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Development of  Ag0.04ZrO2/rGO 
heterojunction, as an efficient 
visible light photocatalyst 
for degradation of methyl orange
Rana Muhammad Arslan Iqbal1, Tehmina Akhtar1, Effat Sitara1, Habib Nasir1*, Aliya Fazal2, 
Uzaira Rafique3, Sharif Ullah1 & Adeel Mehmood4

Methyl orange (MO) is mutagenic, poisonous, and carcinogenic in nature, hence, effective methods 
are required for its degradation. We have synthesized pure  ZrO2, Ag-doped  ZrO2, and Ag-doped 
 ZrO2/rGO as hybrid photocatalysts by facile hydrothermal method. These photocatalysts were 
characterized by powder XRD, scanning electron microscopy, EDX, FTIR, photoluminescence, UV–
Vis diffuse reflectance (DRS), and Raman spectroscopy. The photodegradation of MO (10 ppm) was 
studied with pure  ZrO2, Ag-doped  ZrO2, and Ag-doped  ZrO2/rGO (10 mg/100 mL catalyst dosage) 
photocatalysts at 100 min irradiation time under UV–Visible light. The pH effect and catalyst dosage 
on photodegradation of MO was investigated.  Ag0.04ZrO2/rGO photocatalyst exhibited the maximum 
photocatalytic degradation of MO (87%) as compared to  Ag0.04ZrO2 (60%) and pure  ZrO2 (26%). 
Reusability experiments ensured the excellent stability of photocatalyst after five consecutive 
experiments. To the best of our knowledge, this is the first report on the facile hydrothermal synthesis 
of  Ag0.04ZrO2/rGO photocatalyst for photocatalytic degradation of methyl orange.

Environmental contamination, particularly water contamination, has become one of the most pressing challenges 
in recent years. Diverse toxins from industrial effluents build up in the water, posing a threat to humans, animals, 
microbes, and aquatic  life1. The dyes, which are organic in origin, are among the pollutants that give water color. 
Furthermore, according to the World Bank, the textile industry contributes 17–20 percent of industrial water 
pollution through  dyes2. The majority of dyes, including methyl orange are comprised of azoic dyes, which have 
a nitrogen π-bond in their structure. The azo dye methyl orange (MO) is one of the most widely used dyes in 
the textile, food, leather, and pharmaceutical industries. For the detection of hydrogen gas and hydrochlorides, 
MO is also utilized as a coloring  agent3. The addition of MO to water is a major source of worry since it has a 
significant impact on water quality and creates dangerous scenarios for aquatic life. The toxicity, mutagenesis, 
and carcinogenic characteristics of MO are the most concerning features of its  use4. Because MO is difficult 
to degrade; selective approaches are  required5. Coagulation, reverse osmosis, membrane filtering, oxidation, 
reduction, complexometric, ion exchange, anaerobic, and aerobic techniques are all commonly employed for 
MO degradation. Among these techniques, photocatalytic degradation appears to be the most promising for 
MO  degradation6,7. Hence, many oxides and sulfides of semiconductors such as  TiO2,  SnO2,  Fe2O3, ZnO,  WO3, 
CdS,  WS2, ZnS, and  MoS2, as well as their binary and  ternary8,9 mixed oxides or sulfides have been reported for 
the photodegradation of organic pollutant like  antibiotics10–13 and  dyes14–22.

ZrO2, a cost-effective and nontoxic transition metal oxide, has high thermal and chemical stability, low 
thermal conductivity, and high corrosion  resistance23. Controllable morphology, mesoporous structure, and 
crystallinity make nanosized  ZrO2 an active photocatalyst as it enhances the light absorption capability enabling 
reactants to approach surface active sites mesoporous structure. So far,  ZrO2 has been widely studied due to its 
relatively wide bandgap values (3.25–5.1 eV) and highly negative conduction band potential. However, intrinsic 
 ZrO2 with such a wide band gap is found to be only responsive to ultraviolet (UV) light, which is impracticable 
for the use of visible light. For the best use of solar energy  ZrO2 lattice incorporated with a suitable metal on a 
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conducting substrate is widely used to form an impurity state, which can shift its absorption edge into the vis-
ible light region. Reduced graphene oxide (rGO) a conducting substrate, acts as an excellent electron mediator, 
integrating rGO with photocatalysts increases the surface area hence the absorption capacity of the catalyst 
which resultantly improves electron  transport24. The combination of a reduced conducting substrate and pho-
tocatalyst reduces the bandgap energy, enhances visible light absorption, stabilizes nanocomposite, and enables 
electron–hole separation throughout the  heterojunction25–27. To the best of our knowledge, the synthesis of 
Ag-doped  ZrO2/rGO is not reported yet.

