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Background: Apolipoprotein (apo) A-IV, the third most abundant apolipoprotein in
human high density lipoproteins (HDLs), inhibits intestinal and systemic inflammation.
This study asks if apoA-IV also inhibits acute vascular inflammation.

Methods: Inflammation was induced in New Zealand White rabbits by placing a non-
occlusive silastic collar around the common carotid artery. A single 1 mg/kg intravenous
infusion of lipid-free apoA-IV or saline (control) was administered to the animals 24 h
before collar insertion. The animals were euthanised 24 h post-collar insertion. Human
coronary artery cells (HCAECs) were pre-incubated with reconstituted HDLs containing
apoA-IV complexed with phosphatidylcholine, (A-IV)rHDLs, then activated by incubation
with tumour necrosis factor (TNF)-α. Cell surface vascular cell adhesion molecule-
1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) in the TNF-α-activated
HCAECs was quantified by flow cytometry. VCAM-1, ICAM-1 and 3β-hydroxysteroid-
124 reductase (DHCR24) mRNA levels were quantified by real time PCR.

Results: Apolipoprotein ApoA-IV treatment significantly decreased collar-induced
endothelial expression of VCAM-1, ICAM-1 and neutrophil infiltration into the arterial
intima by 67.6 ± 9.9% (p < 0.01), 75.4 ± 6.9% (p < 0.01) and 74.4 ± 8.5% (p < 0.05),
respectively. It also increased endothelial expression of DHCR24 by 2.6-fold (p < 0.05).
Pre-incubation of HCAECs with (A-IV)rHDLs prior to stimulation with TNF-α inhibited
VCAM-1 and ICAM-1 protein levels by 62.2 ± 12.1% and 33.7 ± 5.7%, respectively.
VCAM-1 and ICAM-1 mRNA levels were decreased by 55.8 ± 7.2% and 49.6 ± 7.9%,
respectively, while DHCR24 mRNA expression increased by threefold. Transfection of
HCAECs with DHCR24 siRNA attenuated the anti-inflammatory effects of (A-IV)rHDLs.
Pre-incubation of TNF-α-activated HCAECs with (A-IV)rHDLs also inhibited nuclear
translocation of the p65 subunit of nuclear factor-κB (NF-κB), and decreased IκBα

phosphorylation.

Conclusion: These results indicate that apoA-IV inhibits vascular inflammation in vitro
and in vivo by inhibiting NF-κB activation in a DHCR24-dependent manner.

Keywords: apolipoprotein A-IV, inflammation, high-density lipoproteins, endothelial cells, nuclear factor-kappaB,
3β-hydroxysteroid-124 reductase

Abbreviations: Apo, apolipoprotein; VCAM-1, vascular cell adhesion molecule 1; ICAM-1, intercellular adhesion molecule
1; DHCR24, 3β-hydroxysteroid-124 reductase; HCAECs, human coronary artery endothelial cells; TNF-α, tumour necrosis
factor alpha; IκBα, I kappaB alpha; NF-κB, nuclear factor-kappaB; NZW, New Zealand White.
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INTRODUCTION

High-density lipoproteins (HDLs), and the main HDL
apolipoprotein, apoA-I, have potent anti-inflammatory
properties in vitro and in vivo (1–3). HDLs mediate these
effects by inhibiting key steps in activation of the nuclear
factor-κB (NF-κB) pathway, including nuclear translocation of
the p65 subunit of NF-κB in multiple cell types (4–6). We have
also reported that the anti-inflammatory properties of HDLs and
apoA-I are related to their ability to increase expression of the
anti-apoptotic and antioxidant enzyme, 3β-hydroxysteroid-124
reductase (DHCR24) and induce the potentially cardioprotective
enzyme, heme oxygenase-1 (5, 7).

Apolipoprotein A-IV, the third most abundant apolipoprotein
in human HDLs, is a 46 kDa protein that is synthesised in
the small intestine. It effluxes cholesterol from peripheral cells,
including cholesterol-loaded macrophages, in the first step of
the potentially anti-atherogenic reverse cholesterol transport
pathway (8, 9), participates in the biogenesis of HDLs in an
ATP binding cassette transporter A1- and lecithin:cholesterol
acyltransferase-dependent manner (10) and has plaque stabilising
properties (11).

ApoA-IV is a satiety factor and promotes thermogenesis
in brown adipose tissue (12–14). It has anti-diabetic (15–17),
antioxidant (18), anti-atherosclerotic (19, 20), anti-apoptotic
(21) and anti-thrombotic properties (22) and inhibits intestinal
inflammation and pro-inflammatory cytokine expression in
animal models, as well as allergy-driven inflammation in humans
and mice (20, 23, 24). The anti-inflammatory properties of apoA-
IV are potentially clinically relevant and they have recently
been identified as an independent risk marker of reduced
inflammation in chronic kidney disease (25).

The present study asks if apoA-IV can inhibit acute vascular
inflammation in New Zealand White (NZW) rabbits and,
if so, whether it targets the same NF-κB- and DHCR24-
related pathways as reported previously for HDLs and apoA-
I. The results establish that extremely small amounts of
apoA-IV markedly inhibit the vascular inflammation that is
induced in these animals following insertion of a non-occlusive
periarterial carotid collar. We also performed in vitro studies
which established that the underlying mechanism of this anti-
inflammatory effect is related, at least in part, to increased
endothelial expression of DHCR24, and inhibition of NF-
κB activation.

