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ABSTRACT
Tissue tumor mutational burden (tTMB) is calculated to 
aid in cancer treatment selection. High tTMB predicts a 
favorable response to immunotherapy in patients with 
non-small cell lung cancer. Blood TMB (bTMB) from 
circulating tumor DNA is reported to have similar predictive 
power and has been proposed as an alternative to tTMB. 
Across many studies not only are tTMB and bTMB not 
concordant but also as reported previously by our group 
predict conflicting outcomes. This implies that bTMB is not 
a substitute for tTMB, but rather a composite index that 
may encompass tumor heterogeneity. Here, we provide a 
thorough overview of the predictive power of TMB, discuss 
the use of tumor heterogeneity alongside TMB to predict 
treatment response and review several methods of tumor 
heterogeneity assessment. Furthermore, we propose a 
hypothetical method of estimating tumor heterogeneity 
and touch on its clinical implications.

INTRODUCTION
Tumor mutational burden (TMB) is a clini-
cally approved and frequently used biomarker 
in the context of immunotherapy. Tissue 
TMB (tTMB), the total number of muta-
tions per exome, is associated with tumor 
neoantigen load.1 Neoantigens arising from 
tumor-specific mutations can elicit a robust 
immune response which is strongly associated 
with clinical outcome.2 3 A strong correlation 
between high tTMB and clinical outcomes—
progression-free survival (PFS) and overall 
survival (OS)—has been observed in patients 
with non-small cell lung cancer (NSCLC) 
receiving immunotherapy. In contrast, inter-
mediate and low tTMB values correlate with a 
lower durable clinical response (DCR) rate.4

Tissue biopsy, a requirement for measuring 
tTMB, is invasive and can be impossible to 
perform in many cases. More importantly, 
single biopsies do not capture the entire 

mutational landscape of a tumor, especially 
when metastases are present.5 Some metas-
tases may not even be visible radiographically 
and thus cannot be evaluated. To compensate 
for this, clinicians have begun assessing blood 
TMB (bTMB) from circulating tumor DNA 
(ctDNA).6 Necrotic and apoptotic tumors 
shed their DNA into circulation.7 By moni-
toring this cell-free circulating DNA (cfDNA), 
we can less invasively assess the tumor muta-
tional landscape.8

Upwards of 94% of all mutations can be 
detected in both blood and tissue, with a 
small percentage of mutations found in one 
and not the other.9 However, bTMB does not 
yield the same predictions as tTMB. Among 
patients treated with immune checkpoint 
inhibitors, high bTMB values were correlated 
with shorter PFS and OS6. In another work, 
the DCR rates between bTMB-High and 
bTMB-Low groups showed no statistically 
significant difference.10 Consequently, tTMB 
and bTMB do not appear to be equivalent. 
Furthermore, the small percentage of discor-
dant mutations may carry a predictive power.

Mutations, single nucleotide variations, can 
be classified as clonal or subclonal. A collec-
tion of these mutations can be used to quan-
tify tumor heterogeneity, which has illustrated 
predictive power in preclinical settings.11 In 
one study, 92% of tumors that exhibited low 
heterogeneity (low neoantigen subclonal frac-
tion) and high TMB demonstrated durable 
clinical benefit with anti-PD-1 (Programmed 
cell death protein 1) therapy.12 Furthermore, 
high tumor heterogeneity has been observed 
in patients with colorectal cancer with lower 
disease-free survival and higher rates of 
metastases.13 A highly heterogeneous breast 
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cancer cohort exhibited lower levels of tumor infiltrate, 
decreased immune responses, and worse outcome.14

It has become increasingly clear that there is value in 
complementing tTMB with other metrics such as bTMB 
and tumor heterogeneity. Several approaches to measure 
tumor heterogeneity have been developed and vali-
dated. As of this writing, no methods have successfully 
integrated tTMB, bTMB, and their respective clonality 
and subclonality characteristics. A thorough analysis of 
current methods and our own proposed new method may 
lead to better tumor lineage tracking, earlier detection of 
resistance-causing mutations, and more effective clinical 
decision-making.15

