
account for incomplete mixing between an occupant’s thermal
plume and the surrounding indoor air during static periods
with relatively buoyant airflow.42−45 If at least one occupant
was present in a given microenvironment during a given time
period, ABICAM discretized the indoor air compartment into
a “far-field” plus one “near-field” for each occupant. The term
“near-field” is used herein to refer to an occupant’s thermal
plume (see the Introduction section), while “far-field”
corresponds to the surrounding indoor air. The concentration
of a given contaminant in each air zone was assumed to be
uniform (“well mixed”).

The traditional near-field/far-field modeling approach42−45

was modified to enable the disruption of the thermal plume
during periods of rapid air mixing (e.g., by nonsedentary
activity).15 Exchanged airflows between zones were governed
by a time-dependent (piecewise-constant) interzonal air
exchange rate (AER). Accordingly, ABICAM could force a
well-mixed condition in the indoor air compartment during
any given period by applying a sufficiently high interzonal AER
approximating the limit

c t c tlim ( ) ( )
k t
k t

( ) ,
( )

nf
h

ff
nf ff
h

ff nf
h

=
→∞
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→

→ (2)

where knf→ff
h (t) and kff→nf

h (t) are rate coefficients in eq 1
[Ke

c(t)], which were derived according to eqs S2 and S3 and
represent contaminant mass transfer between the near-field
(nf) of human occupant h and the far-field (ff); cnf

h (t) and cff(t)
are the corresponding contaminant concentrations [M·L−3] in
each zone, respectively.
The near-field coupled a given human occupant and their

compartments with the far-field compartment of the indoor

Figure 1. Overview of ABICAM’s time-dependent matrices of rate coefficients for indoor microenvironments. (A) A “master schedule” maps the
activities of two arbitrary human occupants (H1 and H2) to specific time periods. To illustrate, each activity period is represented by a superellipse
with length directly proportional to duration. (B) For a given contaminant (c), each indoor microenvironment is associated with a matrix [Ke

c(t) in
eq 1]. The size of each matrix reflects the total number of compartments in the microenvironment and therefore changes as human occupants enter
and leave. In this example, H1 moves from Env1 to Env2 as time progresses from period 1 to period 2, while H2 remains in Env1. Rate coefficients
[T−1] for contaminant mass transfer (→) and removal (rem) are denoted by k with subscripts, nf, ff, x, and y referring to near-field, far-field, and
arbitrary environmental and human compartments, respectively.
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microenvironment in which they resided during a given period.
If an occupant moved from one microenvironment to another,
each respective microenvironment’s network of compartments,
and thus Ke

c(t), was updated, as illustrated in Figure 1.
State Variable. The state variable chosen for this study was

the equilibrium volume of respiratory particles containing
viable SARS-CoV-2, net of viral inactivation. For brevity, we
refer to such particles herein as “infectious particles”. This
volumetric state variable was chosen because of its potential to
be used to estimate infection risk mechanistically (though such
estimation of infection risk was left for future work). Previous
modeling studies have performed such “bottom-up” estima-
tions by (1) combining estimates of particle volume with
empirical data on viral load to derive corresponding viral doses
and then (2) combining these viral dose estimates with
empirically derived dose−response relationships to estimate
infection risks.41,46−48 There are several uncertainties in
estimating viral dose and corresponding infection risk based
on particle volume, which are discussed in the Discussion
section.
Scenario Description. The computational modeling

framework described above was applied to a para-occupational
exposure scenario regarding infectious particles. This scenario
involved two human occupants and three indoor micro-
environments across a 24 h period. The human occupants
included two middle-aged adults (ages 30 to <41 years): one
female and one male referred to herein as “HF” (human
female) and “HM” (human male). Each occupant was
represented by clothing and a general respiratory system.
The model did not estimate internal doses of infectious
particles to specific target tissues in the respiratory system
because of uncertainties regarding how such doses relate to
infection risk, as discussed in the Discussion section. Prior to
the simulation, neither occupant had been exposed to SARS-
CoV-2 (i.e., initial conditions were null).
The indoor microenvironments included a car, a workplace,