MATERIALS AND METHODS

Animals
Male New Zealand White rabbits (approximately 2.5 kg) were
obtained from the Institute of Medical and Veterinary Sciences
(Gilles Plains, SA, Australia) and maintained on a normal
chow diet. All procedures were approved by the Sydney South
West Area Health Service Animal Welfare Committee (Project
No. 2009/019A). The animals (n = 6/group) were randomised
to receive a single intravenous (iv) infusion of either saline,
lipid-free apoA-I [8 mg/kg (0.3 µmol/kg), positive control],

or lipid-free apoA-IV [1 mg/kg, 0.02 µmol/kg)] into the left
marginal ear vein 24 h before placing a non-occlusive, peri-
arterial collar around the left common carotid artery (1). Prior
to the procedure, the animals were sedated with subcutaneous
acetylpromazine (0.5 mL/kg), then anaesthetised with inhaled
isoflurane (4–5% for induction and 1.5–2% for maintenance).
The animals were euthanised 24 h post-collar insertion and
collared and non-collared carotid arteries were extracted for
immunohistochemical analysis.

Isolation of Apolipoprotein A-I and
Rabbit High Density Lipoproteins
High density lipoproteins were isolated from pooled samples of
autologously donated human plasma (Healthscope Pathology,
Adelaide, SA, Australia) by sequential ultracentrifugation
(1.063 < d < 1.21 g/mL) and delipidated using standard
techniques (26). The resulting apoHDL was chromatographed
on a Q-Sepharose Fast-Flow column and apoA-I was isolated
as described (27, 28). The apoA-I preparations were judged
to be >95% pure by electrophoresis on SDS-polyacrylamide
PhastGels (GE Healthcare, Chicago, IL, United States) and
Coomassie Blue staining.

For isolation of rabbit HDLs, plasma was adjusted to
1.25 g/mL with solid KBr and ultracentrifuged at 55,000 rpm for
16 h at 4◦C, in a 70 Ti fixed angle rotor in an Optima LE-80K
Ultracentrifuge (Beckman-Coulter Inc, Brea, CA, United States).
The d < 1.25 g/mL fraction (600 µL) was injected onto two
Superdex 200 columns connected in series to an AKTA FPLC
system (GE Healthcare). The HDLs were eluted at a flow
rate of 0.3 mL/min.

Expression of Apolipoprotein A-IV
Apolipoprotein A-IV was cloned into the pET14b vector (with
integral His-tag; Merck, Darmstadt, Germany), transformed into
BL21 (pLysS) cells (Promega, Madison, WI, United States) and
grown in Luria-Bertani (LB) culture media with ampicillin for
selection of pET14b transformants. When the OD600 reached
0.6–0.8, protein expression was induced by incubation for 4 h
with isopropyl β-D-1-thiogalactopyranoside (IPTG, 0.8 mM,
Applichem, Darmstadt, Germany). The cells were pelleted, lysed
with Bugbuster (Merck) and dialysed against 20 mM phosphate
buffer containing 6 M urea, 0.3 M NaCl, and 20 mM imidazole
(pH 8.0), then loaded onto 5 pre-equilibrated His-trap FF
columns (5 mL, GE Healthcare) connected in series. ApoA-IV
was eluted at 5 mL/min for 15 min with 20 mM phosphate buffer
containing 6 M urea, 0.3 M NaCl and 500 mM imidazole (1–
100% gradient) (pH 8.0). The apoA-IV was dialysed into TBS
prior to removing the His-tag by incubation for 5 h at room
temperature with thrombin (2 U/mg apoA-IV). The reaction
was stopped by addition of Phosphatase Inhibitor Cocktail 2
(1 mL, Sigma-Aldrich, St Louis, MO, United States). The apoA-
IV was dialysed into 20 mM Tris (pH 8.5), adjusted to 6 M
with solid, deionised urea and loaded onto a pre-equilibrated
Q-Sepharose Fast Flow column (GE Healthcare). ApoA-IV was
eluted from the column at a flow rate of 3 mL/min with
20 mM Tris containing 6 M urea and a gradient of 0.5 M
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NaCl (pH 8.5): 0–40% for 5 min, 40–48% for 15 min, 48–
70% for 15 min. The apoA-IV was dialysed against endotoxin-
free PBS and added to 1% Triton X-114 (v/v) at 4◦C for
30 min to remove residual endotoxin, then incubated at 37◦C for
10 min and centrifuged (5,200 × g) for 1 h. The aqueous layer
(containing apoA-IV) was removed, and the process repeated
three times. Residual Triton X-114 was removed from the apoA-
IV by incubation for 2 h at 4◦C with Bio beads (Bio-Rad,
Hercules, CA, United States). The apoA-IV was concentrated
(Amicon Ultra -15 centrifugal filter, Billerica, MA, United States)
and filtered (0.22 µM). Endotoxin levels were tested using
an EndoSafe PTS-Reader and 0.1–10 EU/mL PTS cartridges
(Charles River, Wilmington, MA, United States) and found to
be <0.5 EU/mL.

Preparation of Discoidal Reconstituted
HDLs
Discoidal rHDLs containing palmitoyl-2-linoleoyl-sn-glycero-3-
phosphatidylcholine (PLPC, Avanti Polar Lipids, Alabaster, AL,
United States) and apoA-I [initial PLPC/apoA-I molar ratio
100/1, (A-Ir)HDLs] or apoA-IV [initial PLPC/apoA-IV molar
ratio 150/1, (A-IV)rHDLs] were prepared by the cholate dialysis
method (29). The rHDLs were dialysed extensively against
endotoxin-free PBS before use. Particle sizes were determined
by non-denaturing gradient gel electrophoresis (30). Cross-
linking with the homo-bifunctional cross-linking agent bis
(sulfosuccinimidylsuccinate) (BS) was performed as described
(31, 32).

