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Abstract

Background

The XRCC3 p.Thr241Met (rs861539) polymorphism has been extensively studied for its

association with glioma risk, but results remain conflicting. Therefore, we performed a sys-

tematic review and meta-analysis to resolve this inconsistency.

Methods

Studies published up to June 10, 2022, were searched in PubMed, Web of Science, Scopus,

VIP, Wanfang, and China National Knowledge Infrastructure databases and screened for

eligibility. Then, the combined odds ratio (OR) of the included studies was estimated based

on five genetic models, i.e., homozygous (Met/Met vs. Thr/Thr), heterozygous (Thr/Met vs.

Thr/Thr), dominant (Thr/Met + Met/Met vs. Thr/Thr), recessive (Met/Met vs. Thr/Thr + Thr/

Met) and allele (Met vs. Thr). The study protocol was preregistered at PROSPERO (regis-

tration number: CRD42021235704).

Results

Overall, our meta-analysis of 14 eligible studies involving 12,905 subjects showed that

the p.Thr241Met polymorphism was significantly associated with increased glioma risk in

both homozygous and recessive models (homozygous, OR = 1.381, 95% CI = 1.081–

1.764, P = 0.010; recessive, OR = 1.305, 95% CI = 1.140–1.493, P<0.001). Subgroup

analyses by ethnicity also revealed a statistically significant association under the two

aforementioned genetic models, but only in the Asian population and not in Caucasians

(P>0.05).
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Conclusion

We demonstrated that the XRCC3 p.Thr241Met polymorphism is associated with an

increased risk of glioma only in the homozygous and recessive models.

Introduction

Gliomas refer to a type of tumor that originates from the glial cells located in the brain or

spine. This type of cancer accounts for ~30% of tumors of the brain and central nervous system

and ~80% of total cases of malignant brain tumors [1, 2]. The tumor has a five-year survival

rate of approximately 60%. However, this rate can be improved to as high as 74% if adequate

surveillance by biopsy is performed in conjunction with early resection for low-grade gliomas

[3, 4]. Depending on their aggressiveness, gliomas can be classified into four different grades,

namely grade I, II, III, and IV. While grade I and II gliomas (low-grade gliomas) are compara-

tively benign and grow slowly, grade III (malignant glioma) and IV (glioblastoma multiforme

or glioblastoma) gliomas are very aggressive and grow rapidly. Notably, glioblastoma is the

most common and deadly form of primary malignant glioma in adults. It accounts for ~70%

of gliomas and has a median survival of only 12–14 months [2, 5].

Although gliomas are a heterogeneous disease with comparatively unclear etiology, risk fac-

tors for gliomas are thought to consist of genetic predisposition and environmental influences

[2, 3]. Genetic disorders such as type 1 and type 2 neurofibromatosis and tuberous sclerosis

complex [6], as well as obesity and body height [7], have been shown to predispose to gliomas.

In addition, several genome-wide association studies (GWAS) have reported the involvement

of multiple genetic polymorphisms in mediating glioma risk [8, 9]. On the other hand, envi-

ronmental factors such as ionizing radiation, ultraviolet radiation, cytomegalovirus infection,

environmental carcinogens, and diet have been associated with an increased risk of developing

glioma, although only the first two risk factors have been clearly demonstrated [3, 10–13].

Among a variety of genetic factors, germline polymorphisms have been widely associated

with cancer risk [14, 15]. In particular, polymorphisms of DNA repair genes such as ERCC1
[16], ERCC2 (XPD) [17], XRCC1 [18], XRCC3 [18], XRCC4 [19], XRCC5, XRCC6 [20], XRCC7
[21], MGMT [22], CHAF1 [23], LIG4 [19], and GLTSCR1 [17] have been associated with gli-

oma risk [24, 25]. As genetic material, DNA is constantly exposed to endogenous and exoge-

nous attacks that can manifest themselves in cellular metabolic processes and genotoxic or

clastogenic stresses, including ionizing radiation and ultraviolet radiation mentioned earlier.

These attacks can cause cross-links between DNA and proteins, oxidative damage to DNA,

and single- and double-strand breaks in DNA chains [26]. However, this damage, which can

affect the integrity of the genome, is continuously and effectively repaired by various inherent

DNA repair pathways. These cellular DNA repair pathways can function in several ways and

rely on the mechanisms of homologous recombination repair (HRR), nonhomologous end

joining, base excision repair, and nucleotide excision repair. However, common polymor-

phisms in these DNA repair genes can impair DNA repair, leading to a higher risk of develop-

ing gliomas and other forms of malignancy [18–22].

