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circular RNAs (circRNAs) are a type of non-coding RNAs that are widely present in

eukaryotic cells. They have the characteristics of stable structure, high abundance, and

cell or tissue specific expression. circRNAs are single-stranded RNAs that are covalently

back spliced to form closed circular loops. They may participate in gene expression and

regulation through a variety of action modes. circRNAs can encode proteins or function

by acting as miRNA sponges for protein translation. Since 2016, a growing number

of research studies have shown that circRNAs play important role in the pathogenesis

of cardiovascular disease. With the construction of circRNA database, the differential

expression of circRNAs in the heart tissue samples from different species and the gradual

elucidation of its mode of action in diseasemay become an ideal diagnosis biomarker and

an effective therapeutic target. What can be expected surely has a broader application

prospect. In this review, we summarize recent publications on circRNA biogenesis,

expression profiles, functions, and the most recent studies of circRNAs in the field of

cardiovascular diseases with special emphasis on cardiac regeneration.
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INTRODUCTION

Circular RNAs (circRNAs) are single-stranded RNAs that, unlike linear RNA, form a covalently
closed continuous loop without 5′ end caps or 3′ Poly (A) tails. The concept of “circular RNA”
was introduced by Sanger et al. when the team found that viroids are single-stranded covalently
closed circRNAmolecules (1). The cytoplasmic localization of circular RNA in eukaryotic cells was
discovered byHsu et al. through the electronmicroscope in 1979 (2). These pilot studies established
the foundation of this research field.

Transcription of circRNAs had been a mystery for many years. The circular transcription of
the Sry gene was discovered in mice in the early 1990s (3). In 2012, Salzman et al. (4) discovered
that circRNA is a transformed transcript produced by reverse splicing of mRNA precursor and
found that it is abundantly present in different types of human cells. As the field advances rapidly,
a large number of circRNAs were discovered with the utilization of high-throughput sequencing
technology, and their biological functions were intensively investigated. In 2016, Hansen et al.
(5) found that circular RNA can act as a sponge of microRNA (miRNA) to regulate the growth
and development of cells. This study shed new light on the circRNA field. Most recently, Li et al.
developed a quickly screening and discovering tool for functional circular RNAs based on the
CRISPR-Cas13d system, and discovered a set of functionalities that are important for cell growth
and embryonic development (6). This technology provided a new research tool to the circRNA field.
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Cardiovascular diseases (CVDs) are the leading cause of
mortality worldwide. Several lines of evidence showed that
circRNAs play important roles in regulating cardiovascular
function. Jakobi et al. were the first group to provide a
comprehensive catalog of RNase R-resistant circRNA species for
the adult murine heart and explored the circRNA landscape
of heart tissue (7). Over the next years, studies had reported
that circRNAs are involved in the regulation of the physiology
and pathology of the cardiovascular system. In particular, it is
noted that circRNAs are involved in the pathogenesis of CVDs,
such as myocardial infarction (MI) (8–14), heart failure (15, 16)
and coronary artery disease (CAD) (17–23). Some circRNAs
served as potential biomarkers for the diagnosis of CVDs (24–
26). These findings suggest that circRNAs may be the new
target molecules for the diagnosis and treatment of CVDs. In
this review, we summarize circRNA classification, biogenesis,
properties, functions, and some new research progress in the field
of CVDs.

CLASSIFICATION OF CIRCRNA

circRNAs can be divided into three types according to the
different sources of the sequences: ecRNAs (exonic circRNAs)
which are derived from single or multiple exons (4, 27), ciRNAs
(circular intronic RNAs) which are derived from introns (28),
EIciRNAs (exon-intron circRNAs) which are composed of exons
and introns (29) and tricRNAs (tRNA intronic circRNAs) which
are formed by splicing tRNA introns (30).

BIOGENESIS OF CIRCRNA

There are four primary models for the formation of circRNA
loops from pre-mRNAs (Figure 1), namely lariat-driven
circularization (exon skipping), intron-pairing driven
circularization (direct back-splicing), circular intronic RNAs,
and RNA-binding protein (RBP)-driven circularization.

Lariat-driven circularization (exon skipping) is formed by
connecting the splice site of 30 nucleotides upstream of the
exon to the site of 50 nucleotides downstream (Figure 1A). This
connection leads to exon-skipping and the formation of an RNA
lariat consisting of several exons and introns. The introns are
then removed to generate circRNAs (27, 31).