and a home, which were also initially uncontaminated. Each
microenvironment was represented by an indoor air compart-
ment, which could be spatially discretized according to the
near-field/far-field approach previously described (see the
Model Formulation section). The home was modeled as a
single-family detached residence in North America. For
simplicity, the workplace was also modeled as such, though
the parameter values for the home and workplace were chosen
to be statistically independent. For the car, two different
ventilation settings were separately examined: outside air
intake and recirculation. Open-window configurations were
not considered in this study but have been considered
elsewhere.49,50 For simplicity, the duration of time spent
outdoors in transit between microenvironments (e.g., work to
car) was chosen to be negligible. Consequently, the simulation
did not include the potential for relatively rapid inactivation of
SARS-CoV-2 by sunlight exposure, as observed in laboratory
experiments.51,52

The simulation began with HF in the workplace where a
single asymptomatic or presymptomatic index case emitted
infectious particles into the far-field at a constant rate through
breathing or speaking. HF did not come into close proximity to
this index case, but she was exposed to these particles after
complete mixing in the far-field. HM, in contrast, did not enter
the workplace. After work, HF entered the car with HM, and
the two occupants commuted to the home where they
remained for the rest of the day. The occupants did not

wear barrier face coverings during the simulation, which is a
reasonable but “worst-case” assumption regarding inhalation
exposure.

Model Parameterization. All input parameters were
represented probabilistically with distributions statistically fit
to empirical data from literature sources. Parameters pertaining
to physical characteristics are used in eqs S1−S7, while those
pertaining to human activities are used in eqs S8−S11. Tables
S1−S4 summarize the corresponding probability distributions,
which represent physical characteristics of the indoor micro-
environments, human occupants, and respiratory particles, as
well as human activities, respectively. For example, Table S2
summarizes the parameterization of the near-field volume and
interzonal AER for a given occupant.
The clothing compartment of a given human occupant was

parameterized according to a limited subset of common fabric
types (Table S3). The inactivation rate coefficient of SARS-
CoV-2 on clothing was based on empirical data limited to
100% cotton. It should be noted that this inactivation rate may
be lower for some hydrophobic clothing materials (e.g.,
polyester), though empirical data were lacking.53−55 The
impact of a lower inactivation rate on the model’s results was
investigated in a separate sensitivity analysis described below.
For a given scenario, each parameter’s probability density

function was simulated using Monte Carlo sampling. Figure S1
shows convergence of the predicted secondary inhalation
exposure percentiles with increasing sample size. The full
simulation encompassed two car ventilation scenarios for a
“base-case” simulation plus a sensitivity analysis described
below. One Monte Carlo simulation (N = 10 000) required ∼9
h to run using parallel processing on a desktop computer with
eight logical processors (Intel Core i7-2600 CPU @ 3.40 GHz,
3401 MHz).

Choice of Particle Equilibrium Size Range. Typical human
respiratory activities can emit wide varieties of particles with
diameters ranging from less than 1 μm to greater than 1000
μm.21 Human inhalation exposure to SARS-CoV-2 generally
concerns only a subset of these particles with diameters
between about 0.1 μm and up to ∼100 μm.41,56 Only those
particles with diameters up to around 20 μm tend to remain
airborne long enough to travel well beyond 1 m of the
emission source under any airflow condition.41 Accordingly,
this study focused on respiratory particles with equilibrium
diameters from 0.5 to 20 μm. Resuspension of smaller particles
is likely negligible.17 We inferred that all respiratory particles
were predominantly solid, consisting of nonvolatile matter (or
“droplet nuclei”) that remained after near-instantaneous (<1 s)
evaporation to equilibrium.57

Concentrations of respiratory particles can be well
approximated by multimodal, log−normal functions of particle
diameter.21 In this study, however, a simpler approach was
used to represent the size distribution. This approach
facilitated ABICAM’s parameterization and constrained its
execution time and memory requirement. Specifically, particles
with diameters <10 μm were discretized into three subranges
based on their likely regions of penetration within the
respiratory system: 0.5−2.5, 2.5−5, and 5−10 μm. Particles
with diameters up to ∼10−15 μm tend to penetrate into the
trachea and intrathoracic airways, while particles with
diameters 2.5−5 μm deposit disproportionately in the
respiratory bronchioles and alveoli.58,59