This meta-analysis focuses on the XRCC3 (X-ray repair cross complementing 3) gene,

which encodes a RecA/Rad51-related protein involved in HRR. Of the polymorphisms in

XRCC3, only p.Thr241Met (rs861539) has been frequently studied with respect to its associa-

tion with glioma risk. This polymorphism is located in exon 7 of the gene and involves a C-to-

T transition at codon 241 [27]. Unlike other polymorphisms in XRCC3, the nonsynonymous
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p.Thr241Met polymorphism causes the replacement of a polar amino acid (threonine) with a

nonpolar one (methionine), which can significantly affect the functionality of the protein

product. For this reason, this polymorphism has been studied in numerous malignancies,

including bladder cancer, head and neck cancer, ovarian cancer, and colorectal cancer, and

significant associations have been demonstrated in some cases [28–32]. However, in gliomas,

the association between this polymorphism and susceptibility to this cancer remains unclear

[18, 21, 24, 33–44]. To clarify this, we performed a meta-analysis to further investigate the

association between the XRCC3 p.Thr241Met polymorphism and glioma risk.

Materials and methods

Literature search

We comprehensively searched PubMed, Web of Science, Scopus, VIP, Wanfang, and China

National Knowledge Infrastructure databases for relevant studies, including grey literature,

published through June 10, 2022. The terms used in these searches were: (brain tumor OR

glioma OR glioblastoma OR astrocytoma OR oligodendroglioma OR GBM OR glioblastoma

multiforme) AND (XRCC3 OR X-Ray repair cross complementing 3 OR DNA repair gene)

AND (polymorphism OR mutation OR variant OR variation). No language restriction was

applied. We then included studies that met our prespecified inclusion criteria, i.e., (i) exam-

ined the association between the XRCC3 p.Thr241Met polymorphism and glioma risk, (ii)

were observational studies, such as case-control studies, and (iii) reported genotype and/or

allele frequencies or adequate information to infer these frequencies. We focused only on

observational studies because other types of studies, such as randomized controlled trials,

are not ethically acceptable in the context of genetic studies. In contrast, we excluded a

study if (i) it was not an original study, (ii) the research was performed on cell lines, animal

models, or other non-human subjects, and (iii) the study was a duplication of other publica-

tions. We also pre-registered our study protocol with PROSPERO (registration number:

CRD42021235704).

Extraction of data and quality appraisal

Two investigators independently extracted the following information from the eligible stud-

ies: (i) first author’s name, (ii) publication year, (iii) ethnicity, (iv) source of controls (hospi-

tal-based vs. population-based), (v) country where the study was conducted, (vi) number of

subjects per group, (vii) frequency of polymorphic genotypes and alleles, and (viii) Hardy-

Weinberg equilibrium (HWE) of genotype distribution in controls. If data on HWE were

missing in any of the studies, a goodness-of-fit test was performed. If data were missing, the

corresponding author of the included studies was contacted by email. The quality of the

studies was then assessed using a modified version of the Newcastle-Ottawa Scale [45],

which assessed (i) whether the definition of cases was appropriate, (ii) whether cases were

representative of populations, (iii) whether controls were recruited from the community

and the genotype distribution conformed to HWE, (iv) whether controls were defined as

having no history of disease, (v) whether cases and controls were comparable in terms of

ethnic homogeneity, (vi) whether there was no evidence of population stratification, (vii)

whether quality control procedures and blinding were used in genotyping, (viii) whether

cases and controls were genotyped using the same method, and (ix) whether the genotyping

call rate exceeded 99% (S1 File). If the answer to each of the above criteria was "yes", the

study received one star for each criterion. A study had to receive at least 5 stars to be consid-

ered of high methodological quality.
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Meta-analysis

STATA (ver. 16.0) was used to pool data from included studies. P< 0.05 was considered statis-

tically significant, unless otherwise stated. The association between XRCC3 p.Thr241Met poly-

morphism and glioma risk was assessed using five genetic models: homozygous (Met/Met vs.