This study aims to synthesize the silver doped  ZrO2/rGO photocatalysts and degrade methyl orange (MO) 
under visible light. In the current study, we have synthesized the photocatalysts by facile hydrothermal method. 
This is the first report on the facile hydrothermal synthesis of  Ag0.04ZrO2/rGO photocatalyst to the best of our 
knowledge. These photocatalysts were characterized by powder XRD, SEM, EDX, FTIR, photoluminescence 
(PL), EPR, and UV–Vis diffuse reflectance (DRS). The photodegradation of MO with  ZrO2, Ag-doped  ZrO2, 
and Ag-doped  ZrO2/rGO was evaluated under visible light.  Ag0.4ZrO2/rGO photocatalyst exhibits the highest 
catalytic activity among the prepared catalysts.

Results and discussion
X-ray diffraction (XRD). The XRD spectra of the  Ag-doped  ZrO2 (x = 0.01–0.05) are shown in Fig. 1a. The 
XRD patterns of  AgxZrO2 (x = 0.01–0.05) photocatalysts are similar to that of  ZrO2 and no peak is observed for 
Ag. The XRD pattern of  AgxZrO2 (x = 0.01–0.05) shows the well-defined diffraction peaks corresponds to the 
monoclinic phase of  ZrO2 at 17.5° (100), 24.3° (110), 28.3° (− 111), 31.5° (111), 34.3° (020), 40.7°, (− 211), 50.3° 
(220), 58.2° (− 222), 63° (311), 65.9° (− 231) attributing to crystal planes with the JCPDS file No. 65-1023. The 
only difference between the XRD patterns is the decrease in intensity of a characteristic peak of zirconia at 28.3°, 
with the increase in the amount of Ag. Figure 1b shows the comparison of XRD pattern of  Ag0.04ZrO2/rGO and 
 Ag0.04ZrO2 with pure  ZrO2, indicating that Ag is intrinsically doped in  ZrO2 which improves the catalytic activity 
of the  photocatalyst28.

SEM and EDX study. The SEM micrographs of pure  ZrO2 are shown in Fig. S1a–c and EDX are shown 
in Fig. S1d. Pure  ZrO2 shows the large-sized cavities of thick rod-like  structure29,30. The SEM micrographs of 
 Ag0.04ZrO2 are shown in Fig. S2a–d which shows that the crystallinity has decreased with increasing concentra-
tion of Ag and EDX is in Fig. S2e. The crystallinity is regained when the heterostructure with rGO is formed. The 
SEM micrographs of  Ag0.04ZrO2/rGO photocatalyst are shown in Fig. 2a–d having dense nanorods which are 
aligned vertically. The average diameter of the nanorods is 100 nm. The large network structure of  Ag0.04ZrO2/
rGO nanorods may not only increase the active sites for a photocatalytic reaction but also provide channels for 
solution diffusion during the intercalation/de-intercalation process toward photocatalyst.

Elemental analysis of  Ag0.04ZrO2/rGO nanorods was done by EDX which is shown in Fig. 2e. The spectrum 
shows the O, Ag, Zr, and C with an atomic percentage of 49.68, 3.19, 21.27, and 25.86,  respectively31.

Fourier transform infrared spectroscopy. FTIR spectroscopy was used to identify chemical bonds 
as well as functional groups of synthesized material by producing an infrared absorption spectrum.  ZrO2, 
 Ag0.04ZrO2, and  Ag0.04ZrO2/rGO photocatalysts were characterized with FTIR spectroscopy. In Fig. S3a, a com-
parison of the FTIR spectra of pure  ZrO2 and  Ag0.04ZrO2 is presented. Both the FTIR spectra show the band 
around 559  cm−1 which arises due to the Zr-O vibration in zirconia. Figure S3b shows the FTIR spectrum of 
 Ag0.04ZrO2/rGO (1:1). In this spectrum, the band at 561  cm−1 is due to the Zr-O vibrations in the photocatalyst. 
This spectrum also shows the bands of  rGO32.
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Figure 1.  (a) XRD patterns of  AgxZrO2 (x = 0.01–0.05), (b) comparison of XRD patterns of  Ag0.04ZrO2/rGO 
and  Ag0.04ZrO2 with pure  ZrO2.