Intron-pairing driven circularization (direct back-splicing)
is formed when pre-mRNA flanking introns contain inverted
complementary sequences (Figure 1B). The complementary
pairing on both sides of the intron can lead to alternative
cyclization and then a generation of various circRNAs, including
ecircRNAs and EIciRNAs (27, 32). Furthermore, longer introns
can be found in the flanking sequences of circRNAs, and
reverse complementary sequences in longer introns can aid the
formation of circRNAs (29, 33).

Circular intronic RNAs are produced by eukaryotic
spliceosome-mediated splicing (Figure 1C). The lariat intron
generated from the splicing reaction evades normal debranching
and degradation, and the 3′ “tail” downstream from the
branchpoint is trimmed leading to the formation of a stable

circRNA. Conserved motifs at both ends, including the 7-nt
GU-rich element near the 5′ splice site and the 11-nt C-rich
element near the branch point site, are combined to prevent
introns form circular branches, which promote the formation of
loop structures (28, 34).

Reverse complementary sequences, such as Alu repeats,
are located in upstream and downstream introns. RBP-driven
circularization is formed when certain transactivator RNA
binding proteins that bind to each flanking intron trigger the
splicing of the donor and acceptor sites close enough to form
circRNA (Figure 1D) (32, 34–38).

FUNCTION OF CIRCRNA

Despite the rapid growth in the field, the biological functions
of circRNAs in eukaryotic cells have not been fully understood.
circRNAs share some common characters. First, circRNAs
are widely distributed and abundantly expressed in a diverse
of cells. circRNAs can be found in a large amount in the
cytoplasm of eukaryotic cells derived from animals and plants
(27, 39). In humans, more than 30,000 circRNAs have been
discovered and are still increasing year by year (40, 41). Second,
circRNAs are stable. Due to the covalently closed structure,
circRNA is resistant to degradation by ribonuclease (RNase)
or exonuclease and is more stable than linear RNA (42). The
expression of circRNA differs according to time, tissues, or
species (39, 43). circRNA profiles change at different stages of
cardiac differentiation or during cardiogenic differentiation of
induced pluripotent stem cells (44, 45). Moreover, circRNAs
are evolutionarily conserved (43, 46). In 2016, Werfel et al.
(47) reported high homology of 1288 circRNAs across humans,
mice, and rats. However, many studies have also illustrated
that circRNAs are species-specific (48, 49). circRNAs show
different expression profiles between normal and diseased tissues
(45, 47, 50). Increasing evidence suggests some circRNAs are
derived from genomic loci associated with human diseases,
and contribute to transcriptional, post-transcriptional, and
translational regulations (51). To summarize, there are four main
modes for circRNA function (Figure 2).

1) circRNAs can act as competitive endogenous RNAs

(ceRNAs) to regulate gene expression by microRNAs

(miRNAs) sponge effects (Figure 2A). miRNAs are important
post-transcriptional regulators of gene expression that act by
direct base pairing to target sites within untranslated regions of
messenger RNAs (mRNAs) (52, 53). circRNAs contain miRNA
response elements (MREs) that promote the binding between
circRNAs and miRNAs. This binding can decrease the level
of functional miRNAs and increase the expression of miRNA
targets (53, 54). It has been reported that circRNAs regulate cell
function by acting as miRNA sponges. For example, circFOXK2
promotes cell growth, migration, invasion, and apoptosis by
binding to multiple sites and functioning as a sponge for miR-
942 (55). Similarly, circRNA_100876 regulates the progression
of triple-negative breast cancer by functioning as a sponge
for miR-136 (56). Other circRNAs, such as circSLC26A4,
circRNA_0000253, and circRNA_ANKIB1 can also function
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FIGURE 1 | Biogenesis of circ RNAs. There are four main models for the formation of circRNA loops from pre-mRNAs including (A) lariat-driven circularization (exon

skipping), (B) intron-pairing driven circularization (direct back-splicing), (C) circular intronic RNAs, and (D) RNA-binding protein (RBP)-driven circularization.

