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Abstract: Environmentally sustainable cement mortars containing wheat straw (Southern Italy,
Apulia region) of different length and dosage and perlite beads as aggregates were prepared and
characterised by rheological, thermal, acoustic, mechanical, optical and microstructural tests. A
complete replacement of the conventional sand was carried out. Composites with bare straw (S),
perlite (P), and with a mixture of inorganic and organic aggregates (P/S), were characterised and
compared with the properties of conventional sand mortar. It was observed that the straw fresh
composites showed a decrease in workability with fibre length decrease and with increase in straw
volume, while the conglomerates with bare perlite, and with the aggregate mixture, showed similar
consistency to the control. The thermal insulation of the straw mortars was extremely high compared
to the sand reference (85–90%), as was the acoustic absorption, especially in the 500–1000 Hz range.
These results were attributed to the high porosity of these composites and showed enhancement
of these properties with decrease in straw length and increase in straw volume. The bare perlite
sample showed the lowest thermal insulation and acoustic absorption, being less porous than the
former composites, while intermediate values were obtained with the P/S samples. The mechanical
performance of the straw composites increased with length of the fibres and decreased with fibre
dosage. The addition of expanded perlite to the mixture produced mortars with an improvement
in mechanical strength and negligible modification of thermal properties. Straw mortars showed
discrete cracks after failure, without separation of the two parts of the specimens, due to the aggregate
tensile strength which influenced the impact compression tests. Preliminary observations of the
stability of the mortars showed that, more than one year from preparation, the conglomerates did not
show detectable signs of degradation.

Keywords: cement mortar; wheat straw; perlite; thermal insulation; acoustic absorption; secondary
raw materials

1. Introduction

Today, concern for environmental protection is growing, especially in the agro-food
industry which generates wastes from direct consumption of primary products. Most of
these by-products are non-hazardous and are currently underutilised or simply wasted.
For this reason, the concept of bioeconomy is spreading as a new approach to produc-
tion that gives new life to materials which would otherwise be destined for destruc-
tion [1–8]. Accordingly, the recycling of agro-food wastes as biofuels [9–11], fertilisers [12,13],
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energy [14], chemicals [15] and sorbents [16–20] is considered a valuable alternative to
landfilling.

The main agricultural products in Italy include sugar beet, wheat, corn, tomatoes,
oranges, potatoes, apples, barley, and rice. Therefore, a large amount of waste needs to be
disposed of.

In the context of an environmental and sustainable approach, considerable effort
is being invested in the exploitation of renewable cheap agricultural residues for the
development of eco-building materials to limit greenhouse gas emissions, save natural
resources and develop more energy efficient buildings [21]. The aim of bio-architecture is
to construct healthy buildings with little ecological impact based on the use of sustainable,
eco-friendly and cheap materials [7,22–28], such as cellulose fibres, which are among the
most suitable secondary raw materials for this purpose. Specifically, wheat straw has been
used as an aggregate in many low density and environmental safe, construction materials
which have shown valuable mechanical, thermal and acoustic properties [22–24,29–37].

In this paper, eco-sustainable cement conglomerates, containing wheat straw from
the Apulia region, Italy (33–38% cellulose, 26–32% hemicelluloses, 17–19% lignin [38]) and
perlite beads, were prepared and characterised by rheological, thermal, acoustic, mechanical
and microstructural measurements. A complete replacement of the conventional sand
aggregate was carried out with straw cuttings of different length and dosage and with
perlite beads. Composites with bare straw (S), perlite (P), and with a mixture of organic
and inorganic aggregates (P/S), were characterised and compared with the properties of
conventional sand mortar [39–41]. The addition of the perlite beads to the straw mixture
was carried out to improve the mechanical properties of the conglomerates with little
modification of the thermal insulation.

Many studies have considered the possibility of using specific treatments to prevent the
degradation of this type of construction material resulting from the dissolution of the main
constituents of the straw, ascribed to water absorption and alkaline pore solution [42–45].
Modification of the matrix composition, by addition of pozzolanic compound addition or
by applying a carbonation process, was carried out to overcome the problems associated
with the presence of alkaline compounds [46–51]. The stability of the natural fibres was
improved by applying specific procedures, such as interface coatings, chemical structure
modification, chemical products additions or combined processes [29,52–61].