SINGLE BIOPSY TISSUE-BASED TMB
Over the relatively short period of time during which 
immunotherapies have been used, neoantigen burden 
has become strongly associated with treatment outcome. 
To estimate this burden, single biopsy tTMB is routinely 
used. In evaluating a commercial United States Food and 
Drug Administration (FDA) approved assay for tTMB 
(Oncomine Tumor Mutational Load assay), Alborelli et 
al4 observed a statistically significant relationship between 
tTMB and outcome metrics. Patients (n=76) experiencing 
durable clinical benefit (stable disease for  >6 months) 
had a median tTMB=8.5 mut/Mb, while those with no 
durable benefit had a median tTMB=5 mut/Mb (Dunn’s 
test p=0.018). Grouping patients based on a tTMB cut-off 
of 9 mut/Mb yielded a similar relationship. Patients with 
a tTMB≥9 mut/Mb had a median PFS of 16.4 months, 
while their tTMB <9 mut/Mb counterparts had a median 
PFS of 2.6 months (log-rank Mantel-Cox test p=0.0014).4

In another study, tTMB was measured in 1639 patients 
covering a diversity of cancer indications (Foundatio-
nOne Assay). Response rate and PFS were calculated for 
all patients receiving immunotherapy. Fifty-eight per cent 
of patients with high tTMB (>20 mut/Mb) responded 
positively versus only 22% of patients with low tTMB 
responded positively. Furthermore, the median PFS of 
these two groups was 12.8 versus 3.3 months, respectively, 
a fourfold difference. For 102 patients within this same 
cohort who received anti-PD-1/PD-L1 (Programmed 
death ligand 1) monotherapy, there was a linear correla-
tion between tTMB and response likelihood: 4% for low 
(1–5 mut/Mb), 26% for intermediate (6–19 mut/Mb), 
45% for high (20–50 mut/Mb), and 67% for very high 
(>50 mut/Mb).16 To bring out further utility from TMB, 
clinicians have attempted to use it alongside microsatel-
lite instability (MSI).

MSI is determined by measuring the addition or 
removal of nucleotides from microsatellite tracks. In 
the context of immunotherapy, MSI has been shown to 
predict treatment outcome, especially when mismatch 
repair mutations are considered.17 Even though both 
MSI and tTMB have predictive value, they are not the 
same. Among 11 348 different cancer indications, only 
1.5% were positive for tTMB and MSI, while specifically 

in melanoma the rate was 19%.1 When used in conjunc-
tion, they are very effective in stratifying patients. Out of 
22 patients with MSI high colorectal carcinoma, 13 were 
tTMB high and 100% of them responded to immuno-
therapy. In contrast, 66% of the patients with low tTMB 
had progressive disease. More importantly, the median 
PFS had not been reached for the tTMB high group after 
18 months, while the median PFS for the tTMB low group 
was 2 months.18 The relationship between MSI and TMB 
is of ongoing research interest.

The sequencing methodology used to obtain the raw data 
is an important consideration. Whole exome sequencing 
(WES) selects for long stretches of DNA, covering mostly 
exons, with some introns and intergenic regions. The use 
of gene panels is an alternative approach that targets a 
list of genes ranging in number from the low 100s all the 
way to 1000. The third and final method is whole genome 
sequencing (WGS). In this case, all available DNA frag-
ments in the sample are sequenced, capturing inter-
exonic regions. Despite this advantage the high cost and 
high material requirements of WGS makes it unlikely to 
be utilized clinically. Most importantly, less costly alterna-
tives like gene panels and WES can be used to effectively 
measure clinically relevant biomarkers such as TMB and 
neoantigen load. In comparing the performance of WGS 
with a small gene panel, TMB high colon cancer tumors 
showed a 100% concordance for important tumor driver 
genes, such as BRAF, KRAS, and NRAS.19 Furthermore, 
tTMB values derived from WES and three commercial 
gene panels (OCAv3 0.39Mbp, TST170 0.53Mbp, OTML 
1.7Mbp) yielded a strong correlation (0.77, 0.84, and 0.9 
respectively; the larger the panel higher the correlation.20

MULTIPLE BIOPSY TISSUE-BASED TMB
Although single biopsies are the standard for most clini-
cians, they come with a significant number of limitations. 
Biopsies are invasive and can only be performed on acces-
sible tumors of the appropriate size. Additionally, several 
studies have shown that a single biopsy does not capture 
the entire tumor landscape. In evaluating four patients 
with renal cell carcinoma via multiregion biopsy, only 55% 
of all mutations present within the tumor were detected 
by a single biopsy. Additionally, only 34% of all mutations 
were shared by every biopsy, indicating that most muta-
tions cannot be detected by a single biopsy.5 This effect 
has also been observed for tTMB in a study comparing 
the correlation between single and multiregion tTMB. 
The authors show that additional biopsies lead to statis-
tically significant fold changes in tTMB, although tTMB 
stops changing beyond three biopsies.21 One biopsy does 
not capture the mutational state of the tumor. However, 
an additional two biopsies may be enough.