FIGURE 2 | Mechanisms of circRNA functions. There are five main action mechanisms of circRNAs, including (A) circRNAs can act as miRNAs sponge, (B) circRNAs

can function as RBP sponges, (C) circRNAs mediated regulation of the transcription of parental genes, (D) circRNAs can be translated into proteins via some

modification, and (E) circRNAs can act as dynamic scaffolding molecules that modulate protein-protein interactions.

as the sponge of miR-1287-5p (57), miRNA-141-5p (58), and
miR-195a-5p (59), respectively. circALMS1_6 may participate in
the regulation of cardiac remodeling by functioning as a sponge
for miR-133 (60).

2) circRNAs can function as RBP sponges and RBPs can

also participate in back-splicing (Figure 2B) (61–66). RBPs are a
group of proteins involved in gene transcription and translation.

circRNAs can interact with RBP and inhibit their activities (66–
68). circMbl absorbs MBL proteins and regulates the subsequent
physiological processes (32). circPABPN1 can bind to HuR to
suppress the translation of PABPN1 mRNA (69). circANRIL
competitively recruits PES1 to inhibit ribosome biogenesis (70).
circFoxo3 interacts with different RBPs to participate in the
processes of cardiomyocyte senescence and cell cycle progression
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(71). circAmotl1 can protect cardiomyocytes and promote cell
proliferation and wound healing by binding to PDK1, AKT1, and
STAT3 (72, 73). The studies confirm the involvement of circRNAs
in post-transcriptional regulation by chelating RBP. In 2020,
Okholm et al. (74) conducted an extensive screen of circRNA-
RBP interactions and analyzed circRNA-RBP interactions using
a large set of eCLIP data with binding sites of 150 RBPs in
the ENCODE cell lines HepG2 and K562 with deep-sequenced
total RNA samples. Through this study, they confirmed the
interactions between circCDYL and RBPs in bladder cancer cells.

3) circRNAs mediated regulation of the transcription of

parental genes (Figure 2C). For example, circβ-catenin can
produce a novel 370-amino acid β-catenin isoform using the start
codon as the linear β-catenin mRNA transcript and terminates
translation at a new stop codon created by circularization (75). ci-
ankrd52 is a circular intronic RNA that is abundant in the nucleus
and has little enrichment at microRNA target sites. ci-ankrd52
can bind to the transcription sites and acts as a positive regulator
of Pol II transcription (28). For the circRNAs that interact with
RNA polymerase II, exons are typically circularized with introns
which are ‘retained’ between exons. These circRNAs are termed
exon-intron circRNAs or EIciRNAs. They are mainly localized in
the nucleus and interact with U1 snRNP to promote transcription
of their parental genes (29).

4) circRNAs can be translated into proteins via some

modification (Figure 2D). As we know, the translation is

performed by ribosomes and involves initiation, elongation,

termination and ribosome recycling. Base-modification N6-
methyladenosine (m6A) is a common form of base modification
in RNAs. It can promote efficient initiation of protein translation
from circRNAs in human cells. Legnini et al. revealed that m6A-
driven translation of circRNAs is widespread with hundreds of
endogenous circRNAs carrying the translation potential (76).
circ-ZNF609 is an example of a protein-coding circRNA in
eukaryotes. It is related to heavy polysomes and can be translated
into a protein in a splicing-dependent and cap-independent
manner (77). circRNAs play biological functions through the
formation of complexes with proteins; otherwise, a novel protein
circFAM188B-103aa encoded by circFAM188B that promotes the
proliferation but inhibits the differentiation of chicken SMSCs
was identified (78). Moreover, artificial (79) and endogenous
circRNAs containing an internal ribosome entry site (IRES)
that directly recruits ribosomes (80) can also be translated
into protein. Additionally, circRNA with an infinite ORF has
hundred-fold higher productivity than linear transcript by rolling
circle amplification in an IRES-independent manner (81).

5) circRNAsmay bind, store, sort, and sequester proteins to

particular subcellular locations, can and act as dynamic

scaffolding molecules that modulate protein-protein

interactions (Figure 2E). circRNAs can bind to RNAs and
can also bind, store, sort or sequester selected proteins such
as RBPs to modulate their activity or localization (82). RNA-
binding protein 3 (RBM3) dynamically adjusts the proliferation
of hepatocellular carcinoma cells by regulating the production
of SCD-circRNA2 encoded by the 3′-UTR of the stearoyl-CoA
desaturase (SCD) gene (83). Recent studies have shown that RBP
quaking could also modify the formation of circRNA through

forming RNA-protein complexes (RPCs) (36). In addition
to interacting with RBPs, circRNAs can function as protein
sponges by adsorbing one or more proteins in binding sites,
thereby acting as protein scaffolding by the mediating interaction
between proteins. For example, CircFOXO3 could mediate
the formation of circFOXO3-p21-CDK2 ternary complex and
then serve as scaffolding, affecting the cell cycle progression of
cancer (84).