Cell Culture
Human coronary artery endothelial cells (HCAECs, passages 2 to
6) were maintained in MesoEndo media (Cell Applications, San
Diego, CA, United States). The cells, in either 12-well (1 × 105

cells/well for mRNA quantification) or 6-well plates (2 × 105

cells/well for protein extraction) were pre-incubated for 16 h with
discoidal (A-I)rHDLs, discoidal (A-IV)rHDLs, isolated rabbit
HDLs or PBS. After removal of the rHDLs or HDLs, the cells
were incubated for 5 h at 37◦C with TNF-α (final concentration
0.2 ng/mL), then subjected to flow cytometry or total RNA
isolation. For measurement of the p65 subunit of NF-κB and
IκBα, the cells were incubated with TNF-α (final concentration
0.2 ng/mL) for 20 min.

Knockdown of 3β-Hydroxysteroid-124
Reductase
Human coronary artery endothelial cells (0.5 × 105 cells/well)
were plated into 24-well plates and transfected at 37◦C for
7 h with either DHCR24 siRNA (Santa Cruz, Dallas, TX,
United States; sc-60531) or scrambled control siRNA (Santa
Cruz; sc-37007) using 15 pmol of siRNA.

Flow Cytometry
Human coronary artery endothelial cells were plated into 24-
well (0.5 × 105 cells/well) and incubated at 4◦C for 30 min
with an ICAM-1 antibody (1:5; CD54 FITC, Beckman-Coulter), a
VCAM-1 antibody (1:500; CD106 PeCy5 510C9, BD Bioscience,

Franklin Lakes NJ, United States) or PBS containing 10%
(v/v) heat-inactivated fetal bovine serum (FBS). An isotype
control (PECy5 mouse IgG1, BD Bioscience and IgG1 FITC,
Beckman-Coulter) was used to confirm the specificity of the
fluorescent labelling. Cells incubated in the absence of TNF-α
were used to ascertain background expression of ICAM-1 and
VCAM-1.

Western Blotting
Human coronary artery endothelial cells were rinsed with
PBS and nuclear and cytoplasmic extracts were prepared
(NE-PER, Pierce, Rockford, Ill). The extracted proteins were
quantified (BCA assay), loaded onto 3–14% Bis-Tris gels (Life
Technologies, Carlsbad, CA, United States), electrophoresed for
45 min, transferred to nitrocellulose membranes and blocked
with 10% (w/v) skim milk. Phosphorylated and total IκBα,
the p65 subunit of NF-κB and β-actin were detected with
mouse anti-human IκBα (1:1000, Cell Signalling), rabbit anti-
human phospho-IκBα (1:1000, Cell Signalling Technology,
Danvers, MA, United States), rabbit anti-human p65 (1:500,
Santa Cruz Biotechnology, Dallas, TX, United States) and
mouse anti-human β-actin (1:3000) monoclonal antibodies
(Abcam, Cambridge, United Kingdom). Goat anti-rabbit or
goat anti-mouse IgG-HRP (Santa-Cruz) were used as secondary
antibodies. The membranes were developed using ECL Plus
(GE Healthcare) and imaged with a Chemidoc imager (Bio-
Rad).

Plasma Lipid and Lipoprotein Analysis
All analyses were carried out in triplicate on a Hitachi 902
autoanalyser (Roche Diagnostics, Mannheim, Germany). Protein
concentrations were measured using the bicinchoninic acid assay
(33). Phospholipid and unesterified cholesterol concentrations
were measured enzymatically (34, 35). Total cholesterol
concentrations were measured using commercial kits (Roche
Diagnostics). ApoA-I was measured immunoturbidometrically
using a goat anti-human apoA-I antibody (Calbiochem, San
Diego, CA, United States) (36). ApoA-IV was quantified using
a commercially available ELISA kit (Millipore, Burlington,
MA, United States).

Immunohistochemistry
Carotid artery sections were dehydrated and embedded in
paraffin, sectioned (5 µm), and mounted on glass slides.
The sections were then incubated overnight at 37◦C prior
to antigen retrieval (Target Retrieval Buffer (pH 9.0),
Dako, Glostrup, Denmark). After blocking endogenous
peroxidase activity with Peroxidase block (Envision Mouse
Kit, Dako), the sections were incubated with 10% (v/v)
rabbit serum to block non-specific binding and stained with
mouse anti-rabbit CD18 (1:200; AbD Serotec, Raleigh, NC,
United States), mouse anti-rabbit VCAM-1 (1:200), mouse
anti-rabbit ICAM-1 (1:200) (provided Dr M. Cybulsky,
University of Toronto) monoclonal antibodies or a goat
anti-human polyclonal antibody against DHCR24 (1:200)
(Santa-Cruz). The sections were rinsed, incubated with
appropriate HRP-conjugated secondary antibodies (Envision
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Mouse Kit, Dako), then incubated with 3,3-diaminobenzidine
solution (Envision Mouse Kit, Dako) and counter-stained
with Haematoxylin and Eosin. Images were obtained using
a Zeiss Imager M1 microscope with an attached AxioCam
MRc5 at 40 × magnification. Staining was quantified using
ImageJ.1 The threshold for positive staining was determined
by a blinded observer and applied to all sections. To account
for variations in carotid artery size, the number of pixels
staining positive for endothelial VCAM-1 and ICAM-1 was
divided by the endothelial circumference and the results
were expressed as image units. CD18-positive and DHCR24-
positive staining was expressed as % total intima/media
cross-sectional area.