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12308  | https://doi.org/10.1038/s41598-022-16673-7

www.nature.com/scientificreports/

UV–Vis diffuse reflectance spectroscopy. UV–Vis DRS absorbance of  ZrO2,  Ag0.04/ZrO2, and  Ag0.04ZrO2 
/rGO results are displayed in Fig. 3. It can be seen that  ZrO2 exhibits absorption in the UV region due to its large 
bandgap. The absorption is red-shifted by doping of Ag into  ZrO2 as in the case of  Ag0.04/ZrO2 while  Ag0.04ZrO2/
rGO shows strong adsorption in the visible region due to the formation of heterostructure which decreases the 
recombination rate of  e−/h+ pairs. This improved change in absorption of  Ag0.04ZrO2/rGO increases the photo-
catalytic  activity33.

The Tauc equation was used to calculate the bandgap energy of the synthesized  photocatalysts34:

(1)(hνα)1/n = A
(

hν − Eg
)

Figure 2.  (a–d) Scanning electron micrographs of  Ag0.04ZrO2/rGO and (e) EDX of  Ag0.04ZrO2/rGO.
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where, h is Planck’s constant, ν is the vibrational frequency, α is the absorption coefficient, Eg is the bandgap 
energy (eV), A is a proportionality constant, and n refers to the type of electron transition (for directly allowed 
transitions, n = 1/2). The value of α is directly proportional to the Kubelka– Munk function (F(R∞))35:

The Tauc plot shows the bandgap energy by the projection of the tangent on the x-axis to the turning point 
of curvature. The result is shown in Fig. 3b.

The bandgap energies of  ZrO2,  Ag0.04ZrO2, and  Ag0.04ZrO2/rGO are 3.48, 3.11, and 2.99 eV, respectively. The 
incorporation of Ag as dopant has lowered the bandgap energy of  Ag0.04ZrO2 (3.06 eV) while the addition of rGO 
has further lowered the bandgap of  Ag0.04ZrO2/rGO thus increasing the photocatalytic  activity36–38.

Photoluminescence analysis. Photoluminescence (PL) spectroscopy is used to observe the separation 
and transfer of photogenerated electrons and holes in the photocatalyst/heterojunctions. Figure 4 shows the PL 
spectra of  ZrO2,  Ag0.04ZrO2, and  Ag0.04ZrO2/rGO photocatalysts with an excitation wavelength of 325 nm. The 
shorter and longer wavelength emission of  ZrO2 and  Ag0.04ZrO2/rGO photocatalysts could result from near-
band-edge transitions and oxygen vacancies  respectively39.

The redshift in the spectrum of  Ag0.04ZrO2/rGO could be attributed due to interfacial charge transfer from 
 Ag0.04ZrO2 to rGO. This charge transfer decreases the PL intensity of  Ag0.04ZrO2/rGO  photocatalyst40,41. The 
intensity is observed in the following order:  ZrO2 >  Ag0.04ZrO2 >  Ag0.04ZrO2/rGO. The electron/hole pairs are 
well separated in  Ag0.04ZrO2/rGO, which exhibits higher photocatalytic activity.

(2)(hνF(R∞))2 = A
(

hν − Eg
)
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Figure 3.  (a) UV–Vis DRS spectra of  ZrO2,  Ag0.04ZrO2, and  Ag0.04ZrO2/rGO photocatalysts. (b) Eg of  ZrO2, 
 Ag0.04ZrO2, and  Ag0.04ZrO2/rGO photocatalysts.