The main purpose of the present research was to obtain eco-friendly thermo-insulating
cement composites with natural and local by-products as aggregates for indoor applica-
tions [62–65]. The idea was to prepare and characterise these materials without the addition
of fillers, additives, matrix modifiers or specific straw treatments, which, in some cases,
are based on the use of reagents, such as silanes, gasoil, varnish, sodium hydroxide and
sulfuric acid. In terms of the circular economy, these conglomerates were in accordance
with current policies for environmental sustainability. Worthwhile processes were being
carried out since these artifacts were prepared by a cheap process in which pre-treatment of
renewable aggregates and complex or expensive procedures were not required [37,66–70].

2. Materials and Methods

Cement mortars were prepared with CEM II A-LL 42.5 R [39] from Buzzi Unicem
(Rc (2 days) > 25.0 MPa, Rc (28 days) > 47.0 MPa) which is characterised by 80–94% clinker,
6–20% limestone LL (<0.2% organic carbon), gypsum (0–5%), minor additional constituents,
and which shows 3100–4400 cm2/g Blaine specific surface area. Natural wheat straw was
used as total replacement of sand with cuttings (1.5–2.5 mm diameter) of variable length
(0.4–0.6 cm, 1.3–1.7 cm, 3.4–3.7 cm, 5.8–6.2 cm).

Expanded perlite (P) (3–4 mm size range) is an inorganic material derived from
volcanic rock with the following chemical composition: SiO2 74.5%, Al2O3 12.3%, K2O 4.2%,
Na2O 4%, Fe2O3 1%, CaO 1.4%. It was provided by Maltek Industrie S.r.l., Terlizzi, Bari,
Italy. It is chemically inert, sterile and incombustible and with a granular form obtained
after heat treatment at 760–1100 ◦C of the silica material which induces expansion [71,72].
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Figure 1A shows the straw before use and after cutting (see inset), while Figure 1B
shows a picture of the perlite beads. Figure 2A shows an SEM image of a perlite bead
surface, while Figure 2B shows its closed porosity.
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In the case of the mortar preparation, a volume replacement of the conventional
aggregate was carried out due to the lower density of the cellulose fibres and of the perlite
beads with respect to sand [41]. The samples S1, S2, S3 and S4 were prepared with cuttings
of different length (0.4–0.6 cm, 1.3–1.7 cm, 3.4–3.7 cm, 5.8–6.2 cm); the P sample was
prepared with bare perlite, while the P/S1, P/S2, P/S3 and P/S4 samples were prepared
with a mixture of perlite and straw. For all these samples, the volume of the aggregate
was equal to 400 mL. The choice of this volume was a compromise to obtain comparable
values for straw and perlite. Finally, S3A, S3B and S3C samples were prepared with the
same straw length (3.4–3.7 cm) but with different volumes of aggregate (340 mL, 470 mL
and 550 mL).

The conglomerates were prepared with tap water and with a water/cement ratio equal
to 0.5 as in the case of conventional mortar preparation characterised by 225 g of water, 450 g
of cement and 1350 g of normalised sand [40,73]. All the rheological, thermo-acoustic and
mechanical measurements were compared with the results obtained with this normalised
sand control. Table 1 reports the composition of all the mortars that were prepared for the
present investigation.
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Figure 2. SEM image of (A) a perlite bead surface and (B) a perlite bead inner structure. 
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Table 1. Mortars composition.