Thr/Thr), heterozygous (Thr/Met vs. Thr/Thr), dominant (Thr/Met + Met/Met vs. Thr/Thr),

recessive (Met/Met vs. Thr/Thr + Thr/Met), and allele (Met vs. Thr). Examination of multiple

genetic models was required because genetic association studies do not adopt a specific model

[46]. Subsequently, Cochran’s Q and I2 tests were used to measure the heterogeneity of the

studies, which was considered high when P<0.1 or I2 >50% [47]. In this case, a random-effects

method was used to derive the odds ratio (OR). On the other hand, when heterogeneity was

low, a fixed-effects method was used. The Z test was then used to measure the significance of

the pooled OR, and forest plots were created to visually display the results. Subgroup analyses

were then conducted by several variables, including ethnicity, source of control, and HWE sta-

tus, as these variables have long been known to affect genetic associations [48–50]. To examine

whether the results were primarily influenced by one of the studies, we also performed a sensi-

tivity analysis using the leave-one-out method. Publication bias was assessed using Begg’s test,

and Egger’s test, and visual inspection of funnel plots.

Results

Study selection

We first identified 2,052 entries from the search databases (PubMed, N = 1,127; Scopus,

N = 46; WoS, N = 838; CNKI, N = 9; Wanfang, N = 19; VIP, N = 13). We then removed 488

duplicate entries and subjected the remaining 1,564 articles to title and abstract screening.

This process identified only 27 articles as potentially relevant. We then screened these 27 arti-

cles for eligibility by reviewing the full texts. This resulted in a further exclusion of 13 articles,

so that finally only 14 articles describing 14 relevant studies were considered for quantitative

data synthesis. The flow diagram of the study selection is shown in Fig 1.

Characteristics of the studies

The final 14 eligible studies included a total of 12,905 study participants, including 5,852 cases

and 7,053 controls (Table 1). Eight (8) of these 14 studies were conducted in China, with sub-

jects from the Asian population [28, 33, 37, 39, 40, 42–44]; the other seven studies were pre-

dominantly Caucasian–with three studies from the United States [21, 24, 36] and one each

from Spain [41] and Brazil [34], and one study from multiple countries [18]. In addition, 11

studies used hospital-based controls [21, 24, 33, 36, 37, 39–44], whereas the remaining 3 stud-

ies opted for population-based controls [18, 34, 36]. In addition, all studies except Liu et al.

[36] reported the frequencies of the three genotypes (Thr/Thr, Thr/Met, and Met/Met) sepa-

rately. Instead, Liu et al. 2009 [36] combined the homozygous wild type (Thr/Thr) and hetero-

zygous genotypes (Thr/Met). Moreover, of all 14 studies, the distribution of control genotypes

did not deviate significantly from HWE in only five studies (P>0.05) [21, 33, 37, 39, 41]. Nev-

ertheless, all 14 studies were of high quality (S1 Table).

Quantitative data synthesis

The combined results of the 14 studies are shown in Table 2, and the corresponding forest

plots are shown in Fig 2. High statistical heterogeneity was detected under in all genetic mod-

els; therefore, a random-effects model was used in the data synthesis. We detected a statistically

significant association between the XRCC3 p.Thr241Met polymorphism and increased glioma
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Fig 1. Flow diagram of study selection.

https://doi.org/10.1371/journal.pone.0276313.g001
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risk when the homozygous model and the recessive model were applied (homozygous,

OR = 1.381, 95% CI = 1.081–1.764, P = 0.010; recessive, OR = 1.305, 95% CI = 1.140–1.493,

P<0.001). However, no significant association was found in the heterozygous (OR = 1.040,

95% CI = 0.908–1.191, P = 0.574), dominant (OR = 1.082, 95% CI = 0.939–1.247, P = 0.277),

and allele (OR = 1.097, 95% CI = 0.972–1.237, P = 0.133) models. Sensitivity analysis revealed

that the pooled OR was not significantly affected by any of the studies (S1 Fig).

Subgroup analysis

In the ethnicity-based subgroup analysis, we again found a statistically significant association

between XRCC3 p.Thr241Met and increased glioma risk in the homozygous (OR = 1.704, 95%

CI = 1.358–2.317, P<0.001) and recessive models (OR = 1.305, 95% CI = 1.140–1.493,

P<0.001) in the Asians (Table 2). In contrast, no significant association was observed in Cau-

casians in all genetic models (P>0.05). Subgroup analysis by source of controls revealed that

the association in hospital-based controls was significant only in the homozygous model

(OR = 1.364, 95% CI = 1.015–1.832, P = 0.040), whereas in population-based controls, the

polymorphism was associated with increased glioma risk only in the recessive model