Real Time PCR
Total RNA was isolated with Trizol and reverse transcribed using
an iScript cDNA synthesis kit (Bio-Rad) and a Mastercycler
thermocycler (Eppendorf, Hamburg, Germany). Real time PCR
was performed using iQ SYBR Green Supermix (Bio-Rad)
in an iCycler iQ Real-Time thermocycler. Quantitation of
gene expression was assessed by the 11Ct method with β-2
microglobulin (B2 M), hypoxanthine phosphoribosyltransferase
1 (HPRT-1), and β-actin as housekeeping genes. Primers are
shown in Supplementary Table 1.

Statistical Analysis
All statistical analyses were performed using GraphPad Prism
Version 5.0 d for Mac (GraphPad Software, San Diego, CA
United States).2 Significant differences between data sets were
determined using a two-tailed, unpaired Student’s t-test or one-
way ANOVA with Dunnett’s post-test, with p < 0.05 considered
significant. The normality of all data was determined with the
Kolmogorov-Smirnov test and α = 0.05 considered to be normally
distributed. All results are presented as mean ± SEM unless
otherwise specified.

RESULTS

A Single Infusion of Lipid-Free
Apolipoprotein A-IV Inhibits Peri-Arterial
Collar-Induced Vascular Inflammation in
New Zealand White Rabbits
A non-occlusive collar was placed around the common
carotid artery of NZW rabbits (n = 6/group) 24 h after
administration of a single infusion of apoA-IV (1 mg/kg
iv), saline (negative control) or apoA-I (8 mg/kg, positive
control). As reported previously, neutrophils (CD18+ cells)
were not detected in the non-collared arteries in the saline-
infused animals (Figure 1A) (1). The arteries also had low
levels of constitutive ICAM-1 (Figure 1E) and VCAM-1
(Figure 1I) expression.

The collar induced an acute inflammatory response that was
accompanied by neutrophil infiltration into the intima-media

1https://imagej.nih.gov/ij/
2www.graphpad.com

(Figure 1B) and increased endothelial expression of ICAM-1
(Figure 1F) and VCAM-1 (Figure 1J). A single 8 mg/kg iv
infusion of lipid-free apoA-I 24 h prior to collar insertion reduced
collar-mediated CD18+ cell infiltration from 16.4 ± 6.7%
(Figure 1B) to 1.4 ± 0.7% of the total intima-media area
(Figure 1C, p < 0.01). A single 1 mg/kg iv infusion of apoA-
IV similarly decreased the area staining positive for CD18+
cells from 16.4 ± 6.7% (Figure 1B) to 4.2 ± 1.4%, (Figure 1D,
p < 0.05).

The collar-mediated increase in endothelial ICAM-1
expression was reduced from 32.1 ± 12.5 image units
(Figure 1F) to 7.1 ± 1.2 image units (Figure 1G) in the
animals that were infused with apoA-I, and to 7.9 ± 2.2
image units (Figure 1H) in the animals that were infused
with apoA-IV (p < 0.01 for both). The collar-induced increase
in endothelial VCAM-1 expression was attenuated from
11.1 ± 2.3 image units (Figure 1J) in the saline-infused
animals to 7.7 ± 1.1 image units (Figure 1K) in the animals
that were infused with lipid-free apoA-I, and to 3.6 ± 1.1
image units (Figure 1L) in the apoA-IV-infused animals,
(p < 0.01 for both).

Insertion of a carotid collar did not alter DHCR24 protein
expression in the intima-media of the saline-infused animals
relative to what was observed for the non-collared arteries
(Figures 1M,N). This is consistent with what has been reported
previously (37). Expression of DHCR24 in the intima-media, by
contrast, increased from 3.4 ± 0.5% (Figure 1M) in the collared,
saline-infused animals to 10.9 ± 2.7% of the total area in the
animals that were infused with apoA-I (Figure 1O, p < 0.01),
and to 9.0± 1.4% in the animals that were infused with apoA-IV
(Figure 1P, p < 0.05).

A Single Apolipoprotein A-IV Infusion
Does Not Affect Plasma Lipids or High
Density Lipoprotein Size and
Composition
Plasma apoA-I, apoA-IV, phospholipid, unesterified cholesterol,
total cholesterol and phospholipid levels did not differ between
the three groups of rabbits at baseline (Supplementary Table 2).
At 24 h post-infusion (i.e., at the time of collar insertion)
plasma lipid, apoA-I and apoA-IV levels in the rabbits that
received saline, apoA-IV and apoA-I were comparable. There
was also no difference in plasma lipid, apoA-I and apoA-
IV levels at 48 h after the infusion of apoA-IV, apoA-
I or saline.

HDLs were isolated from plasma as described in section
“Materials and Methods” and, given that rabbits are deficient in
apoA-II, the composition of the preparations was determined
based on the assumption that apoA-I is the predominant
apolipoprotein (38). HDL composition did not differ significantly
in the animals that were infused with saline, apoA-IV or
apoA-I (Supplementary Table 3). This is consistent with
what has been reported previously for HDLs isolated from
saline- and apoA-I-infused rabbits (39). The apoA-I and
apoA-IV infusions also had no effect on HDL particle size
(Supplementary Table 3).
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FIGURE 1 | Apolipoprotein A-IV inhibits acute vascular inflammation in NZW rabbit carotid arteries. NZW rabbits (n = 6/group) were infused iv with saline [Panels
(A,B,E,F,I,J,M,N)], apoA-I [Panels (C,G,K,O); 8 mg/kg iv] or apoA-IV [Panels (D,H,L,P); 1 mg/kg iv] 24 h prior to inserting a non-occlusive peri-arterial collar around
the left common carotid artery. The animals were euthanised 24 h post-collar insertion. Sections from the non-collared [Panels (A,E,I,M)] and the collared carotid
arteries were stained for neutrophils [CD18, Panels (B–D)], ICAM-1 [Panels (F–H)], VCAM-1 [Panels (J–L)] and DHCR24 [Panels (N–P)]. Representative
immunostained images as shown. *p < 0.05, **p < 0.01.