PLASMA CTDNA AS AN ADDITIONAL BIOPSY
Liquid biopsy can add another data point to comple-
ment situations in which the opportunity for tissue biopsy 
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is limited. Blood draws are routine and non-invasive, 
making them ideal procedures for disease monitoring 
and treatment assessment. Such applications of liquid 
biopsy are still in development, and the research has 
been promising. The presence and abundance of ctDNA 
has been associated with clinical outcome. In the context 
of breast cancer, recurrence after stages I and II treat-
ment was exclusively associated with the detection of 
chromosome 1q23.1 amplification.22 Generally, ctDNA 
levels tend to be associated with tumor burden and may 
be used to track tumor progression. Pre-surgical and 
post-surgical ctDNA levels in patients with NSCLC were 
correlated with outcome. The mutation frequency also 
declined from 8.88% to 0.28%, with the largest declines 
observed in stage I patients.23 Beyond total ctDNA levels, 
tracking bTMB during treatment has also shown clin-
ical value. Wang et al describe the significant response 
experienced by a patient with metastatic breast cancer 
to a combination therapy of camrelizumab and vinorel-
bine. During therapy plasma ctDNA was monitored and 
bTMB levels declined from 149.2 to 40.88 mut/Mb and 
the patient experienced 5 months of PFS, prior to which 
they had not shown response to any other treatment.24 
In a smaller cohort of six patients with NSCLC a similar 
trend was observed. After 4 weeks of chemoradiotherapy 
bTMB decreased significantly as compared with pretreat-
ment levels.25 Of four additional patients with NSCLC, 
only one presented with a significant increase in bTMB, 
mutation frequency, and overall cell-free DNA levels. This 
was consistent with disease progression and confirmed 
radiographically.26

Changes in allele frequency of specific mutations 
in response to treatment may yield significant clinical 
relevance. An increase in allele frequency was observed 
for an activating mutation in PIK3CA after paclitaxel, a 
truncating mutation in RB1 after cisplatin, a truncating 
mutation in MED1 after tamoxifen and trastuzumab, and 
a treatment resistance mutation in EGFR after gefitinib.8

As with tTMB, the same three sequencing methodolo-
gies⁠—gene panel, WES, and WGS—have been applied to 
ctDNA. WGS has been successfully utilized to study the 
relationship between PFS/OS and molecular progres-
sion (increase in ctDNA)/major molecular response 
(decrease in ctDNA).27 Both WES and gene panels lend 
equally well to bTMB calculation at the 1021 gene level 
with Pearson r values ranging from 0.85 to 0.91 depending 
on indication.21

Concordance between bTMB and tTMB
Given the convenience of ctDNA, bTMB calculation has 
been readily performed and its predictive value studied. 
Wang et al observed a strong association between bTMB 
and PFS in a 34 NSCLC patient cohort treated with immu-
notherapy. PFS was significantly longer for patients with 
high bTMB (14.5 months) than their lower bTMB coun-
terparts (5.2 months). However, the more important 
metric, OS, was not associated with bTMB whatsoever.28

Concordance between tTMB and bTMB is of primary 
research importance. Are bTMB and tTMB the same? 
Within a 29 NSCLC patient cohort, tTMB and bTMB were 
correlated: the Pearson r=0.47 for stage I-II patients and 
0.58 for stage III-IV patients. Interestingly, single region 
tTMB and multi region tTMB had a stronger correlation 
(r=0.94). This implies that bTMB and tTMB may not 
convey the same mutational information and most likely 
are not equivalent.21 This observation is further substan-
tiated by a study of 20 patients with NSCLC receiving 
immune checkpoint inhibitors. Within this cohort, higher 
bTMB individuals had shorter PFS (45 vs 355 days) and 
OS (106 days and not reached).29 In other works, a high 
bTMB did not associate with a favorable OS, regardless of 
the bTMB cut-off that was chosen.30