Figure 4.  Photoluminescence (PL) spectra of  ZrO2,  Ag0.04ZrO2, and  Ag0.04ZrO2/rGO.
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Specific surface area analysis (BET). Figure 5a shows the nitrogen adsorption–desorption studies of 
 ZrO2, and  Ag0.04ZrO2/rGO photocatalysts. These studies are conducted to measure the specific BET surface area 
and pore structure of the photocatalysts. The BET surface area of  Ag0.04ZrO2/rGO photocatalyst was calculated 
as 142.441  m2/g which is higher than  ZrO2 which is 37.3996  m2/g. An increase in the pore diameter presented 
in Fig. 5b from 0.08026  cm3/g for  ZrO2 to 0.98852  cm3/g for  Ag0.04ZrO2/rGO is also observed. This suggests that 
the higher surface area and pore volume of  Ag0.04ZrO2/rGO can be achieved by the modification of  ZrO2 with 
Ag and rGO. The higher specific BET surface area partly justifies the better adsorption and faster removal of pol-
lutants interacting with the surface of the photocatalyst. Because of higher specific BET surface area,  Ag0.04ZrO2/
rGO shows best photocatalytic activity. The specific surface area, mean pore diameter, pore volume, and BHJ 
pore diameter are summarized in Table 1.

Degradation study of methyl orange (MO). The degradation of MO was evaluated under visible irra-
diation with  ZrO2,  Ag0.04ZrO2, and  Ag0.04ZrO2/rGO (1:1) photocatalysts are shown in Fig. S4. Figure 6a,b shows 
the A/A° of MO using  ZrO2,  Agx  ZrO2 (x = 0.01–0.05), and  Ag0.04ZrO2/rGO (1:1, 1:2 and 1:3) photocatalysts 
under visible radiations. Figure S5 shows the comparison of A/A° of degradation of MO  ZrO2,  Ag0.04ZrO2, and 
 Ag0.04ZrO2/rGO. Figure 6c shows the % degradation of MO with pure  ZrO2,  Ag0.04ZrO2, and  Ag0.04ZrO2/rGO. 
The  Ag0.04ZrO2/rGO exhibits 87% degradation while  Ag0.04ZrO2 and  ZrO2 show 60% and 26% degradation of 
MO in 100  min. The degradation of MO is highest with  Ag0.04ZrO2/rGO photocatalyst as compared to  Ag0.04ZrO2 
and  ZrO2 due to lower bandgap energy and a lower rate of recombination of  e−/h+ in  Ag0.04ZrO2/rGO. Figure S6 
shows the comparison of % degradation of MO (a)ZrO2 and  AgxZrO2 x = 0.01 to 0.05 (b)  ZrO2 and  Ag0.04ZrO2/
rGO (1:1, 1:2 and 1:3 ) photocatalysts.

Kinetic studies. The photocatalytic degradation follows a pseudo-first-order kinetic reaction; its kinetics 
can be expressed as follows:

where k is the reaction rate constant and t is the reaction time. Figure 7 shows the reaction kinetics of degrada-
tion of MO by  ZrO2,  Ag0.04ZrO2, and  Ag0.04ZrO2/rGO (1:1) photocatalysts.

These results illustrate that MO is degraded by  Ag0.04ZrO2/rGO more efficiently than pure  ZrO2 or  Ag0.04ZrO2. 
The degradation rate constant (k) is calculated from the slope of the straight line. The degradation rate constant 
of  Ag0.04ZrO2/rGO with 1:1 (0.0204) is higher than that of doped  Ag0.04ZrO2 (0.00871) and pure  ZrO2 (0.00289).
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Figure 5.  (a) Adsorption desorption isotherm for  ZrO2 and  Ag0.04ZrO2/rGO, (b) pore volume and pore 
diameter of the as prepared pure  ZrO2 and the composite  Ag0.04ZrO2/rGO.

Table 1.  Summary of the specific surface area, pore volume, mean pore diameter and BHJ pore diameter is 
presented the table.

SBET  (m2/g) Pore volume  (cm3/g) Mean pore diameter (nm) BHJ pore diameter (nm)

ZrO2 37.399 0.08026 8.58445 8.983

Ag0.04ZrO2/rGO 142.441 0.98852 9.89842 82.694
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Figure 6.  Comparison of degradation of MO (a) pure  ZrO2 and  AgxZrO2 (x = 0.01–0.05), (b) pure  ZrO2 and 
 Ag0.04ZrO2/rGO (1:1 to 1:3) and (c) % degradation of MO with pure  ZrO2,  Ag0.04ZrO2 and  Ag0.04ZrO2/rGO.