Sample Type Cement
(g)

Water
(cm3)

Perlite
Weight

(g)

Perlite
Volume

(cm3)

Straw
Volume

(cm3)

Straw
Weight

(g)

S1 straw 0.5 ± 0.3 cm 450 225 0 0 400 55

S2 straw 1.5 ± 0.3 cm 450 225 0 0 400 44

S3 straw 3.5 ± 0.3 cm 450 225 0 0 400 34

S3A straw 3.5 ± 0.3 cm 450 225 0 0 340 29

S3B straw 3.5 ± 0.3 cm 450 225 0 0 470 40

S3C straw 3.5 ± 0.3 cm 450 225 0 0 550 47

S4 straw 6.0 ± 0.4 cm 450 225 0 0 400 25

P perlite 3–4 cm 450 225 42 400 0 0

P/S1 perlite 3–4 cm/straw 0.5 cm 450 225 21 200 200 27.5

P/S2 perlite 3–4 cm/straw 1.5 cm 450 225 21 200 200 22

P/S3 perlite 3–4 cm/straw 3.5 cm 450 225 21 200 200 17

P/S4 perlite 3–4 cm/straw 6.0 cm 450 225 21 200 200 12.5

The rheology of the fresh mixtures was evaluated using a flow-test [74]. Thermal and
acoustic tests were carried out with cylindrical specimens (ϕ = 100 mm; H = 50 mm) after
28 days curing. Thermal measurements were based on the analysis of temperature response
of dried specimens to heat flow impulses through a heating probe applied onto the surface
of the sample [75]. For this purpose, an ISOMET 2104 device, from Applied Precision
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Ltd. (Bratislava, Slovakia), was used for the tests. An estimation of the thermal diffusivity
(α) and thermal conductivity (λ) was obtained by comparison between the experimental
temperature values and the analytical solution of the heat conduction equation. Acoustic
absorption data were obtained after emission of a pure tone of known frequency at 250,
500, 1000 and 1600 Hz through a Kundt tube [76] characterised by a diameter sufficiently
small with respect to the wavelength of the sound emission for stationary conditions
measurements. A loudspeaker was positioned at one end of the tube and the sample placed
at the other end.

Compression tests were carried out with a loading rate of 2400 ± 200 N/s on twelve
semi-prisms which were obtained from flexural tests on six prisms (40 × 40 × 160 mm) at
50 ± 10 N/s loading rate [40]. For this purpose, a MATEST device, Milan, Italy, was used.
In the case of the impact resistance tests, a steel ball (63 mm diameter) was placed on the
upper surface of a specimen and a 4.50 kg weight was dropped from a height of 45 cm;
after evaluation of the number of blows before fracture, the energy absorbed by the sample
was obtained [77].

The aggregates and the conglomerates were also characterised by scanning electron
microscope (SEM) and energy dispersive X-ray (EDX) analysis. For this purpose, an electron
microscope FESEM-EDX Carl Zeiss Sigma 300 VP (Carl Zeiss Microscopy GmbH, Jena,
Germany) was used after sputtering the samples with graphite (Sputter Quorum Q150
from Quorum Technologies Ltd., East Sussex, UK). The specimens were also characterised
by an optical microscope (Dyno-lyte Digital Microscope, New Taipei City, Taiwan), while
porosimetric measurements were carried out by Ultrapyc 1200e Automatic Gas Pycnometer
(Quantachrome Instruments, Boynton Beach, FL, USA). For this, helium gas was used.

3. Results and Discussion
3.1. Rheological Tests

The rheological tests carried out by the flow-test method enabled understanding of
the flow and deformation of the fresh conglomerates, by modification of the aggregate
composition and distribution, maintaining the same water and cement dosage. Figure 3
shows the workability of the non-consolidated specimens obtained with the flow-test in
comparison with the conventional normalised sand mortar [74]. Fresh conglomerates with
the least length of straw (S1 and S2) were drier than the normalised mortar (−90% and
−50% respectively), with specific reference to the S1 sample. The mortars named S3 and S4
contained more fluid, with the S3 mixture showing the same workability as the reference.
These results were attributed to the size of the cuttings—in particular, the shortest fibres
showed the highest specific surface which determined an increase in water absorption
with consequent reduction in workability. The mixture with perlite (P) showed similar
consistency to the control, while the straw/perlite mortars showed intermediate values
between bare straw and bare perlite composites. In this respect, the presence of perlite
improved the fluidity of the S1 and S2 mortars; the P/S1 and P/S2 flows were, respectively,
in the range −30% to −25% with respect to the control. The P/S3 and P/S4 mixtures
showed similar consistency to the normalised mortar. It was also observed that the fresh
composites showed a sensible decrease in the flow with increase in straw volume due to
the increasing water absorption which determined the manufacture of the dry materials, as
in the case of the S3B and S3C samples (−60% and −100%, respectively).
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Figure 3. (A) Flow-test apparatus. (B) Flow-test results of the S, P and P/S samples with respect to
the normalised mortar (Control).