The remaining larger particles were grouped into a fourth
size category (10−20 μm) for parameterization. In general, for
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particles with diameters ≥10 μm, there was a lack of empirical
data on deposition and resuspension rates for textiles such as
clothing. As such, we extrapolated the values of these two
parameters linearly from the smaller particle size range (5−10
μm) (Table S3). Consequently, results for the largest particle
size range (10−20 μm) are more uncertain than for the three
smaller size ranges.
Generation of Human Activity Schedules. This study

focused on three general types of human “macroactivities”:
nonsedentary (e.g., walking), sedentary while awake (e.g.,
sitting), and sleeping. The specific activity that a given
occupant was engaged in during a given period determined
the values of their interzonal AER (eq 2 and Table S2),
respiration rate (Table S2), and size-dependent resuspension
rate coefficients (Table S3). Particle resuspension was assumed
to conclude at the onset of sleeping, though the occupants
could inhale any remaining resuspended particles while asleep.
Human activity schedules were generated probabilistically

using empirical distributions from survey data (Table S4),
combined with a set of rules to account for temporal
dependencies between activities (see the Supporting Informa-
tion, Generation of Human Activity Schedules section).
Similar rules were developed and applied in previous
simulations of human activities.60,61

Generating activity schedules occurred in two overarching
stages. The first stage involved scheduling the time domains
during which occupants resided in each indoor microenviron-
ment. These time domains were chosen such that the
occupants changed microenvironments simultaneously (e.g.,
car to home). The second stage involved scheduling individual
activities within each microenvironment. The resulting
schedules were tested to ensure accurate correspondence to
the empirical survey data in Table S4.
Sensitivity Analysis. A sensitivity analysis was conducted

with two objectives: (1) to identify the most influential model
parameters with respect to the variability of several response
variables for the base-case simulation described above and (2)
to examine a plausible “worst-case” scenario assuming that viral
inactivation did not occur during the simulated day.
For the first objective, Spearman rank correlation

coefficients were computed to quantify monotonic relation-
ships between the model’s input parameters and response
variables.62 These coefficients measured the extent to which
the parameters were both highly variable and propagated to a
given model output. For parameters that are not strongly
correlated with others, the squared coefficient can be used to
approximate the percent contribution of a given input
parameter to the variance of a given response variable (with
respect to the ranked scores). Cumulative secondary inhalation
exposures were chosen as the response variables for this
analysis. For the second objective, the Monte Carlo simulation
for each car ventilation scenario was rerun after setting the viral
inactivation rate coefficient equal to zero. In other words, the
volume of infectious particles equaled the equilibrium volume.

■ RESULTS
Exposure Assessment. For the base-case simulation,

Figure 2 shows the time-average concentration of infectious
particles in air, the corresponding net change in infectious
particles on clothing, and the corresponding inhalation
exposure of each human occupant for each indoor micro-
environment. These distributions are log−normally distrib-
uted, and therefore, the median is used herein as the measure

of central tendency. Figures S2 and S3 show examples of
exposure histories from which these exposure distributions
were derived. The remaining text differentiates between
“primary exposure”, which occurred in the workplace where
the primary emission source (index case) was present, and
“secondary exposure”, which occurred after work because of
resuspension of infectious particles from HF clothing.

Primary Exposure in the Workplace. HF spent an average
of 9.8 h in the workplace [5th−95th percentiles (5−95%):
7.8−11.8 h] (Table S4). There, the index case emitted
infectious particles at a constant rate into the far-field, resulting
in a time-average concentration of 730 μm3·m−3 (5−95%:
190−2700 μm3·m−3) net of viral inactivation (Figure 2). The
corresponding concentration in HF’s near-field was lower by
9% (5−95%: 4−20%) due to the source-proximity effect and
incomplete air mixing during periods of sedentary activity (eq
2).
By the end of the work period, HF had inhaled a total of

7800 μm3 (5−95%: 1700−34 000 μm3) of infectious particles
(Figure 2). Relative contributions of each particle size range to
this exposure were similar at 23% (0.5−2.5 μm), 21% (2.5−5
μm), 25% (5−10 μm), and 31% (10−20 μm) (Figure S4). In
comparison, her clothing retained 4800 μm3 (5−95%: 870−
32 000 μm3) of infectious particles (Figure 2). In other words,
the total volume of infectious particles on her clothing available
for secondary exposure after work was 61% (5−95%: 17−
300%) of her primary inhalation exposure in the workplace.
Most (87%) of this total volume on clothing originated from
particles with equilibrium diameters greater than 5 μm (Figure
S4).