SEQUENCING OF CIRCRNA

RNA-seq emerges as a powerful research tool to study
the expression and function of non-coding RNAs including
circRNAs (85). The technology of circRNA-seq generally
includes library construction, computer sequencing, data analysis
and processing, and function prediction (86). Either full
transcriptome or circRNA profiling may be used to sequence
circRNAs. The full transcriptome profiling is aimed to explore
the expression patterns of both coding and non-coding RNA.
This approach is suitable for the study of the biological function
of circRNA. The circRNA profiling is focused on enriched
circRNAs and this approach is appropriate to discover unknown
circRNAs. Technically, the main difference between the two
approaches is the construction of the sequencing library. The
circRNA sequencing library not only requires the removal of
most rRNA and poly (A), but also requires the use of ribonuclease
RNase R to remove the interference of linear RNA. It has been
reported that the abundance of circRNAs decreases after de-
linear RNA because some circRNAs are sensitive to RNase R
mediated digestion (87, 88). It is worthy to note that the
alternative splicing of circRNA requires distinguishing the source
of sense and antisense chains in the sequencing results. Therefore,
constructing a chain-specific library is ideal as it may improve
the accuracy of circRNA sequencing (87). Thus far, more than
100,000 unique human circRNAs have been discovered (89, 90).

After obtaining the circRNA sequencing data, the prediction
and identification of circRNAs were carried out based on
the identification software such as find circ, CIRCexplorer2,
and CIRI (91–93). Real-time fluorescence quantitative PCR
(quantitative real-time PCR, qRT-PCR), Northern blot
hybridization (Northern blot), in situ hybridization (In situ
hybridization, ISH), RPAD (RNase R treatment, polyadenylation,
and poly (A) + RNA Depletion) and other techniques are used
to validate the data of circRNA sequencing (94–97).

Microarray chip is another efficient tool for circRNA analysis,
and it is commonly used in clinics for disease diagnosis.
Compared to RNA-seq, microarray chip analysis is different
in the following aspects: (2) microarray analysis of circRNA
requires a known reference sequence, while RNA-seq can be
utilized to analyze unknown circRNAs; (3) microarray chip
analysis can be used to quantify circRNA expression when
comparing with RNA-seq (98); and (4) microarray chip analysis
can efficiently detect reverse splice site sequences and obtain
a larger number of circRNAs than RNA-seq (99). However,
some limitations of microarray chip analysis include: (2) high
total RNA input is required during sample pretreatment; and
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(3) unlike full transcriptome sequencing, microarray chip does
not give the linear RNA data (100). If the reference sequence
is unknown, many studies usually use RNA-seq to determine
the full transcriptional sequence, then analyze the circRNAs
by microarray.

CIRCRNA AND CVDs

With the development of deep sequencing technology, we can
now understand the types and differential expression of circRNAs
and their associated miRNAs in cardiovascular tissues (101–
103). Many circRNAs have been reported to be associated with
CVDs and their expression pattern are different between healthy
and diseased human hearts (15, 19, 104, 105). Quantitative
proteomics may be used to discover the regulatory networks of
circRNAs in cardiovascular tissues (106). Here, we summarized
recent publications on the roles of circRNAs in the development
and treatment of CVDs (Table 1).

1) Cardiac hypertrophy. Cardiac hypertrophy is the heart’s
response to a variety of extrinsic and intrinsic stimuli that impose
increased biomechanical stress and can be caused by various
cardiovascular diseases. circRNA wwp1 exerts inhibitory roles
of cardiac hypertrophy via down-regulation of ANF and miR-
23a in isoproterenol hydrochloride-induced cardiac hypertrophy
(107). A circRNA HRCR functions as an endogenous miR-223
sponge to sequester and inhibit miR-223 activity, resulting in
an increase of ARC expression and protection of the heart from
pathological hypertrophy and heart failure (108). Modulation of
circRNAs levels may provide a promising therapeutic target for
the treatment of cardiac hypertrophy.