(OR = 1.338, 95% CI = 1.071–1.670, P = 0.010). Interestingly, subgroup analysis by HWE sta-

tus revealed no significant association for studies whose genotype distribution conformed to

the equilibrium. For studies in which the genotype distribution deviated significantly from

HWE, a significant association was found in the homozygous (OR = 1.588, 95% CI = 1.200–

2.102, P = 0.001), dominant (OR = 1.124, 95% CI = 1.027–1.229, P = 0.011), recessive

(OR = 1.518, 95% CI = 1.164–1.981, P = 0.002), and allele (OR = 1.185, 95% CI = 1.053–1.333,

P = 0.005) models.

Publication bias

We did not detect any noticeable asymmetry in any of the funnel plots (Fig 3), indicating that

there was no publication bias. This finding was also supported by the results of Begg’s and

Egger’s tests (homozygous, Begg’s P = 1.000, Egger’s P = 0.811; heterozygous, Begg’s P = 0.222,

Table 1. Characteristics of the included studies.

Study ID reference Country Ethnicity Source of

control�
Cases Controls HWE P-value

(controls)Thr/Thr Thr/Met Met/Met Thr/Thr Thr/Met Met/Met

Huang 2015 [39] China Asian HB 310 72 7 239 111 8 0.237

Gao 2014 [40] China Asian HB 158 146 22 202 159 15 0.016

Rodriguez-Hernandez 2014 [41] Spain Caucasian HB 43 56 16 87 92 21 0.646

Xu 2014 [42] China Asian HB 472 343 71 485 356 45 0.047

Luo 2013 [43] China Asian HB 145 131 21 229 168 17 0.042

Pan 2013 [44] China Asian HB 217 198 28 234 200 9 <0.001

Zhao 2013 [33] China Asian HB 336 47 1 340 41 3 0.165

Custódio 2012 [34] Brazil Caucasian PB 53 18 9 86 9 5 <0.001

Liu 2012 [35] China Asian HB 223 154 66 254 147 42 0.003

Rajaraman 2010 [24] USA Caucasian HB 135 162 53 185 208 86 0.042

Liu 2009 [36] USA Caucasian PB 308 61 315 45 -

Zhou 2009 [37] China Asian HB 677 80 3 629 75 4 0.286

Kiuru 2008 [18] Multiple Caucasian PB 288 319 94 630 761 169 0.006

Wang 2004 [21] USA Caucasian HB 134 138 37 147 147 48 0.254

� HB, hospital-based; PB, population-based

https://doi.org/10.1371/journal.pone.0276313.t001
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Egger’s P = 0.185; dominant, Begg’s P = 0.542, Egger’s P = 0.340; recessive, Begg’s P = 0.784,

Egger’s P = 0.857; allele, Begg’s P = 0.542, Egger’s P = 0.643).

Discussion

The XRCC3 protein belongs to the RecA/Rad51-related family of proteins involved in HRR.

This protein is encoded by a ~18kb gene, XRCC3, located on chromosome 14q32.33 [51]. The

Table 2. Summary of the association between XRCC3 p.Thr241Met polymorphism and glioma risk.

Comparison model No. of studies No. of cases No. of controls Effect model OR (95% CI) P