Secondary Exposures in the Car. After work, HF entered
the car with HM, and the two occupants commuted home
together for an average duration of 21 min (5−95%: 10−47
min) (Table S4). During this period, concentrations of
infectious particles and associated exposures depended on
which car ventilation setting was used.
Under recirculation, the time-average concentration of

infectious particles in the well-mixed car cabin air was 7.0
μm3·m−3 (5−95%: 0.92−75 μm3·m−3) due to low-intensity
resuspension from HF’s clothing while seated. Compared to
the workplace, this concentration was lower by a factor of 110
(5−95%: factor of 13−560). HF’s inhalation exposure was also
lower in the car by a factor of 2700 (5−95%: factor of 290−
12 000) because of the reduced airborne concentrations and
exposure duration compared to the workplace. HM’s
inhalation exposure in the car was higher than that of HF by
35%, on average, because he tended to have a higher
respiration rate (Table S2).
Under the alternative ventilation scenario of the outside air

intake, the median AER in the car cabin increased by a factor
of 11 (5−95%: factor of 5−24) relative to recirculation (Table
S1). Accordingly, the inhalation exposures of the occupants
were reduced by 58% (5−95%: 46−72%) (Figure 2). During
the car commute, the total volume of infectious particles on
HF’s clothing decreased by 80% (5−95%: 26−99%) (Figure
2). This decrease was driven by the relatively high inactivation
rate of SARS-CoV-2 on 100% cotton clothing compared to
that of air (Table S3).

Secondary Exposures in the Home. After the commute, the
occupants entered the home where they remained awake for an
additional 5.5 h (5−95%: 2.3−8.6 h) (as derived from eqs S8−
S11 with parameterization listed in Table S4). There, the time-
average concentration of infectious particles in HF’s near-field
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was lower than that of the car cabin by factors of 530 and 290
for the car ventilation scenarios of recirculation and outside air
intake, respectively (Figure 2). In the home, the time-average
concentration in HF’s near-field was higher than that of the far-
field by a factor of 5 (95%: factor of 1−26). This near-field
concentration enhancement was due to the source-proximity
effect under incomplete air mixing (i.e., higher concentration
near HF because her clothing was the source). Nonetheless,
inhalation exposures to infectious particles at home were
minimal, with at most 0.39 μm3 (95%: 29 μm3) being inhaled
by HF under the car ventilation scenario of recirculation. By
the end of the day, 100% of infectious virions on HF’s clothing
had been inactivated (5th through 95th percentiles).
Cumulative Exposures across Indoor Microenvironments.

Figure 3 shows the range of distributions of cumulative
secondary inhalation exposure to infectious particles from

resuspension across indoor microenvironments. Two addi-
tional distributions are shown for comparison: (1) the
corresponding volume of infectious particles on HF’s clothing
available for secondary exposure after work and (2) her
primary inhalation exposure in the workplace. The former
represents the maximum theoretically possible secondary
exposure that could occur. The predicted average secondary
inhalation exposures ranged up to 4.4 μm3 (5−95%: 0.55−64
μm3) for HM under the car ventilation scenario of
recirculation, while HF’s primary inhalation exposure in the
workplace was higher by an average factor of 1800 (5−95%:
factor of 160−9500).
Figure S5 compares the percent contributions of each indoor

microenvironment to the occupants’ cumulative inhalation
exposures across the 24 h simulation. Practically, 100% of HF’s
cumulative exposure occurred in the workplace where the