3.2. Thermal and Acoustic Measurements

The thermal conductivities and diffusivities of the straw mortars were very much
lower compared to the sand reference which showed a thermal conductivity in the range of
1.8–2.0 W/mK and a thermal diffusivity in the range of 1.2–1.4 × 10−6 m2/s. Specifically,
the thermal conductivity decrease (%) for the entire set of straw based composites (S1,
S2, S3, S4, S3A, S3B and S3C) was in the range of 86–91%, while the thermal diffusivity
decrease (%) was in the range of 85–89% (Figures 4 and 5).

The reduction in thermal conductivity and diffusivity of the straw-containing mortars
can be attributed to the hollow lumen structure of the organic aggregate, as observed in the
analysis of the cross-section of the straw and can be ascribed to the action of the aggregate
in modifying the structure of the mortars (Figure 6A) [29–31]. From the SEM detections it
can be seen that poor adhesion of the organic straw fibres to the inorganic cement matrix
was responsible for the formation of voids at the organic/inorganic interface. For all these
reasons, a reduction in the specific mass (in the range of 39–52%) and an increase in the
porosity (in the range of 45–54%) of the composites was observed (Table 2) [41].
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(B) Thermal conductivity of the S3 specimens with different volume of aggregates. (C) Exponential
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The generation of voids in the cement matrix contributes to limiting heat transport
with increase in thermal insulation [29–31]. The composite S1, with the lowest size of fibres,
showed the highest thermal insulation (λ = 0.17 W/mK, α = 0.13 × 10−6 m2/s) at the same
volume of aggregate in the mixture, which tended to decrease with increase in straw length
(Figures 4A and 5A). This result can be explained by the highest specific surface of this
type of fibre which is responsible of the generation of the highest percentage of voids at the
interface, together with the increased number of voids attributed to the porous structure
of the bare aggregate. In fact, the S1 specimen showed the highest porosity (48%) and the
lowest density (960 Kg/m3) among the straw composites (S2, S3 and S4, Table 2). This
demonstrates the effect of different length fibres on the conglomerates.
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Table 2. Density and porosity of the mortars.

Sample Density
(kg/m3) Porosity (%)

S1 960 48

S2 1100 46

S3 1145 44

S3A 1220 40

S3B 990 46

S3C 900 48

S4 1215 41

P 1250 37

P/S1 1100 44

P/S2 1180 42

P/S3 1200 40

P/S4 1240 40
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Figure 6. (A) SEM image of the cement/straw interface, in the inset: porous structure of the straw.
(B) SEM image of the cement/perlite interface.