A Single Apolipoprotein A-IV Infusion
Does Not Improve the Anti-inflammatory
Function of High Density Lipoproteins in
New Zealand White Rabbits
The anti-inflammatory properties of the HDLs that were isolated
from the saline-, apoA-I- and apoA-IV-infused rabbits were also
evaluated in TNF-α-activated HCAECs as described in section
“Materials and Methods.” The isolated HDLs did not inhibit
ICAM-1 expression in TNF-α-activated HCAECs, irrespective of
whether the animals were infused with saline, lipid-free apoA-I,
or lipid-free apoA-IV (Figures 2A–C).

The isolated HDLs from the saline-, apoA- I-, and apoA-IV -
infused rabbits, by contrast, inhibited VCAM-1 expression in a
concentration dependent manner (Figures 2D–F). At an HDL
protein concentration of 20 µM, the HDLs from the saline-
infused rabbits decreased VCAM-1 protein levels by 42.9± 7.3%
(Figure 2D, p < 0.001), compared to 24 ± 6.5% for the rabbits
that were infused with apoA-I (Figure 2E, p < 0.05) and by
39.5 ± 6.0% for the rabbits that were infused with apoA-IV
(Figure 2F, p < 0.001).

As the reduction in VCAM-1 expression was similar
irrespective of whether the rabbits were infused with saline,
apoA-I or apoA-IV, it was concluded that treatment with apoA-IV
does not improve the anti-inflammatory function of HDLs.

(A-IV)rHDLs Inhibit Intercellular Adhesion
Molecule 1 and Vascular Cell Adhesion
Molecule 1 Expression in Human
Coronary Artery Endothelial Cells More
Effectively Than (A-I)rHDLs
Although apoA-IV inhibits intestinal inflammation and decreases
atherosclerosis in mice (20, 23), it has a low affinity for lipid, with
up to 98% of the total apoA-IV in fasted human plasma being
present in the lipid-free form after ultracentrifugation (40). This
indicates that most of the apoA-IV may have dissociated from
the rabbit HDLs during the isolation procedure, thus explaining
why the HDL preparations from the apoA-IV-treated rabbits
inhibited VCAM-1 expression in HCAECs to the same extent as
the isolated HDLs from the apoA-I-treated rabbits (Figure 2).
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FIGURE 2 | A single apoA-IV infusion does not alter the anti-inflammatory properties of rabbit HDLs. HDLs were ultracentrifugally isolated from NZW rabbits that had
been treated with saline [Panels (A,D)], lipid-free apoA-I [Panels (B,E)] or lipid-free apoA-IV [Panels (C,F)] as described in the legend to Figure 1. The isolated HDLs
(final apoA-I concentration: 5, 10, or 20 µM) were incubated at 37◦C for 16 h with HCAECs prior to stimulation with TNF-α (0.2 ng) for 5 h at 37◦C. ICAM-1 and
VCAM-1 protein expression was quantified by flow cytometry. Data points represent mean ± SEM of three independent experiments with three
replicates/experiment. *p < 0.05, ***p < 0.001.

To ascertain whether apoA-IV is able to inhibit ICAM-
1 and VCAM-1 in endothelial cells in vitro, discoidal (A-
IV)rHDLs were prepared by complexing lipid-free apoA-
IV with PLPC. The discoidal (A-IV)rHDLs consisted of a
major population of particles 10.9 nm in diameter and
three larger, minor populations of particles (Figure 3A).
Discoidal (A-I)rHDLs were used as a positive control and
consisted predominantly of particles 8.8 and 7.4 nm in
diameter (Figure 3A). The PLPC/apolipoprotein molar ratio
of the (A-IV)rHDLs and (A-I)rHDLs were 88/1 and 54/1,
respectively (Figure 3A). As judged by covalent cross-linking,
the (A-I)rHDL and (A-IV)rHDL preparations consisted of
populations of particles with two, three and four apolipoprotein
molecules/particle (Figure 3B).

Pre-incubation of HCAECs with the discoidal (A-I)rHDLs
at a final apoA-I concentration of 32 µM prior to stimulation
with TNF-α, inhibited cell surface ICAM-1 levels by 50 ± 2%
(Figure 4A) and VCAM-1 levels by 73 ± 9% (Figure 4B)
(p < 0.001 for both compared to TNF-α-stimulated HCAECs).
Pre-incubation of the HCAECs with discoidal (A-IV)rHDLs at a
final apoA-IV concentration of 5 µM did not inhibit ICAM-1 or
VCAM-1 expression significantly. Pre-incubation with discoidal
(A-IV)rHDLs at a final apoA-IV concentration of 10 µM, by
contrast, inhibited ICAM-1 and VCAM-1 levels by 34 ± 3%

(Figure 4A) and 62 ± 12% respectively (Figure 4B) (p < 0.001
for both compared to TNF-α-stimulated HCAECs).