Figure 2. Time-average concentrations of infectious particles and corresponding exposures for each indoor microenvironment and human
occupant. For a given microenvironment, airborne concentrations correspond to either the far-field (FF) or near-field of a given human occupant
(HF or HM). “OA” and “RC” refer to the car ventilation scenarios of outside air intake (windows closed) and recirculation, respectively. For the
home, results are shown for the RC scenario (differences in medians between scenarios were <10%). Boxes extend from the first to third quartile
values of predictions, with a line at the median. Whiskers are truncated at the 5th and 95th percentiles.
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primary emission source was present. In contrast, 96−98% of
HM’s average cumulative exposure occurred in the car due to
cross-contamination by HF’s clothing under the car ventilation
scenarios of outside air intake and recirculation, respectively.
Most (>90%) of the occupants’ cumulative secondary
inhalation exposures originated from particles with equilibrium
diameters greater than 5 μm (Figure S4).
Sensitivity Analysis. Parameter Contributions to Pre-

diction Variability. For the base-case simulation, Figure S6
shows the Spearman rank correlation coefficients (ρ) between
the model’s input parameters and response variables
(cumulative secondary inhalation exposures). These coef-
ficients are rank-ordered by their contributions to the variance
of each response variable, as approximated by ρ2. In all cases,
the viral inactivation rate coefficient for 100% cotton clothing
had the greatest influence, contributing ∼48−61% of the
variances (i.e., ρ2: 0.48−0.61). For particles ≤5 μm, the
primary emission rate of infectious particles in the workplace
and the volume of the workplace ranked second and third,
respectively, with similar variance contributions (ρ2: 0.090−
0.14). For larger particles, the primary emission rate was less
important regarding its variance contribution (ρ2 ≤ 0.086),
while the volume of the workplace consistently ranked second
(ρ2: 0.13−0.17).
For the remaining parameters, the rank order depended on

the occupant and car ventilation scenario, in addition to
particle size. These influential parameters included particle
characteristics [e.g., deposition rate coefficient for indoor
surfaces (ρ2: 0.026−0.11)], physical human characteristics
[e.g., respiration rate (ρ2: 0.021−0.071)], and building
characteristics [e.g., AER of the workplace (ρ2: 0.016−
0.022)]. Particle deposition in the car was not included in
this analysis because of a lack of measured deposition rate
coefficients for the particle size range considered in this study.
Assumption of Null Inactivation Rates. Considering that

the viral inactivation rate coefficient for clothing was the most
influential parameter in the base-case simulation (Figure S6),
Figures S7 and S8 compare ABICAM’s predictions under the
“worst-case” assumption that viral inactivation did not occur.
Relative to the base-case simulation (Figure 2), cumulative

secondary inhalation exposures increased under this assump-
tion but were still lower than HF’s primary inhalation exposure
in the workplace by at least a factor of 85 (5−95%: factor of
34−220). The workplace contributed 99% of HF’s average
cumulative inhalation exposure (Figure S5). The total volume
of infectious particles on her clothing available for secondary
exposure after work increased to 3 times (5−95%: 1−9 times)
her primary inhalation exposure in the workplace.
Regarding secondary exposure, the importance of the car

versus the home depended on the car ventilation scenario
(Figure S5). Under recirculation, 61% of HM’s average
cumulative inhalation exposure occurred in the car. In contrast,
59% of this exposure occurred at home under the scenario of
outside air intake. These findings contrasted with those of the
base-case simulation in which secondary exposure occurred
predominantly in the car. Again, most (66−75%) of the
occupants’ cumulative secondary inhalation exposures origi-
nated from particles with equilibrium diameters greater than 5
μm (Figure S4).

■ DISCUSSION

In this study, a novel computational modeling framework
(ABICAM) was expanded to examine the joint influence of
time-dependent human activities and indoor microenviron-
ments on cumulative exposure to respiratory particles
containing viable SARS-CoV-2. Resuspension of pathogens
from clothing and other surfaces has been an open question,
and to the best of our knowledge, there are no previous
estimates of SARS-CoV-2 resuspension from clothing and
associated exposure. Moreover, the treatment of the interzonal
airflow rate as a dynamic parameter accounting for factors such
as human movement (eq 2) provided an enhancement to
typical approaches.42−45 ABICAM is also generalizable to other
exposure scenarios and contaminants, including those in the
gas phase (e.g., semivolatile organic compounds).
Overall, the results support the hypothesis that clothing can

function as a transport vector for respiratory particles
containing viable SARS-CoV-2 and, accordingly, a source of
secondary exposure. However, the magnitudes of predicted
secondary inhalation exposures to infectious particles (0.5−20