The results show that an increase in straw content decreased the thermal conductivity
and diffusivity of the composites (Figures 4 and 5). In fact, the S3C sample, with the
highest dosage and volume of fibres (550 cm3), was characterised by the lowest density
(900 kg/m3), the highest porosity (48%) and the lowest thermal conductivity (0.18 W/mK)
and diffusivity (α = 0.13 × 10−6 m2/s), with respect to S3B, S3 and S3A composites which
were characterised by an increase in the specific mass (990 kg/m3, 1145 kg/m3, 1220 kg/m3,
respectively), decrease in porosity (46%, 44%, 40%, respectively) and increase in thermal
conductivity (0.19 W/mK, 0.22 W/mK and 0.26 W/mK, respectively) and diffusivity
(0.14 × 10−6 m2/s, 0.17 × 10−6 m2/s and 0.19 × 10−6 m2/s, respectively). This result
could be due to the increasingly lower encapsulation of the fibres in the cement matrix
which increased the voids at the organic/inorganic interface. From the rheological tests, it
was also observed that a sensible decrease in the flow of the fresh conglomerates with rise in
the straw volume occurred which caused the production of increasingly dry specimens with
consequent increase in the porosity of the hardened artifacts. The sample with bare perlite
(P) showed the highest value of density (1250 Kg/m3) and the lowest porosity (37%) among
all the other lightweight samples; the thermal conductivity was in the range of 0.34 W/mK,
accordingly, this specimen resulted in the lowest thermal insulating properties. The perlite
thermal conductivity was ~50% higher than the value obtained with the S1 sample with
a density increase and porosity decrease in the range of ~23%. Figure 6B demonstrates
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these results; good adhesion of the perlite to the cement paste can be observed due to the
beads roughness and the similar chemical compounds in both the mixture components
(silicates and aluminates) [70]. Thus, the porosity of this type of mortar was exclusively
associated with the closed porosity of the perlite (Figure 2B) and not the presence of empty
spaces at the ligand/aggregate interface, as in the case of the straw-based samples. The
straw/perlite samples (P/S1, P/S2, P/S3 and P/S4) showed intermediate values of thermal
conductivity and diffusivity as a result of the intermediate values of density and porosity.
An exponential increase in thermal conductivity and diffusivity was observed with increase
in conglomerate density (Figures 4C and 5B).

To evaluate the acoustic characteristics of the cellulose-cement composites, the normal
incident absorption coefficient (α) was determined. When a sound wave strikes a material,
a portion of the sound energy is reflected while a portion is absorbed. This coefficient is the
ratio of the absorbed energy to the total incident energy and is determined by the Kundt
impedance tube [78]. It is calculated as:

α = 1 − ρ (1)

where ρ is the reflection coefficient of the acoustic energy, expressed as the ratio between the
reflected and the incident energy. Figure 7 shows the acoustic absorption data carried-out at
250, 500, 1.000 and 1.600 Hz. Specifically, the percentage increase for the entire set of straw-
based composites (S1, S2, S3, S4, S3A, S3B and S3C) was in the range of 10–54% at 250 Hz,
77–89% at 500 Hz, 27–54% at 1000 Hz and 54–70% at 1600 Hz with respect to the control
which showed the following results: 9% at 250 Hz, 5% at 500 Hz, 11% al 1000 Hz and 6% at
1600 Hz. As previously reported, this result can be ascribed to the intrinsic porosity of the
natural aggregate (inset Figure 6A) and to the action of straw in modifying the structure of
the mortars by creating pores in the cement matrix (Figure 6A) with consequent reduction
in the specific mass [29–31]. Accordingly, in these specimens, straw-induced formation of
voids occurred where acoustic energy was likely to be attenuated, in particular, at 500 Hz
where, after resonance phenomena, the closed cavities might play a major role [34,62,79,80].
The S1 sample, with the lowest size of fibres, at the same volume of aggregate in the mixture,
showed the highest acoustic absorption at all the frequencies, with specific reference to
the 500–1.000 Hz range. This value decreased with increase in straw length (S2, S3 and S4
specimens) because of the decrease in composite porosity (Figure 7A and Table 2).

The increase in the straw content and volume determined an increase in acoustic
absorption (Figure 7B). The S3C sample, with the highest dosage and volume of fibres,
showed at 500 and 1000 Hz values in the range of 33% and 24%, respectively, while the S3B
(31% and 21%, respectively), the S3 (27% and 20%, respectively) and the S3A (22% and 15%,
respectively) were characterised by increasingly lower values of α at lower straw content.
This result can be explained by the highest porosity of S3C with respect to S3B, S3 and
S3A composites which were characterised by a decrease in porosity with increase in the
straw volume in the matrix. The sample with bare perlite (P) showed the lowest acoustic
absorption because of the highest value of density (1250 Kg/m3) and the lowest porosity
(37%) among all the other lightweight samples. The straw/perlite samples (P/S1, P/S2,
P/S3 and P/S4) showed intermediate values of α as a result of the intermediate values of
density and porosity.
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3.3. Mechanical Tests

Flexural and compressive strengths (at 28, 60, and 90-days ageing) of the samples
are shown in Table 3 and Figure 8A,B. A general increase between 24 and 60 days and a
final stabilisation between 60 and 90 days was observed. Moreover, Figure 8A,B show an
exponential increase in mechanical resistance with the specific mass of the conglomerates.