The reduction in ICAM-1 and VCAM-1 protein levels was
accompanied by a decrease in their respective mRNA levels.
Pre-incubation of HCAECs with discoidal (A-I)rHDLs at a final
apoA-I concentration of 32 µM inhibited ICAM-1 (Figure 4C)
and VCAM-1 mRNA levels (Figure 4D) by 76 ± 3% and
69± 12% respectively (p < 0.001 for both compared with TNF-α-
stimulated HCAECs). Pre-incubation of HCAECs with discoidal
(A-IV)rHDLs at a final apoA-IV concentration of 5 or 10 µM
decreased ICAM-1 mRNA levels by 44 ± 8% and 50 ± 8%,
respectively (Figure 4C, p < 0.001 for both compared with
TNF-α-activated HCAECs), while VCAM-1 mRNA levels were
decreased by 68 ± 9% and 55 ± 7%, respectively (Figure 4C)
(p < 0.001 for both). These results are consistent with rHDLs that
contain apoA-IV being more effective on a per particle basis than
(A-I)rHDLs at inhibiting ICAM-1 and VCAM-1 mRNA levels
and transcription in TNF-α-activated HCAECs.

Pre-incubation of HCAECs with discoidal (A-I)rHDLs (final
apoA-I concentration 32 µM) prior to stimulation with TNF-
α also increased DHCR24 mRNA levels by 196 ± 68%
(Figure 4E, p < 0.05). This is consistent with what has
been reported previously (5). Similarly, pre-incubation of
TNF-α-stimulated HCAECs with discoidal (A-IV)rHDLs at final
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FIGURE 3 | Size and composition of discoidal (A-IV)rHDLs and discoidal (A-I)rHDLs. Discoidal (A-IV)rHDLs and (A-I)rHDLs were prepared by the cholate dialysis
method and analysed in terms of size and composition [Panel (A)]. The discoidal rHDLs were then cross-linked with BS and their migration was compared with that
of cross-linked lipid-free apoA-I and apoA-IV [Panel (B)].

apoA-IV concentrations of 5 or 10 µM increased DHCR24
mRNA levels by 244 ± 30% and 257 ± 44%, respectively
(Figure 4E, p < 0.001 for both).

(A-IV)rHDLs Inhibit Nuclear
Factor-kappaB Activation in Human
Coronary Artery Endothelial Cells
To ascertain if (A-IV)rHDLs inhibit ICAM-1 and VCAM-1
expression in HCAECs via the canonical NF-κB pathway, nuclear
p65, as well as cytoplasmic levels of total and phosphorylated
IκBα were quantified in TNF-α-activated HCAECs. Incubation
with TNF-α increased HCAEC nuclear p65 levels (Figures 5A,B).

Pre-incubation of the cells with discoidal (A-I)rHDLs (final
apoA-I concentration 32 µM) prior to stimulation with TNF-
α, reduced nuclear p65 protein levels by 34 ± 6% compared to
cells incubated with TNF-α alone (Figures 5A,B), (p < 0.001).
Pre-incubation of TNF-α-stimulated HCAECs with discoidal
(A-IV)rHDLs at final apoA-IV concentrations of 5 or 10 µM
inhibited nuclear p65 levels by 33 ± 8% (p < 0.01) and 56 ± 6%
(p < 0.001), respectively, compared to cells incubated with TNF-
α alone) (Figures 5A,B). Cytoplasmic p65 levels were not affected
by pre-incubation with discoidal (A-I)rHDLs or discoidal (A-
IV)rHDLs, or by incubation with TNF-α (Figures 5C,D).

Incubation with TNF-α markedly increased the phosphory-
lated IκBα/total IκBα ratio in HCAECs (Figures 5D,E).
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FIGURE 4 | (A-IV)rHDLs inhibit ICAM-1, VCAM-1 expression and increase DHCR24 expression in TNF-α-stimulated HCAECs. HCAECs were incubated for 16 h with
(A-I)rHDLs (final apoA-I concentration 32 µM) and (A-IV)rHDLs (final apoA-IV concentrations 5 and 10 µM). The rHDLs were then removed and the cells were
incubated for a further 5 h with TNF-α (final concentration 0.2 ng/mL). ICAM-1 [Panel (A)] and VCAM-1 [Panel (B)] protein expression was quantified by flow
cytometry. ICAM-1 [Panel (C)], VCAM-1 [Panel (D)], and DHCR24 [Panel (E)] mRNA levels were quantified by qPCR. The mean ± SEM of three independent
experiments, each performed in triplicate are shown. *p < 0.05, ***p < 0.005.

Pre-incubation of HCAECs with (A-I)rHDLs prior to TNF-α-
stimulation reduced the phosphorylated IκBα/total IκBα ratio
by 38.1 ± 1.3% (Figures 5D,E, p < 0.001). This is consistent
with what has been reported previously (4). Pre-incubation

of TNF-α-stimulated HCAECs with discoidal (A-IV)rHDLs at
final concentrations of 5 or 10 µM reduced the phosphorylated
IκBα/total IκBα ratio by 45.0 ± 5.0% and 75.7 ± 2.4%,
respectively (Figures 5D,E) (p < 0.001 for both). Taken together,
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FIGURE 5 | (A-IV)rHDL inhibits NF-κB activation in TNF-α-stimulated HCAECs. HCAECs were incubated for 16 h at 37◦C with (A-I)rHDLs (final apoA-I concentration
32 µM) or (A-IV)rHDLs (final A-IV concentration 5 and 10 µM). The rHDLs were removed and the cells were incubated for 20 min at 37◦C with TNF-α (0.2 ng/mL).
Nuclear extracts were isolated and subjected to immunoblotting using β-actin as a loading control. Nuclear p65 protein levels (A,B) and cytoplasmic levels of p65
and phosphorylated IκBα (pIκBα), (C,D) are shown. (E) Shows the ratio of cytoplasmic pIκBα/IκBα. Results represent mean ± SEM of three independent
experiments, each performed in triplicate. **p < 0.01, ***p < 0.001.

these results indicate that discoidal (A-IV)rHDLs decrease
cytokine-induced inflammation in HCAECs by inhibiting NF-
κB activation.