Figure 3. Distributions of primary versus secondary exposure to infectious particles. Secondary exposure distributions represent cumulative
inhalation exposures to resuspended particles, deposited from the primary source, across the car and home microenvironments. The distribution of
infectious particles on clothing is the final condition while in the workplace and represents infectious particles available for secondary exposure.
“HF” and “HM” refer to the human female and male adult occupants, respectively. “OA” and “RC” refer to the car ventilation scenarios of outside
air intake (windows closed) and recirculation, respectively. Horizontal lines indicate the 50th and 95th percentiles.
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μm) resuspended from clothing were minimal compared to
those of primary inhalation exposure in the workplace. The
relatively high inactivation rates of SARS-CoV-2 observed on
porous 100% cotton,53,54 in conjunction with the empirically
based rates of particle deposition onto clothing and subsequent
resuspension (Table S3), resulted in secondary inhalation
exposures that were lower than the primary inhalation
exposure by 3 orders of magnitude on average (Figure 3).
Even under conditions that promoted SARS-CoV-2 viability
(e.g., wearing hydrophobic clothing materials),53,55 secondary
inhalation exposures were still lower than the primary
inhalation exposure by about 2 orders of magnitude on
average (Figure S8).
As with any simulation-based study, ours had limitations.

First, a lack of empirical data precluded model evaluation. In
general, modeling clothing as a vector for transporting and
resuspending airborne particles and pathogens is difficult
because of uncertainties in many of the associated parameters.
Monte Carlo simulations and sensitivity analyses were
conducted to assess the implications of these parameter
uncertainties on the model’s predictions. However, there may
be unquantified biases in the absolute results due to the
model’s formulation and/or simplifying assumptions made. In
contrast, relative results (e.g., percent change in exposure
estimates between different microenvironments or scenarios)
convey only quantitative trends but can reduce the perception
of certainty and be more stable to such biases.
An additional limitation of this study stemmed from the lack

of any assessment of infection risk, which limits the ability to
interpret the results from a public health perspective. As noted,
the volume of infectious particles was chosen as the exposure
metric based on its potential to be used to estimate infection
risk mechanistically (see the State Variable section). However,
several uncertainties in estimating viral dose and corresponding
infection risk based on particle volume are worth noting. First,
viral loads of infected humans can vary by several orders of
magnitude depending on the individual and the timing of
sample collection relative to the disease course.41 In addition,
SARS-CoV-2 is likely to be inhaled as a mixture of ultrafine
virions and virion clusters. The concentration of virions in
respiratory emissions therefore probably depends on particle
size,63−65 which, in turn, depends on the site of origin in the
respiratory system and associated particle formation mecha-
nisms.41 Consequently, the number of SARS-CoV-2 virions in
respiratory emissions, and therefore infectivity, probably does
not scale directly with total particle volume but instead with
the volume of exhaled particles within specific size ranges.
Accordingly, we have reported the percent contributions of
each particle size range (Figure S4) to supplement the
exposure estimates (Figures 2, 3, S7, and S8).
Furthermore, it is difficult to accurately measure the

infectivity of respiratory particles across a sufficiently broad
particle size range because the collection and analytical
methods themselves interfere with the viability of sampled
virions.64,66 In the absence of such data, other modeling studies
have used RNA copies as a surrogate for infectivity.48,67

However, RNA does not necessarily indicate the presence of
infectious virions. For instance, measured SARS-CoV-2 RNA
persisted for days on a variety of surfaces, including porous
100% cotton, despite significant reductions in viability as
measured by the median tissue culture infectious dose
(TCID50).

53 Lastly, the dose−response relationship for
SARS-CoV-2 will likely vary with vaccination status and viral

variant and is not necessarily linear nor consistent across
particle sizes and exposure routes.47,68