Homozygous model

Overall 13 3,619 4,219 Random 1.381 (1.081–1.764) 0.010

Asian 8 2,757 2,755 Fixed 1.704 (1.358–2.137) <0.001

Caucasian 5 862 1,464 Fixed 1.094 (0.895–1.338) 0.378

Hospital-based controls 11 3,175 3,329 Random 1.364 (1.015–1.832) 0.040

Population-based controls 2 444 890 Random 1.570 (0.720–3.425) 0.257

Conform to HWE 5 1,564 1,526 Fixed 0.915 (0.636–1.317) 0.634

Deviate from HWE 8 2,055 2,693 Random 1.588 (1.200–2.102) 0.001

Heterozygous model

Overall 13 5,055 6,221 Random 1.040 (0.908–1.191) 0.574

Asian 8 3,709 3,869 Random 1.009 (0.841–1.210) 0.925

Caucasian 5 1,346 2,352 Random 1.102 (0.872–1.394) 0.415

Hospital-based controls 11 4,377 4,735 Random 1.028 (0.896–1.180) 0.694

Population-based controls 2 678 1,486 Random 1.602 (0.468–5.480) 0.453

Conform to HWE 5 1,893 1,908 Random 0.923 (0.663–1.284) 0.633

Deviate from HWE 8 3,162 4,313 Fixed 1.060 (0.964–1.164) 0.228

Dominant model

Overall 13 5,483 6,693 Random 1.082 (0.939–1.247) 0.277

Asian 8 3,928 4,012 Random 1.056 (0.872–1.279) 0.578

Caucasian 5 1,555 2,681 Random 1.129 (0.888–1.435) 0.321

Hospital-based controls 11 4,702 5,033 Random 1.058 (0.915–1.224) 0.446

Population-based controls 2 781 1,660 Random 1.649 (0.527–5.162) 0.390

Conform to HWE 5 1,957 1,992 Random 0.914 (0.667–1.253) 0.577

Deviate from HWE 8 3,526 4,701 Fixed 1.124 (1.027–1.229) 0.011

Recessive model

Overall 14 5,852 7,053 Fixed 1.305 (1.140–1.493) <0.001

Asian 8 3,928 4,012 Fixed 1.655 (1.327–2.065) <0.001

Caucasian 6 1,924 3,041 Fixed 1.132 (0.954–1.343) 0.155

Hospital-based controls 11 4,702 5,033 Random 1.316 (0.992–1.748) 0.057

Population-based controls 3 1,150 2,020 Fixed 1.338 (1.071–1.670) 0.010

Conform to HWE 5 1,957 1,992 Fixed 0.911 (0.645–1.286) 0.594

Deviate from HWE 8 3,526 4,701 Random 1.518 (1.164–1.981) 0.002

Allele model

Overall 13 5,483 6,693 Random 1.097 (0.972–1.237) 0.133

Asian 8 3,928 4,012 Random 1.087 (0.923–1.281) 0.316

Caucasian 5 1,555 2,681 Random 1.106 (0.910–1.344) 0.311

Hospital-based controls 11 4,702 5,033 Random 1.069 (0.942–1.214) 0.302

Population-based controls 2 781 1,660 Random 1.621 (0.625–4.203) 0.320

Conform to HWE 5 1,957 1,992 Random 0.915 (0.714–1.174) 0.486

Deviate from HWE 8 3,526 4,701 Random 1.185 (1.053–1.333) 0.005

https://doi.org/10.1371/journal.pone.0276313.t002
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Fig 2. Forest plots of the association between XRCC3 p.Thr241Met polymorphism and glioma risk.

https://doi.org/10.1371/journal.pone.0276313.g002

Fig 3.

https://doi.org/10.1371/journal.pone.0276313.g003
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gene product is a ~38kDa protein that belongs to the five paralogs of RAD51, i.e., XRCC2,

XRCC3, RAD51B, RAD51C, and RAD51D, all of which share 20–30% structural similarity

with RAD51 [52]. These paralogs typically function by forming complex assemblies that can

facilitate RAD51-mediated activities to repair DNA double-strand breaks via HRR. Therefore,

depletion of any of these paralogs often leads to a reduction in the DNA damage response [53].

Two important protein complexes formed by these paralogs are (i) the BCDX2 complex,

which includes XRCC2, RAD51B, RAD51C, and RAD51D, and (ii) the CX3 complex, which

includes XRCC3 as well as RAD51C [54, 55]. These two complexes have been reported to be

involved in two distinct steps of HRR: the BCDX2 complex contributes to the stabilization of

the nucleoprotein filament of RAD51, whereas the CX3 complex acts after the recruitment of

RAD51 to the damage sites [53]. Although the exact biochemical mechanisms of the CX3 com-

plex have remained unclear, the human CX3 complex has been shown to promote RAD51

nucleofilament remodeling and stability, as well as strand invasion, whereas its other proposed

role is to help recruit specialized factors to catalyze fork restoration through branch migration

or controlled fork processing [56].

Reduced levels of XRCC3 protein have been shown to lead to increased rates of chromo-

some segregation errors, aneuploidy, and other chromosome aberrations [57]. Notably, cells

deficient in XRCC3 have been shown to have lower HRR and hypersensitivity to cross-linking

agents, genotoxic alkylating agents, UV radiation, and ionizing radiation [58, 59]. Similarly,

common polymorphisms in this gene have been shown to lead to a derailed DNA damage

response that may increase the likelihood of tumor development [60]. It is also known that

XRCC3 polymorphisms play an important role in the treatment of gliomas. In current practice,

temozolomide is the chemotherapeutic agent of choice for high-grade gliomas [61]. Recently,

the XRCC3 polymorphism was found to contribute to temozolomide resistance in glioblas-

toma cells by mediating the repair of DNA double-strand breaks [62]. However, this may not

be the whole story about the contribution of XRCC3 to temozolomide resistance. XRCC3 has

also been found to contribute to mitochondrial biogenesis by promoting mitochondrial DNA

integrity [63]. Mitochondria are known to enhance temozolomide chemoresistance, suggest-

ing a role for XRCC3 in the treatment of gliomas [64, 65].