2) Cardiac fibrosis. Activation and phenotypical transition of
cardiac fibroblasts contribute to cardiac fibrosis. It was reported
that circ_BMP2K enhances the regulatory effects of miR-455-
3p on its target gene SUMO1 which leads to the inhibition of
TGF-β1 or Ang II to induce the activation of cardiac fibroblasts
(109). circRNA_010567, circRNA_000203, and circHIPK3 were
upregulated in Angiotensin-II (Ang-II)-induced activation of
cardiac fibroblasts (111, 112, 114). circNFIB was downregulated
in TGF-β induced activation of primary adult cardiac fibroblasts
(113). Some studies showed that targeting circRNAs improve
myocardial ischemic and reperfusion injuries by attenuating
myocardial fibrosis. For example, circ_LAS1L is down-regulated
in patients with acute myocardial infarction and regulates cardiac
fibroblast activation, growth, and migration by inhibiting miR-
125b/SFRP5 pathway (12). circPAN3 knockdown attenuated
autophagy-mediated cardiac fibrosis after myocardial infarction
via miR-221/FoxO3/ATG7 axis (110). The roles of circRNAs
in cardiac fibrosis has been summarized in a recent review
article (54).

3) Cardiomyocyte apoptosis. It was reported that some
circRNAs may be involved in injury-induced cardiomyocyte
apoptosis. For example, circRNA ITCH mediates H2O2-induced
myocardial cell apoptosis by upregulating miR-17-5p via
wnt/β-catenin signaling pathway (115). circSAMD4A aggravates
hypoxia/reoxygenation (H/R)-induced cardiomyocyte apoptosis
and inflammatory response by sponging miR-138-5p (116).

MicroRNA-31-5p acts as a negative regulator of circPAN3 by
directly suppressing QKI in doxorubicin-induced apoptosis of
cardiomyocytes (117). circPAN3 also ameliorates myocardial
ischemia and reperfusion injury by regulating miR-421/Pink1
axis-mediated suppression of autophagy (118). HECTD1
overexpression increases cell viability and decreases cell
apoptosis and migration, and circDLPAG4/HECTD1 mediates
ischemia/reperfusion injury in endothelial cells via ER stress
(119). Down-regulation of circFndc3b was observed in mice
with myocardial infarction, and overexpression of circFndc3b
increases angiogenic activity and reduces cell apoptosis in cardiac
endothelial cells and cardiomyocytes which led to improved
left ventricular functions (8). Other studies showed that miR-
133 was regulated by circMAT2B. CircMAT2B knockdown
attenuates oxygen-glucose deprivation-induced injury through
up-regulating miR-133 in H9c2 cells (120). circNFIX can serve as
a pro-apoptosis factor in cardiomyocytes (121). The expression
of circ ACAP2 is induced by myocardial infarction which leads
to increased cardiomyocyte apoptosis by sponging miR-29 (109).
Salidroside inhibits apoptosis and autophagy of cardiomyocytes
by regulation of circular RNA hsa_circ_0000064 in cardiac
ischemia-reperfusion injury (122). These data suggest that
circRNAs may be the new targets for designing cardioprotective
treatments against cardiomyocyte death.

4) Coronary heart disease. circRNAs are involved in the
pathogenesis of atherosclerosis and coronary heart disease. It has
been reported that suppression of circDHCR24 alleviates aortic
smoothmuscle cell proliferation andmigration by targetingmiR-
149-5p/MMP9 axis in human aortic vascular smoothmuscle cells
after PDGF-BB treatment (20). Recent studies showed that the
expression level of circZNF609 in peripheral blood leukocytes
of patients with coronary artery disease was significantly
decreased, and circZNF609 regulates the release of inflammatory
cytokines such as IL-6, IL-10, and TNF-α by serving as sponges
to different miRNAs that control the expression of these
cytokines (19). circMAP3K5 was downregulated in patients
with coronary heart disease and acted as a microRNA-22-3p
sponge to promote resolution of intimal hyperplasia via TET2-
mediated smooth muscle cell differentiation (23). circRNA-
100338 may induce angiogenesis after myocardial ischemia-
reperfusion injury by sponging miR-200a-3p in human coronary
endothelial cells (17). The level of hsa_circ_0001445 in plasma
was associated with the severity of coronary atherosclerosis.
In vitro, hsa_circ_0001445 was downregulated in extracellular
vesicles secreted by human coronary smooth muscle cells
upon exposure to atherogenic conditions (22). The 3 circRNAs
(hsa_circ_0016868, hsa_circ_0001364, hsa_circ_0006731) have
been verified by the coronary artery segments Sanger sequencing
obtained from an 81-year-old male patient with the sudden death
of myocardial infarction (18). In addition, a recent study on
the differential expression of circRNAs in plasma samples from
patients with coronary heart disease identified 9 circRNAs that
promote the expression of transient receptor potential cation
channel subfamily M member 3 by inhibiting hsa-miR-130a-3p
(21). These data demonstrate that circRNAs play important roles
in the pathogenesis of coronary heart disease and may serve as
diagnostic or therapeutic targets for coronary heart disease.
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TABLE 1 | Circular RNAs in cardiovascular disease and regeneration.