An additional limitation of our study was the model’s
relatively simplified representation of particle mass-transfer
mechanisms. A more accurate representation could be
accomplished with a physics-based computational fluid
dynamics model, especially for scenarios involving close
proximity between occupants (<1.4−1.6 m).33,48 However,
the substantial data and computational requirements of such
models generally limit their applicability to deterministic
scenarios involving a single, well-characterized environment
with minimal human influence. In comparison, the approach
used in this study was consistent with the limited data available
for parameterization and facilitated a probabilistic character-
ization of variability requiring tens of thousands of executions
of the algorithm.
As noted, the simulations did not include particle deposition

losses in the car due to a lack of measured data required for
parameterization. These losses may be appreciable due to
relatively high air velocities and surface-area-to-volume ratios
in cars compared to other indoor microenvironments (e.g.,
residences).69 Including these losses in the simulations would
have reduced the magnitudes of secondary inhalation exposure,
which, in turn, would have increased the relative importance of
the primary exposure event.
This study was also constrained to a specific exposure

scenario and associated human activities. The exposure
scenario was developed to be relevant to the general
population, in accordance with the availability of data for
model parameterization. It remains possible that other
scenarios and associated activities correspond to greater risks
of clothing-mediated exposure to SARS-CoV-2. For instance,
healthcare workers may encounter several COVID-19 cases
throughout a given work shift and perform high-risk activities
such as aerosol-generating medical procedures.70 One specific
concern for healthcare workers is the potential for viral-laden
particles to be resuspended by doffing personal protective
equipment (e.g., after a work shift),37 which could be
investigated. However, it is unclear whether healthcare workers
are at a greater risk of exposure compared to this study given
the frequent use of precautionary measures in healthcare
settings (e.g., enhanced ventilation, personal protective equip-
ment, surface cleaning, etc.).70

The exposure scenario in this study did not include the use
of personal protective equipment, such as barrier face
coverings. As noted, excluding such coverings is a reasonable
but “worst-case” assumption regarding inhalation exposure.
Wearing such coverings in the workplace could have reduced
the magnitude of primary inhalation exposure which, in turn,
would have increased the relative importance of secondary
inhalation exposures. However, it is likely that these secondary
inhalation exposures would still be relatively low. For these
exposures to be of similar magnitudes as primary exposure,
barrier face coverings would have had to filter ≥ 99% of the
total volume of infectious particles that would have otherwise
been inhaled by HF in the workplace. This high level of
filtration might only be achieved by a well-fitted respirator
mask.41

The exposure scenario was also limited to a few general
“macroactivities”, which were parameterized according to
empirical survey data (Table S4).60 Empirical data on activity
parameters and particle resuspension rate coefficients were
unavailable for plausible shorter duration activities that might
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also resuspend particles from clothing. Such “microactivities”
may include hugging, donning or doffing clothing, and
removing a backpack or shoulder bag. In addition, handling
friable textile materials, such as homemade cotton facemasks,
has been shown to release nonexpiratory micron-scale
particles,71 which could be subsequently inhaled. ABICAM
could account for such microactivities if corresponding data
become available.
This study also did not include the potential for exposure at

close proximity in the workplace because of associated
uncertainties regarding human microactivities and particle
transport. This assumption is reasonable, especially if physical
distancing is maintained as a precautionary measure. However,
at close proximity, a bystander would likely be exposed to a
higher concentration of respiratory particles, especially larger,
predominantly liquid particles.41,48,72,73 Such larger, predom-
inately liquid particles may not have had sufficient time to fully
evaporate to solid droplet nuclei prior to depositing onto an
occupant’s clothing.41

The potential for larger, predominantly liquid particles on
clothing to cause infection is uncertain because of several
factors. First, empirical evidence suggests that such particles
emitted by humans with COVID-19 have lower concentrations
of SARS-CoV-2 compared to smaller particles (e.g., ≤5 μm)
that originate from the lower respiratory system.63−65 This
concentration enrichment of virions in smaller particles has
also been observed for other respiratory pathogens, such as
influenza virus.74 However, as noted, particles of different sizes
tend to deposit in different regions within the respiratory
system,58,59 and it is unclear whether this deposition in
different regions influences COVID-19 infection risk and
severity.
In addition to particle size, the type of clothing material onto

which larger liquid particles deposit may also influence their
infectivity. For instance, hydrophilic textile fibers (e.g., 100%
cotton) can readily absorb liquid particles through capillary
action, leaving the virus’s lipid membrane susceptible to
desiccation.75 These mechanisms may have caused the
relatively rapid inactivation of SARS-CoV-2 and similar
coronaviruses observed on porous 100% cotton fabric in
laboratory experiments.53−55 It should be noted that measured
inactivation rates of SARS-CoV-2 on textiles, such as clothing,
were scarce [and hence the choice of a uniform distribution in
this study (Table S3)]. The available measurements were also
highly variable, with values spanning 2 orders of magnitude
between studies. Consequently, the inactivation rate of SARS-
CoV-2 on clothing was the most influential parameter in this
study (Figure S6). The large variability of this parameter may
relate to interstudy differences (e.g., in the material attributes
of the textiles used and/or virus preparation).53,54