Figure 7.  Reaction kinetics of degradation of MO with  ZrO2,  Ag0.04ZrO2, and  Ag0.04ZrO2/rGO.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12308  | https://doi.org/10.1038/s41598-022-16673-7

www.nature.com/scientificreports/

Effect of pH on the photocatalytic performance. The pH is a major factor that affects the surface 
charge of the photocatalyst, the nature of the dye, and the ability of the dye to absorb into the photocatalyst sur-
face. The degradation of MO was performed at pH 1,3,5,7,9 and 11 at a fixed dose of  Ag0.04ZrO2/rGO (Fig. 8a,b). 
The degradation of MO is higher in acidic pH and is less in basic pH. However, under acidic conditions, MO 
change to a quinone structure. A visible color change, along with an absorbance peak shift was observed at lower 
pH values, further supporting the existence of a quinone structure of MO. The quinone structure is more prone 
to oxidation over the azo structure due to the sulfonic groups (–SO3

−) aiding in capturing hydrogen and further 
enhancing the hydrophobicity of the catalyst  surface42. The enhanced degradation of MO at lower pH 03 is due 
to the formation of hydroxyl radicals during the reaction  (OH− +  h+ →  OH·), the hydroxyl radicals are scavenged 
more slowly at a lower pH allowing them to react more readily with the dye.

Effects of dosage of the catalyst. To examine the effect of dosage of photocatalyst, different experiments 
were performed at 10 ppm MO concentration and pH 3, by varying the dose of  Ag0.04ZrO2/rGO photocatalyst 
between 5 and 15 mg/100 mL. It can be seen in Fig. 8c,d that the degradation rate of MO increases with the 
increasing dosage of  Ag0.04ZrO2/rGO. However, it is interesting to find that the degradation rate first increased 
with the increased dosage of catalyst (5–10 mg), then decreased with the further increase of catalyst (15 mg). The 
reason is that by increasing the catalyst dosage the surface area of the catalyst for the adsorption of MO increases 
which increases the MO degradation. But when the catalyst dosage is increased to 15 mg, a blockage of the light 
penetration occurs, which decreases the degradation of  MO43.

Reusability. To check the reusability of the catalyst,  Ag0.04ZrO2/rGO photocatalyst was washed with deion-
ized water several times and dried in the oven after every experiment.  Ag0.04ZrO2/rGO photocatalyst was used 
for the degradation of MO in five repeated experiments. In every experiment, the irradiation time was 100 min. 
The  Ag0.04ZrO2/rGO photocatalyst exhibited a high visible light photostability after five repeated experiments, 
although a slight decrease of photocatalytic activity is observed compared to the first-run result from 87 to 78% 
degradation, respectively as shown in Fig. 8e,f.

Phooelectrochemical measurements. Figure 9a shows the electrochemical impedence spectroscopic 
measurements of the pure  ZrO2,  Ag0.04ZrO2 and  Ag0.04ZrO2/rGO photocatalysts under visible light irradiation. 
The smallest semicircle is observed for the photocatalyst  Ag0.04ZrO2/rGO, showing the lowest charge transfer 
resistance in the as prepared photocatalyst.

Chronoamperometric response is shown in Fig. 9b at a potential of 0.8 V under the chopped light illumina-
tion. The photocurrent increases immediately from OFF to ON state proving that the present system is sensitive 
to light illumination and efficient in the generation and separation of electron–hole pairs through p–n junction.

Figure 9c,d show the Mott-Schottky plots of Ag-doped  ZrO2 and rGO. Flat band potential (Efb) is measured 
from these plots. The slope of Mott-Schottky plots of  Ag0.04ZrO2 (− 0.32 V vs Ag/AgCl) is positive as compared 
to rGO (− 0.82 V vs Ag/AgCl) showing the n-type nature of  Ag0.04ZrO2 and p-type nature of rGO, indicating the 
formation of an effective p–n junction between  Ag0.04ZrO2 and rGO for the degradation of MO.

Mechanisms of photocatalytic degradation of MO. The potential of the valence band and conduc-
tion band, as well as the band gap energy, are important factors to determine the mechanism. The potential of 
the conduction band was calculated from Mott-Schottky plots which is be − 0.12 eV vs RHE for  Ag0.04ZrO2 and 
− 0.62 eV vs SHE for rGO. The bandgap energies calculated by using the Tauc plot are 3.11 eV for  Ag0.04ZrO2 and 
1.69 eV for rGO. The potential of the valence band of  Ag0.04ZrO2 (2.99 eV) and rGO (1.07 eV) was calculated by 
using this formula: VB = CB + Eg.