CVD type CircRNAs Source Action mechanism Regulation References

Cardiac Hypertrophy circRNA wwp1 Mouse myocardial tissue Sponge miR-23a Down (107).

circRNA HRCR Mouse heart tissue Sponge miR-223 Down (108).

Myocardial Fibrosis circ_LAS1L Human cardiac fibroblasts Sponge miR-125b Down (12)

circ_BMP2K Cardiac fibroblast Sponge miR-455-3p Down (109)

circPAN3 Rat myocardial tissue Sponge miR-221 Up (110)

circ ACAP2 Rat cardiomyocytes cell lines Sponge miR-29 Up (109).

circRNA_010567 Mouse cardiac fibroblasts Sponge miR-141 Up (111)

circRNA_000203 Mouse cardiac fibroblasts Sponge miR-26b-5p Up (112)

circNFIB Mouse heart tissue Sponge miR-433 Down (113)

circHIPK3 Mouse cardiac fibroblasts Sponge miR-29b-3p UP (114)

Cardiomyocyte circ-ITCH Rat cardiomyocytes cell lines Sponge miR-17-5p Down (115)

Apoptosis circSAMD4A Rat cardiomyocytes cell lines Sponge miR-138-5p Up (116)

circPAN3 Rat myocardial tissue / Rat Sponge miR-31-5p Down (117)

cardiomyocytes cell lines

Rat myocardial tissue / Rat Sponge miR-421 Down (118)

Mouse myocardial tissue

circDLGAP4 Human endothelial cell lines Sponge miR-143 Down (119)

circFndc3b Mouse myocardial tissue Sponge RBP FUS Up (8)

circMAT2B Rat cardiomyocytes cell lines Sponge miR-134 Up (120)

circNFIX Rat cardiomyocytes cell lines Unknown Down (121)

circ ACAP2 Rat cardiomyocytes cell lines Sponge miR-29 Up (109)

hsa_circ_0000064 Rat myocardial tissue Unknown Up (122)

Coronary Heart circDHCR24 Human aortic vascular Sponge miR-149 Up (20)

Disease smooth muscle cell

circZNF609 Human peripheral blood Unknow Down (19)

circMAP3K5 Human coronary artery Sponge miR-22-3p Down (23)

smooth muscle cells

circRNA-100338 Human endothelial cell lines Sponge miRNA-200a-3p Down (17)

hsa_circ_0089378 Plasma Sponge hsa-miR-130a-3p Up (21)

hsa_circ_0083357

hsa_circ_0082824

hsa_circ_0068942

hsa_circ_0057576

hsa_circ_0054537

hsa_circ_0051172

hsa_circ_0032970

hsa_circ_0006323

Heart Failure hsa_circ_0005565 Human heart tissue Unknown Up (16)

hsa_circ_0097435 Human peripheral blood Sponge Hsa_miR_609 Up (15)

Sponge Hsa_miR_1294

Sponge Hsa_miR_6799_5P

Sponge Hsa_miR_5000_5P

Sponge Hsa_miR_96_5P

Myocardial circTLK1 Mouse myocardial tissue Sponge miR-214 Up (11)