In addition to inactivation, the type of clothing material may
also influence the resuspension of larger liquid particles in a
manner that differs from solid particles. Experiments have
indicated that the mass fraction of solid particles deposited
onto clothing that subsequently resuspend depends on particle
size, the type of clothing material or weave pattern, and the
type of removal force applied, which depends on the
activity.16−19 However, as noted, available measurements of
particle resuspension from clothing have been limited to solid
particles with diameters ≤10 μm. Results from previous
modeling suggest that liquid particles can undergo fragmenta-
tion prior to resuspension, depending on the material’s
hydrophobicity, as well as particle size and removal

force.76,77 Such fragmentation may have consequences for
particle exposure and infectivity.
Besides resuspension, physical contact with clothing as a

fomite is a plausible exposure pathway, especially for the
wearer of the clothing. Such contact may contribute to
infection risk through either of the following pathways: (1)
direct transfer of virions from clothing to mucosa on the face
(nose, mouth, or eyes) and (2) indirect transfer of virions from
clothing to such mucosa mediated by hands. Exposure to
SARS-CoV-2 from physical contact with clothing would
depend on the frequency and nature of contact (e.g., surface
area contacted and pressure exerted), in addition to the type of
clothing material and physical characteristics of the contam-
inant.78,79 Measured data were lacking on the transfer of
enveloped viruses such as SARS-CoV-2 between clothing and
skin. However, measured data for nonporous surfaces suggest
that greater surface roughness results in less efficient transfer
compared to smooth surfaces.79

While physical contact with clothing as a fomite may
contribute to infection risk, a higher applied dose may be
required to elicit the same physiological response as inhalation.
In an animal study involving Syrian hamsters, for instance,
airborne transmission of SARS-CoV-2 was more efficient and
resulted in higher viral loads and more severe disease
manifestations than fomite transmission.68 If these findings
are applicable to humans, COVID-19 is “anisotropic”, meaning
that the dose−response relationship and/or virulence of
infection depends on the target tissue and, accordingly, the
exposure route.80

Lastly, other plausible activities outside the scope of this
study could effectively decontaminate clothing containing
SARS-CoV-2 or other pathogens, thereby reducing the
likelihood of secondary exposure. Such activities include
exposure of clothing to ultraviolet radiation, as can occur by
sunlight outdoors, and domestic laundering. In laboratory
experiments, simulated sunlight increased the inactivation rate
of SARS-CoV-2 in aerosols and on stainless steel surfaces by
∼1 order of magnitude relative to conditions resembling
indoors or nighttime.51,52 In a different experiment, domestic
clothes washing at ambient temperature (23° C) with
detergent reduced the infectious viral titer of a model human
coronavirus (HCoV-OC43) on 100% cotton textiles below the
assay’s detection limit (1.5 log10 TCID50 25 cm−2 material).55

One should limit physically disturbing clothing prior to
laundering them, however, to minimize particle resuspension.
In sum, the findings of this study suggest that secondary

inhalation exposure to viable SARS-CoV-2 resuspended from
clothing is typically low compared to primary inhalation
exposure in a nonhealthcare setting. It remains theoretically
possible that resuspension and physical contact with clothing
as a fomite can occasionally transmit SARS-CoV-2 between
humans. The computational modeling framework developed in
this study can serve as a heuristic tool for synthesizing the
disparate information required to understand the relative
importance of exposure pathways for pathogens and other
contaminants indoors.
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Component-wise description of the mass balance of
infectious particles (eqs S1−S7), description of the
probabilistic approach used to generate human activity
schedules (eqs S8−S11), summaries of model parame-
terization (Tables S1−S4), and supplemental results
including those from the sensitivity analysis (Figures
S1−S8) (PDF)
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