From a general overview of data referring to straw-based composites (S1, S2, S3, S4,
S3A, S3B and S3C), a sensible decrease in the mechanical performances with respect to
the sand reference was observed which showed flexural and compressive resistances at
28-days ageing in the range of 8.5–9.0 MPa and 48–50 MPa, respectively.

The conglomerates with bare straw aggregates showed flexural resistances in the range
of 1.3–2.5 MPa and compressive resistances in the range of 1.6–6.2 MPa. The decrease in
mechanical strength can be attributed to the already mentioned low density of the straw
fibres compared to the cement paste and to lack of adhesion of the organic aggregate to
the cement paste [22,30,31]. Straw particles showed lower stiffness than the surrounding
cement paste; accordingly, under loading, cracks initiated around the straw accelerated the
failure in the matrix. The increase in porosity associated with the voids at the fibre–matrix
interfaces further affected the lowering of mechanical performances.
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Table 3. Flexural and compressive strengths of the S, P and S/P mortars at 28, 60 and 90-days curing.

Sample Density
(kg/m3)

Rf
(MPa)

28 Days

Rf
(MPa)

60 Days

Rf
(MPa)

90 Days

RC
(MPa)

28 Days

Rc
(MPa)

60 Days

Rc
(MPa)

90 Days

S1 960 1.3 1.7 1.6 1.6 2.0 1.9

S2 1100 1.7 2.0 2.1 2.4 2.7 2.8

S3 1145 2.1 2.2 2.3 3.6 3.7 3.5

S3A 1220 2.5 2.6 2.4 4.1 4.3 4.3

S3B 990 1.9 2.0 2.3 3.1 3.4 3.3

S3C 900 1.7 2.0 2.0 2.4 2.5 2.7

S4 1215 2.5 2.8 2.6 6.2 6.2 6.4

P 1250 3.5 4.3 4.5 18.8 19.3 19.7

P/S1 1100 2.4 2.7 2.6 5.5 5.6 5.5

P/S2 1180 2.6 2.9 3.0 9.8 10.1 10.4

P/S3 1200 2.9 3.3 3.2 11.8 11.8 11.9

P/S4 1240 3.2 3.6 3.8 15.1 15.3 15.2
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Figure 9A shows that these types of composites presented a good aggregate dis-
tribution and straw–matrix compatibility with the cement paste around and inside the
fibres [21].

Moreover, it was observed that an increase in the resistances, with increase in straw
length at the same volume of aggregate in the mixture, was also associated with increasing
density and decreasing porosity of the conglomerates. The S1, S2, S3 and S4 specimens
showed flexural strengths corresponding to 1.3 MPa, 1.7 MPa, 2.1 MPa and 2.5 MPa,
respectively, while they showed compressive strengths corresponding to 1.6 MPa, 2.4 MPa,
3.6 MPa and 6.2 MPa, respectively.