Regeneration circRNA CDR1as Pig myocardial tissue Sponge miR-7 Up (10)

circ003593 Cardiomyocytes cell lines Unknown Up (13)

circ-0001273 Human umbilical cord mesenchymal Unknown Down (9)

stem cells (UMSCs)

circCDYL Mouse myocardial tissue Sponge miR-4793-5p Down (14)

circFASTKD1 Human endothelial cell lines Sponge miR-106a Down (123)

hsa_circ_0007623 Human endothelial cell lines Sponge miR-297 Up (124)

circHipk3 Mouse heart tissue Sponge miR-133a Up (104)

circRNA_0001379 Mouse myocardial tissue Sponge miR-17-5p Up (103)
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5) Heart failure. Despite the detailed roles of circRNAs in the
progression of human heart failure remains elusive, recent high-
throughput sequencing studies identified many circRNAs with
changed expression in patients with heart failure. The top highly
expressed EAT circRNAs corresponded to genes involved in cell
proliferation and inflammatory responses. A recent study on
circRNA expression profile in epicardial adipose tissue in patients
with heart failure showed that EAT circRNAs may contribute
to the pathogenesis of metabolic disorders (16). Another study
showed that the upregulation of Hsa_circ_0097435 contributes
to the pathogenesis of heart failure via sponging multiple
microRNAs (15).

6) Cardiac regeneration and repair. Recent studies indicated
that modulating circRNA activity may have great therapeutic
potential for myocardial regeneration and repair. Up- or down-
regulation of circRNAs and miRNAs and circRNA-miRNA
coexpression had been shown to change the expression of
the genes associated with myocardial ischemia and reperfusion
injuries (101, 103). It has been reported that circRNAs
can regulate inflammatory factors to improve myocardial
ischemia and reperfusion injury. The circTLK1 exacerbates
myocardial ischemia and reperfusion injury via targeting miR-
214/RIPK1 through TNF signaling pathway (11). circ003593 has
also been shown to confer cardioprotection through NLRP3
inflammasome myocardial infarct rats (13). circRNA CDR1as
was identified in pig hearts. Elevated circRNA CDR1as in
the infarction region of the pig heart is negatively associated
with infarct size and positively associated with improved heart
function (10). circ-0001273 can remarkably inhibit myocardial
cell apoptosis and promote repair in myocardial infarction
hearts (9). circCDYL was downregulated in myocardial tissues
and hypoxia myocardial cells after acute myocardial infarction.
circCDYL overexpression and downregulation can promote and
inhibit the proliferation of cardiomyocytes in vitro, respectively.
Additionally, circCDYL can promote the proliferation of
cardiomyocytes through the miR-4793-5p/APP pathway (14).
The downregulation of circFASTKD1 induces angiogenesis and
improves cardiac function and repair after myocardial infarction
(123). Hsa_circ_0007623 can bind to miR-297 and acts as a
sponge of microRNA-297 which promotes cardiac repair after
acute myocardial ischemia and protects cardiac function (124).
circHipk3 was overexpressed in the fetal or neonatal heart of mice
and functioned to promote the proliferation of cardiomyocyte
and endothelial cells which leads to angiogenesis. Further study
showed that circHipk3 regulates cardiac regeneration in mice

post myocardial infarction by interacting with Notch1 and miR-
133a (104). These findings highlight the physiological role of
circRNAs in cardiac repair and indicate that modulation of
circRNA may represent a potential strategy to promote cardiac
function and remodeling after myocardial injuries.

FUTURE PERSPECTIVES

The studies we discussed in the paper highlight the significance
of circRNAs in the pathogenesis of CVDs. circRNAs are stable
and abundantly present in the circulatory system which enables

them to serve as biomarkers for the diagnosis and treatment of
CVDs; however, there are some critical issues to be addressed.
Firstly, there is no reliable methodology for the detection of
circRNAs. In terms of circRNA detection, newer, simpler, and
more reliable methods will be expected to appear. This will
provide convenience for us to study circRNAs, facilitate the faster
output of research results, and obtain more target circRNAs with
diagnostic and therapeutic significance. Secondly, some circRNA
biomarkers come from small samples and populations. This
makes us question the reliability and representativeness of the
research results. Thirdly, the mechanism underlying circRNA
functions in the cardiovascular system remain largely elusive.
For the function and mechanism studies, the current research
methods are limited and difficult to operate. New research
protocols need to be further explored. Rapid development can be
achieved only by breaking through the technological bottleneck
in the field of circRNA research. Lastly, there is a lack of
efficient approaches for modulating circRNA expression in the
cardiovascular system. It is supposed to be that in the future
there will be new and more diverse methods in modulating the
overexpression and inhibition of circRNAs. This will promote the
development of the mechanism underlying circRNA functions.
Then the research results can be quickly used for clinical
diagnosis and treatment in the field of vascular diseases.
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