(A-IV)rHDLs Inhibit Intercellular Adhesion
Molecule 1 and Vascular Cell Adhesion
Molecule 1 Expression in Tumour
Necrosis Factor Alpha Stimulated
Human Coronary Artery Endothelial Cells
in a 3β-Hydroxysteroid-124 Reductase
-Dependent Manner
Transfection of HCAECs with DHCR24 siRNA reduced
DHCR24 protein and mRNA levels by 45 ± 4 (p < 0.01) and

93 ± 6%, respectively, relative to HCAECs transfected with
scrambled siRNA (Figure 6A).

Incubation of the scrambled, siRNA-transfected HCAECs
with TNF-α significantly increased ICAM-1 protein
expression (Figure 6B, open bars) (p < 0.001). Pre-
incubation of the scrambled, siRNA-transfected HCAECs
with discoidal (A-I)rHDLs (final apoA-I concentration 32 µM)
or discoidal (A-IV)rHDLs (final apoA-IV concentration
10 µM), prior to stimulation with TNF-α, inhibited
the cytokine-induced increase in ICAM-1 expression by
26 ± 9% (p < 0.05) and 26 ± 4% (p < 0.01), respectively
(Figure 6B, open bars). ICAM-1 expression was not
inhibited in HCAECs that were transfected with DHCR24
siRNA and pre-incubated with discoidal (A-IV)rHDLs
or discoidal (A-I)rHDLs prior to stimulation with TNF-α
(Figure 6B, closed bars).
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FIGURE 6 | (A-IV)rHDLs inhibit TNF-α-induced ICAM-1 and VCAM-1 expression in HCAECs in a DHCR24-dependent manner. HCAECs were transfected with
DHCR24 or scrambled siRNA then pre-incubated at 37◦C for 16 h with (A-I)rHDLs (final apoA-I concentration 32 µM) or (A-IV)rHDLs (final apoA-IV concentration
10 µM). The rHDLs were removed and the cells were stimulated for 5 h with TNF-α (final concentration 0.2 ng/mL). The reduction in DHCR24 protein and mRNA
levels in the transfected HCAECs was quantified by Western blotting and qPCR [Panel (A)]. ICAM-1 [Panel (B)] and VCAM-1 [Panel (C)] protein levels were quantified
in the TNF-α-activated HCAECs by flow cytometry. Results represent the mean ± SEM of three independent experiments, each performed in triplicate. *p < 0.05,
**p < 0.01, ***p < 0.001 vs. TNF-α-stimulated cells.

Pre-incubation of scrambled siRNA-transfected-HCAECs
with discoidal (A-I)rHDLs and discoidal (A-IV)rHDLs prior to
stimulation with TNF-α inhibited the cytokine-induced increase
in VCAM-1 expression by 71 ± 3% (Figure 6C, open bars) and
67 ± 10% (Figure 6C, open bars), respectively (p < 0.001 for
both compared with TNF-α-stimulated cells). For HCAECs that
were transfected with DHCR24 siRNA, and pre-incubated with
(A-I)rHDLs prior to activation with TNF-α, the cytokine-induced
increase in VCAM-1 expression was inhibited by 34 ± 3%
(Figure 6C, p < 0.01), and by 36 ± 5% for the cells that were
pre-incubated with (A-IV)rHDLs (Figure 6C, p < 0.001).

DISCUSSION

This study shows for the first time that apoA-IV is a more
effective inhibitor of acute vascular inflammation in NZW
rabbits than apoA-I. This is demonstrated by the ability of a
single 1 mg/kg (2 × 10−8 mol/kg) iv injection of apoA-IV
to reduce collar-induced neutrophil infiltration into the carotid
artery, inhibit endothelial expression of ICAM-1 and VCAM-
1 and increase expression of the anti-apoptotic and antioxidant
enzyme, DHCR24, in NZW rabbits to a comparable extent as
a single 8 mg/kg (28 × 10−8 mol/kg) iv injection of apoA-I
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FIGURE 7 | Lipid-free and lipid-associated apoA-IV reduces acute vascular inflammation by inhibiting endothelial ICAM-1 and VCAM-1 expression (A,B) and NF-κB
activation in a DHCR24-dependent manner (C).

(Figure 7A) (2). The results also establish that discoidal (A-
IV)rHDLs reduce ICAM-1 and VCAM-1 expression in TNF-α-
activated HCAECs by inhibiting NF-κB activation in a DHCR24-
dependent manner (Figures 7B,C).

These outcomes extend previous studies in which lipid-free
apoA-IV reduced inflammation in a mouse model of colitis,
inhibited histamine release from basophils in patients with
allergic rhinitis and reduced TNF-α secretion from human
monocytes following stimulation with lipopolysaccharide (20, 23,
41). Importantly, apoA-I was unable to recapitulate the anti-
inflammatory properties of apoA-IV in any of these studies (20,
23, 41), thus identifying apoA-IV as a unique, anti-inflammatory
agent with therapeutic potential.

As the HDLs that were isolated from apoA-IV-treated
NZW rabbits did not inhibit cell surface ICAM-1 or VCAM-
1 expression in TNF-α-activated HCAECs to a greater extent
than what was observed for saline-infused NZW rabbits, the
anti-inflammatory properties of apoA-IV cannot be explained in
terms of improved HDL function. However, it is possible that
the anti-inflammatory properties of the endogenous HDLs were
improved immediately post-infusion, but that this was no longer
evident at 48 h post-infusion, when the animals were euthanised
prior to isolation of HDLs. This is consistent with what we have
reported previously, where there was a transient improvement in
the anti-inflammatory properties of HDLs isolated from rabbits
at 5 min, but not at 6 h, after a single infusion of apoA-I (39). It
is also possible that the association of apoA-IV with endogenous
rabbit HDLs was disrupted during the ultracentrifugal isolation
process, such that the isolated HDLs from the apoA-IV-treated
rabbits were not selectively enriched with this apolipoprotein.