The detailed mechanisms of photocatalytic degradation of MO by  Ag0.04ZrO2/rGO are shown in Fig. 10. This 
mechanism shows that when light falls on the photocatalyst, the elctrons from the valence band of  Ag0.04ZrO2 
and rGO get excited and move to the conduction bands. The holes from the valence band of  Ag0.04ZrO2 move 
the valence band of rGO. The electrons from the conduction band of rGO move to the conduction band of 
 Ag0.04ZrO2 hence reducing the elecectron–hole recombination as shown by the PL spectra. These photoexcited 
electrons react with the adsorbed oxygen and convert it to superoxide radicals which react with methyl orange 
and immediately decompose the dye to water and  CO2. A possible mechanistic rout is given below:

Holes on the other hand react with the water molecules and produce  OH. radicals and react with methyl 
orange and immediadely decompose it to  H2O and  CO2. Therefore, this photocatalyst system provides active 
sites which shows the ability to harvest large amount of light hence better degradation efficiency. Many research-
ers have reported the degradation of methyl orange till now and a comparison table with the present study is 
shown in Table 2.

Ag0.04ZrO2/rGO+ light → e− + h+

e− +O2 → ·O−

2

·O−

2 + h+ +MO → CO2 +H2O
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Figure 8.  Photocatalytic degradation of MO (a) kinetic simulation, (b) bar graph % degradation at various pH, 
(c) Kinetic simulation, (d) Bar graph of % degradation at different catalyst dosage, (e) Reusability of  Ag0.04ZrO2/
rGO up to 5 cycles, (f) Bar graph of recycling.
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Conclusions
We have synthesized pure  ZrO2, Ag-doped  ZrO2, and novel Ag-doped  ZrO2/rGO photocatalysts by facile hydro-
thermal method. These photocatalysts were characterized by powder XRD, SEM, EDX, FTIR, photoluminescence 
(PL), UV–Vis diffuse reflectance (DRS), and Raman spectroscopy. The photodegradation of MO was studied 
with pure  ZrO2, Ag-doped  ZrO2, and Ag-doped  ZrO2/rGO photocatalysts at 100 min irradiation time under 
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Figure 9.  (a) Shows the EIS spectra of the prepared pure and heterostrucrure photocatalysts (b) shows 
chronoamperometric on/off study of the best  Ag0.04ZrO2 /rGO photocatalyst. (c) Mott-Schottky plots of 
 Ag0.04ZrO2 and (d) Mott-Schottky plots of rGO.

Figure 10.  Mechanisms of photocatalytic degradation of MO by  Ag0.04ZrO2/rGO.
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visible light. Reaction conditions were optimized for the best photocatalyst  (Ag0.04ZrO2/rGO) by varying catalyst 
loading and pH of the solution.  Ag0.04ZrO2/rGO exhibited the maximum photocatalytic degradation of MO 
(87%) as compared to  Ag0.04ZrO2 (60%) and pure  ZrO2 (26%) due to lower bandgap energy and a lower rate of 
recombination of  e−/h+ pair. Reusability experiments showed the excellent stability of photocatalyst after five 
consecutive experiments. Hence, this is the first report on the facile hydrothermal synthesis of novel  Ag0.04ZrO2/
rGO photocatalyst for the degradation of methyl orange (MO).

Methods
Materials. All analytical grade chemicals were used as received without further purification.  AgNO3 and 
Zr(NO3)4·5H2O were purchased from Sigma Aldrich. Deionized  H2O was employed in all experiments.

Synthesis of graphene oxide (GO). GO was prepared by modified Hummers’  method48. Initially,  H2SO4 
(27 ml) was mixed with  H3PO4 (3 ml) and stirred for several min. Then graphite powder (0.225 g) was added 
to the mixture and then added the  KMnO4 (1.32 g) slowly. The mixture was stirred for 6 h until the color turns 
into dark green. Then  H2O2 was added to the mixture and stirred for 10 min. After cooling HCl (10 ml) and  H2O 
(30 ml) were added and centrifuge for 10 min. at 5000 rpm. The supernatant was removed and the residue was 
washed the HCl and  H2O three times.