The increase in straw content/volume in the composites decreased the flexural and
compressive strengths, as shown in Table 3. Flexural strength at 28 days decreased from
2.5 MPa to 1.7 MPa, while compressive strength decreased from 6.2 MPa to 2.4 MPa for
composites containing from 340 mL to 550 mL straw volume, respectively. This result was
associated with decrease in encapsulation of the fibres in the cement matrix at increasing
straw volume which increased the porosity of the samples. During the flexural load
application, the interference of the nearby fibres induced a loss of the straw/matrix bonding.
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Accordingly, the fibres were pulled out from the matrix and considerable energy was lost
from the system in the form of frictional energy [22,23,66]. After the breakage, a separation
of the two parts of the samples was not observed, with the two semi-prisms of the samples
still connected by the fibres. This effect was associated with straw tensile strength [30,81]
and was affected by the density decrease and by the structure of the fibres which showed a
horizontal arrangement during the mortar preparation [30] that was confirmed after final
separation of the two semi-prisms. In this respect, it was observed that the fibres were
encapsulated in one of the two parts while pulling out from the other. Figure 9B,C show the
holes derived from the pull-out of the cellulose fibres from the matrix, while Figure 10A,B
show the horizontal arrangement of the aggregate after rupture [30]. Figure 10C shows that
a real collapse of the specimen was not observed after breakage but only cracks ascribed to
the plastic behaviour, mostly detected at high straw content.
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The sample with bare perlite (P) showed the highest mechanical resistances (Rf = 3.5 MPa
and Rc = 18.8 MPa) due to the higher stiffness of the silica aggregate with respect to straw
and to the good adhesion to the ligand paste at the interface which increased the density
of the mortar. Figure 9D shows an image of the surface of this composite after rupture
and its good particle distribution. The straw/perlite samples (P/S1, P/S2, P/S3 and P/S4)
showed intermediate values as a result of the intermediate values of density and porosity.
Figure 9E shows that these composites, with a mixture of aggregates, also presented a good
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particle/fibre distribution and straw–matrix compatibility with the cement paste around
and inside the fibres.
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From a general point of view, the P/S3 and P/S4 samples can be considered interesting
composites with good workability (similar to the normalised mortar), low thermal conduc-
tivities (~0.30 W/mK) and good mechanical properties (Rf = 2.9 MPa and Rc = 11.8 MPa,
in the case of the P/S3 specimen, Rf = 3.2 MPa and Rc = 15.1 MPa, in the case of the
P/S4 specimen).

The impact compression tests, obtained with the experimental apparatus of Figure 11A,
showed that the straw samples (S1, S2, S3, S4, S3A, S3B and S3C) were characterised
by high energy absorption capacity, with specific reference to the S1 (Figure 11B) and
S3C (Figure 11C) samples. The toughness of these composites was improved as fibre
length decreased and as fibre volume increased (increasingly low specific mass) and was
characterised by a deep groove before complete failure (Figure 12A) [82,83]. The horizontal
arrangement after pull-out was confirmed, as shown in Figure 12B relative to the S3
sample [30].
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As observed in the flexural strength tests, a separation of the parts of the sample was
not observed because the parts were still connected by the fibres (Figure 12A,B). The high
straw tensile strength affected the formation of cracks instead of an evident breakage [81]
and this effect was observed particularly in samples with high straw dosage, as in the case
of the S3C specimen (Figure 12C).

The perlite sample (P) was fragile and breakage occurred after a few blows due
to the presence of the brittle aggregate (Figure 12D,E), while the samples with 50% of
straw and 50% of perlite represented a compromise between energy absorption capac-
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ity attributed to the natural fibres and mechanical resistance attributed to the inorganic
aggregate (Figure 11B).
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3.4. Stability of the Composites

From visual inspections and optical microscopical observations, the straw surface
structure, evidenced in Figures 9 and 10B, was similar to the pristine (inset Figure 1A) and
also retained its original color, both indications of negligible degradation occurring after
chemical interaction between the fibres and the ligand paste [30]. Specifically, Figure 9E is
an optical microscope image of the P/S1 sample after more than one year from the breakage
and after curing at room temperature and at 75–80% relative humidity.