The lack of a sustained effect of apoA-IV on HDL function is
further supported by the fact that turnover of this apolipoprotein
in human plasma is 8.7 mg/kg/day (42), and is likely to be
considerably faster than that in NZW rabbits. Given that the

animals weighed 2–3 kg and apoA-IV was administered at a
dose of 1 mg/kg, it follows that the amount of human apoA-IV
remaining in the plasma compartment of these animals after 48 h
was most likely minimal.

Structural differences between apoA-IV and apoA-I may
have contributed to the superior in vivo anti-inflammatory
properties of apoA-IV. Both apoA-IV and apoA-I contain 22
amino acid amphipathic α-helical repeats that are disrupted
by conserved proline residues (43). Both apolipoproteins also
contain Class Y and atypical Class A α-helices (43). However,
the class Y α-helices that predominate in apoA-IV, and may
contribute to its low affinity for lipid relative to apoA-I, favour
partitioning into cell membranes at the level of the phospholipid
head groups, rather than the phospholipid acyl chains, which
is where apoA-I is located (43, 44). As studies of apoA-I
mimetic peptides have indicated that their anti-inflammatory
properties are enhanced by association with cell membrane
phospholipid headgroups rather than acyl chains, it follows that
differential partitioning may have contributed to the enhanced
anti-inflammatory properties of apoA-IV relative to those of
apoA-I (45–47).

One of the main aims of this study was to obtain an
insight into the mechanism by which apoA-IV inhibits vascular
inflammation. As lipid-free apoA-I and (A-I)rHDLs decrease
expression of ICAM-1 and VCAM-1 by inhibiting NF-κB
activation in a DHCR24-dependent manner (5, 39), this pathway
was investigated in the current study. This was achieved be
evaluating the ability of (A-IV)rHDLs to reduce the activity of
IκB kinase, reduce the ratio of phosphorylated IκBα to total IκBα,
and reduce nuclear localisation of the p65 subunit of NF-κB (4, 5,
48, 49).

The results of these in vitro studies confirmed that (A-
IV)rHDLs inhibit all of these steps in the NF-κB pathway,
and additionally increase expression of the anti-oxidant and
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anti-apoptotic enzyme DHCR24. Interestingly apoA-IV, both in
a lipid-free form in vivo and as a constituent of discoidal (A-
IV)rHDLs in vitro, increased DHCR24 protein and mRNA levels
at much lower concentrations than apoA-I. However, the ability
of apoA-IV to inhibit VCAM-1, but not ICAM-1, in vitro was
only partly dependent on DHCR24. This suggests that pathways
other than inhibition of NF-κB must also contribute to the
anti-inflammatory properties of discoidal (A-IV)rHDLs.

An alternate pathway by which discoidal (A-IV)rHDLs may
inhibit inflammation in endothelial cells is via interaction with
scavenger receptor class B type 1 (SR-B1). Discoidal (A-I)rHDLs
have been reported to interact with SR-B1 and the SR-B1 adaptor
protein, PDZK1, to increase DHCR24 expression and induce
the cytoprotective protein, heme-oxygenase 1 (37). As lipid-free
apoA-IV and discoidal (A-IV)rHDLs both interact with SR-
B1 (10), it is possible that they may inhibit inflammation in
endothelial cells via this pathway.

Another explanation for the anti-inflammatory properties
of (A-IV)HDLs may be related to their ability to increase
bioavailability of the vasodilator nitric oxide (NO) in endothelial
cells. This possibility is related to the observation that inhibition
of NO production is associated with upregulation of endothelial
monocyte chemoattractant protein-1 (MCP-1) and VCAM-1
expression via the NF-κB pathway (50, 51). ApoA-IV-containing
HDLs may therefore protect against these adverse effects by
inhibiting MCP-1 and VCAM-1 expression as well as activation
of NF-κB, Other mechanisms whereby (A-IV)HDLs may reduce
NO bioavailability involve inhibition of the acute phase response
and inhibition of oxidised LDL formation, which also reduces NO
bioavailability (52–54).

It is additionally conceivable that lipid-free and lipid-
associated apoA-IV have endogenous anti-oxidant properties
that reduce endothelial expression of ICAM-1 and VCAM-1 (18,
19, 55, 56). This possibility is based on the observation that
TNF-α generates reactive oxygen species (ROS) and upregulates
ICAM-1 and VCAM-1 expression in endothelial cells (57–59)
and that HDLs protect against glucose induced ROS generation

in endothelial cells (60). However, whether HDLs, and apoA-IV
in particular, inhibit TNF-α induced ROS endothelial production
is unknown and clearly worthy of further investigation.

In conclusion, this study demonstrates for the first time that
apoA-IV potently inhibits vascular inflammation in vivo and
in vitro and that the mechanistic basis of this effect is driven
by inhibition of NF-κB activity and upregulation of the anti-
oxidant and anti-apoptotic enzyme DHCR24. One of the most
important observations to emerge from this study is that very low
concentrations of apoA-IV are profoundly anti-inflammatory
in vivo. While this finding identifies apoA-IV as being of potential
therapeutic interest, the full-length apolipoprotein is unlikely to
be a viable treatment option for inflammatory disorders. Future
studies mapping the domains of apoA-IV that are responsible
for its anti-inflammatory effects could, however, be further
progressed, leading to the production of peptides that mimic this
function and are potentially of considerable therapeutic value.
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