Synthesis of zirconia  (ZrO2). ZrO2 was prepared by a simple hydrothermal method. Initially, a 0.01 M 
aqueous solution of zirconium nitrate was prepared and 25% ammonium hydroxide was added dropwise to 
the solution with constant  stirring49. After 1 h, white precipitates were collected and transferred to Teflon lined 
autoclave. The precipitates were hydrothermally treated at 180 °C for 24 h. The product was obtained by centrifu-
gation, washed several times with deionized water and ethanol, and dried at 80 °C in a vacuum oven.

Synthesis of  AgxZrO2. Ag-doped  ZrO2 photocatalysts were prepared by hydrothermal method. Zirconium 
nitrate aqueous solution (0.01 M) was mixed with the 0.1 mM aqueous solution of silver nitrate. To the homog-
enized solution, 25% ammonium hydroxide was added dropwise with constant stirring. After 1 h, the white 
precipitates were collected and transferred to a Teflon-lined autoclave which was then hydrothermally treated 
at 180 °C for 24 h. The precipitates were separated by centrifuge, washed several times with deionized water 
and ethanol, and dried at 80 °C in a vacuum oven to obtain the product,  Ag0.01ZrO2. The same experiment was 
repeated by increasing the concentration of silver nitrate (0.02 to 0.05 mM) to obtain  Ag0.02ZrO2,  Ag0.03ZrO2, 
 Ag0.04ZrO2, and  Ag0.05ZrO2.

Synthesis of  Ag0.04ZrO2/rGO photocatalyst. The photocatalyst,  Ag0.04ZrO2/rGO  (Ag0.04ZrO2: rGO in 
1:1, 1:2, and 1:3 ratio) were prepared in situ by the procedure as discussed above. The aqueous solutions zirco-
nium nitrate, silver nitrate was mixed with graphene oxide an autoclave and heated at 180 °C for 24 h. GO is 
thermally reduced to rGO under the reaction  conditions50. The black precipitates of the nanocomposites were 
separated by centrifuge, washed several times with water and ethanol, and dried at 80 °C under vacuum.

Characterization. X-ray diffractometer (DRONE-8, Russia), using Cu Kα radiation as the X-ray source, 
operated at 45 kV and 100 mA was utilized to study the crystalline structure and phase composition of photo-
catalysts. Scanning electron microscopy (MAIA3 TESCAN) was employed to determine the morphology of the 
photocatalysts. The absorbance of the photocatalysts was determined by utilizing the ultraviolet–visible (UV–
Vis) diffuse reflectance spectroscopy (Lambda 365S, Perkin Elmer, Massachusetts, USA) in the wavelength range 
of 200–800 nm. Fourier transform infrared spectrometer (Alpha, Bruker) with range 550 to 4000  cm−1 was used 
to obtain IR spectra of the compound. Perkin Elmer spectrophotometer (Massachusetts, USA FL 6500/8500) 
with 150 W Xe lamp (200–900 nm) was used to measure the PL of photocatalysts.

Degradation studies of methyl orange. The degradation studies of MO were performed with all pre-
pared photocatalysts. The prepared photocatalysts (10 mg) were added in 100 mL of the aqueous solution of 
MO (10 ppm) and stirred initially for 30 min in the dark to attain adsorption–desorption equilibrium. Then the 
mixture was then exposed to UV–Visible light using a 500 W UV–Vis lamp. The 5 mL aliquot was taken every 
20 min. and analyzed with UV–Vis spectrophotometer. The photocatalytic degradation treatment was studied at 

Table 2.  A general comparison of the  ZrO2 based photocatalyst for the degradation of MO from literature 
with the present study.

Sr.No Photocatalyst Efficiency/Time Refs

1 Mn doped  ZrO2 83%/100 min 44

2 Ag/TiO2-ZrO2 81.5%/90 min 45

3 TiO2/ZrO2 96%/180 min 46

4 TiO2-ZrO2 75.5%/150 min 47

5 Ag0.04ZrO2/rGO 87%/100 min This study
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pH 3 and 100 min. irradiation time. The photocatalytic degradation efficiencies of photocatalysts were calculated 
using the following  formula51:

where A0 is the initial absorbance of MO solution and A is the absorbance after irradiation.

Data availability
All data generated or analyzed during this study are included in this article and its supplementary information 
file.
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