It has been reported that the degradation of vegetable fibres is associated with the
presence of calcium hydroxide in the matrix at the basic pH of the cement paste [42,45,46]
due to the dissolution of water-soluble plant compounds. Accordingly, the concentration of
soluble calcium compounds was much higher than the concentration of silicon compounds
in the areas of the cement paste close to the straw fibres. As a result, drawbacks, such as
shift of the setting time, delay in mechanical strength development, and stiffness increase
were evidenced [30]. Figure 13B,C show EDX analyses of the cement paste close to the
straw fibres and far from the fibres (Figure 13A) in order to have a chemical characterisation
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of two different zones, specifically the Ca/Si ratio [84,85]. The sample was withdrawn in
a straw-based specimen cured for more than one year in a humid environment (75–80%).
In the present case, the chemical compositions were similar to the Ca/Si ratios, which is a
further indication of negligible degradation of these composites together with the optical
observations and the stable values of mechanical resistance in the range of 28–90 days.
The reported results can be considered preliminary investigations on the features of the
composites during time and not durability studies, but they can be very useful for the
preparation of sustainable indoor cement artifacts based on cellulose fibres and perlite.
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4. Conclusions

Eco-sustainable cement conglomerates containing untreated wheat straw and perlite
beads as aggregates were prepared and characterised by rheological, thermal, acoustic, me-
chanical and microstructural measurements. A complete replacement of the conventional
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sand aggregate was carried out with straw cuttings of different length and dosage and with
perlite beads. Composites with bare straw (S), perlite (P), and with a mixture of organic
and inorganic aggregates (P/S), were characterised and compared with the properties of
normalised sand mortar.

From the rheological characterisation, the fibres with the lowest length showed the
highest specific surface which influenced water absorption with consequent reduction in
workability (e.g., S1 and S2 samples, extremely dry). With an increase in straw length
an increase in fluidity (S3 and S4) was observed because of the lower water absorption
with respect to the former samples (i.e., plastic behaviour). Fresh composites also showed
a sensible decrease in flow with increase in straw volume, with S3C extremely dry. The
mixture with perlite (P) showed similar consistency to the control, while the straw/perlite
mortars showed intermediate values between bare straw and bare perlite composites. All
these samples had good workability useful for plastic castings. Specifically, the conglom-
erate with bare perlite and the P/S3 and P/S4 mixtures showed similar consistency to
the control.

The thermal insulation of the straw mortars was extremely high compared to the
sand reference. Specifically, the thermal conductivity quenching for the entire set of the
straw-based composites was in the range of 86–91%. It was ascribed to the hollow lumen
structure of the organic aggregate and to the poor adhesion of the straw fibres to the cement
matrix which determined a reduction in the specific mass (39–52%) and an increase in
porosity (45–54%) with respect to the reference. The results showed an enhancement of the
thermal insulation with decrease in straw length and with increase in straw volume due to
the increase in porosity of the composites. Lower thermal insulation was obtained with
the mixtures of aggregates (P/S) because of the reduction in porosity associated with the
presence of perlite which showed good adhesion to the cement paste.

The acoustic absorption of the straw mortars was extremely high compared to the
sand reference, especially in the 500–1000 Hz range. These results were ascribed to the high
porosity of these composites and showed an enhancement with decrease in straw length
and with increase in straw volume.

A sensible decrease in mechanical performance with respect to the sand reference
was obtained and the values increased with the length of the straw and decreased with
the straw dosage. The addition of expanded perlite to the mixture allowed mortars to
be obtained with an improvement in mechanical strength and negligible modification to
thermal properties. Straw mortars showed discrete cracks after failure without separation
of the two parts of the specimens due to the aggregate tensile strength.

The impact compression tests showed that the straw samples were characterised by
high energy absorption capacity, with specific reference to the S1 and S3C samples. These
parameters were improved as fibre length decreased and as fibre volume increased (increas-
ingly low specific mass) and were characterised by a deep groove before complete failure.

Microscopical observations, after more than one year curing in 75–80% humidity,
revealed negligible degradation of these composites, while mechanical tests showed stable
values in the range of 28–90 days.

Based on the physical and mechanical results, non-structural indoor applications (e.g.,
panels, plasters) may be considered for these lightweight composites, with specific reference
to conglomerates made of straw and perlite which can be considered a good compromise
between thermo-acoustic and mechanical properties. It is important to underline the
environmental advantages related to the recycling of agricultural waste adopting a safe
and environmentally friendly process with respect to the circular economy.
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