Given the important role of XRCC3 in HRR, its abundance and 3-D conformation require

well-tuned regulation. As both protein structure and expression can be affected by genetic poly-

morphisms, a number of GWAS have investigated the association between XRCC3 polymor-

phisms and risk for cancers, including gliomas [33, 37, 39, 66–68]. Among the polymorphisms

in XRCC3, we focused on p.Thr241Met, an exonic polymorphism involving a C-to-T transition

at codon 241 in exon 7 [27]. This transition replaces threonine (Thr) with methionine (Met)

and may affect XRCC3 functions, activities, and interactions [69]. We chose to perform a meta-

analysis of this polymorphism because p.Thr241Met has been extensively studied with respect

to its association with gliomas, with often conflicting results. For example, whereas Custódio

et al. [34] found that the Met allele of p.Thr241Met was significantly associated with a 3-fold

increase in glioma risk, Huang et al. [39] found that the same allele was associated with a

1.6-fold decrease in glioma risk. On the other hand, Rodriguez-Hernandez et al. [41] showed

that there was no significant association between the polymorphism and glioma risk. These

inconsistencies could be due to numerous factors, such as the ethnicity of the study population,

and the sample size (and thus statistical power) of the studies [70, 71]. A well-conducted meta-

analysis is essential to address these inconsistencies. However, the most recent meta-analyses on

this topic were conducted many years ago [72–77] and did not include several eligible studies.

The lack of meticulous data extraction in meta-analysis can lead to misleading results [78].

Therefore, in this work, we meticulously performed a systematic review and meta-analysis to

investigate the association between the XRCC3 p.Thr241Met polymorphism and glioma risk.
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Our results showed that the p.Thr241Met polymorphism was associated with increased gli-

oma risk only in the homozygous and recessive models, but not in the heterozygous, domi-

nant, and allele models. Within each model, we additionally clustered our analysis by different

subgroups, i.e., ethnicity, source of controls, and HWE status. Our analysis in the Asian sub-

group again showed that only the homozygous and recessive models were associated with

increased glioma risk, whereas in the Caucasian subgroup, no significance was found in any of

the genetic models. In addition, studies using hospital- and population-based controls

appeared to result in different risk profiles, and studies in which the genotypic distribution of

controls deviated from HWE showed more significant associations. It should be noted that the

number of participants in each subgroup was much smaller than in the overall analysis. There-

fore, there is a possibility that the subgroup analyses were not sufficiently powered to detect

possible associations [79].

The greatest strength of our meta-analysis lies in the extensive collection of genetic associa-

tion studies on the XRCC3 p.Thr241Met polymorphism performed on a large population.

Moreover, the selected parameter studied, i.e., the p.Thr241Met polymorphism, is a well-estab-

lished genetic variation that can be accurately genotyped using contemporary genotyping tech-

nologies. Therefore, the genotyping results obtained in different studies are reliable and well

comparable with each other. Nevertheless, there are some limitations to this study as well.

First, the influence of gene-gene and gene-environment interactions was not investigated

because information on this aspect was lacking in the included studies. In addition, the study

population, especially that of Asian populations, was mainly from China and therefore not

very diverse. Furthermore, our meta-analysis examined only one polymorphism, whereas

analysis of multiple genetic polymorphisms in the same gene might provide a more complete

picture of the role of XRCC3 in mediating glioma risk.

Conclusions

In conclusion, our results show that there is a significant association between the XRCC3 p.

Thr241Met polymorphism and increased glioma risk, but only when the homozygous and

recessive models were adopted. When divided into subgroups by ethnicity, similar results were

observed only in the Asian population. In addition, no obvious trend was observed when data

were stratified by source of controls and HWE status, presumably because of low study power.

Therefore, further genetic association studies are needed to provide a more accurate assess-

ment of the association between the polymorphism and glioma risk.
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