In studying the concordance between tTMB and bTMB 
it is important to acknowledge the technical differences 
between tTMB and bTMB assays. Among four commonly 
used assays FoundationOne CDx31 and Tempus xT32 for 
tTMB and Guardant36033 and GuardantOMNI34 for bTMB 
there is variability between both gene panel size and allele 
fraction percentage limit of detection (LOD) (figure 1). 
There appears to be a weak correlation between panel 
size and limits of detection with an R2=0.41. The bTMB 
assays generally had a much narrower LOD range then 
their tTMB counterparts. Individual assay differences in 
the DNA extraction methods, sequencing library prepara-
tion, sequencing parameters, and raw data processing are 
all sources of bias that may play a significant role in the 
level of concordance observed between bTMB and tTMB. 
Furthermore, individual studies and clinical trials choose 
vastly different tTMB and bTMB cut-offs. One study 
assessed the performance of an FDA approved tTMB 
cut-off of 10 mut/Mb in a metastatic colorectal cohort. 
They found that a 10 mut/Mb cut-off was not predictive 
of outcome, while a cut-off of 4.1 mut/Mb was predictive. 
For this same cohort the established bTMB cut-off was 
28 mut/Mb illustrating the vast difference between the 
cut-offs for tissue and blood.35 Generally, most research 
papers studying the relationship between TMB and 
outcome will select the TMB cut-off that yields the most 
statistically significant difference between groups.

CLONES, SUBCLONES, AND TUMOR HETEROGENEITY
A widely accepted and verified explanation for the 
inequivalence between tTMB and bTMB currently eludes 
investigators. One possibility is that bTMB may be an 
index that captures more than just mutational burden. 
To investigate their previous finding that OS was not asso-
ciated with bTMB, Wang et al28 adjusted his bTMB calcu-
lation for POPLAR,36 an open-label phase 2 randomly 
controlled advanced NSCLC patient trial, and OAK,37 
an open-label phase 3 randomly controlled advanced 
NSCLC patient trial, and a national cancer center cohort. 
Mutations with an allele frequency >5% were classified as 
high allele frequency (HAF), while the rest as low allele 
frequency (LAF). HAF-bTMB was strongly correlated 
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with total ctDNA and thus was not associated with positive 
outcomes. While LAF-bTMB was not associated with total 
ctDNA. Additionally, LAF-bTMB-High was found to be 
associated with favorable OS, PFS, and overall response 
rate (ORR).30

Liu et al38 proposed that bTMB carries two types of 
bias. The first is called the big tumor burden effect: a 
larger tumor will shed more cells, resulting in higher 
amounts of ctDNA. The second is tumor heterogeneity: 
low frequency mutations represent minor subclones. 
Mutations present at high and low allele frequencies 
from larger tumors and minor subclones, respectively, 
may obscure the true bTMB value. On removing both 
confounding factors, a new bTMB value was calculated 
for POPLAR and OAK cohorts. Patients treated with 
immunotherapy who had a high bTMB exhibited better 
PFS, OS, and ORR prediction as compared with the Wang 
et al28 original bTMB calculations. This may imply that the 
original bTMB values resulted in several bTMB high false 
positives, which in the clinic would have received immu-
notherapy to no avail.38 While it is clear that patients with 
a large tumor burden generally have a worse prognosis, 
patients who exhibit high levels of tumor heterogeneity 
via their subclonal LAF mutations are currently not strati-
fied in clinical practice.

With more accurate predictive tools, clinicians can more 
effectively predict treatment outcome by distinguishing 
between treatment sensitive homogenous cancers and 
heterogenous cancers capable of harboring treatment 
resistant subclones. Such an approach could minimize 
the number of patients receiving treatments from which 
they are unlikely to benefit.

In preclinical studies, tumor heterogeneity had a signifi-
cant impact on tumor growth rates regardless of tTMB. At 
the center of the study are UVB-irradiated melanoma cells, 
which exhibit higher levels of tTMB than their parental 
counterparts. These UVB-irradiated cells had on average 
2734 more exonic mutations. In mice, cell clones with lower 
heterogeneity grew at significantly lower rates than both 
the original parental strain and the UVB-irradiated strain, 
regardless of tTMB (tTMB ranged from 3600 to 16 977 
somatic mutations).11 These experiments imply that high 
tumor heterogeneity drives tumor growth and aggressive-
ness, irrespective of mutational burden. In this experiment, 
tumor heterogeneity was measured via allele frequency, one 
of several methods currently utilized in research.

TUMOR HETEROGENEITY METHOD COMPARISON
Assessing tumor heterogeneity has most commonly been 
accomplished by quantifying the frequency of different 

Figure 1  Comparison of gene panel size and limits of detection for four different TMB assays. Each point on the plot 
represents gene panel size in terms of the number of genes covered by each assay and the mean allele fraction percentage 
limit of detection. The horizontal lines represent the range of the limit of detection of all alterations. Alterations include 
single nucleotide variations, Copy Number Variation (CNV), Inserted and/or deleted nucleotides (InDels), and changes in 
homopolymeric regions. The horizontal lines represent the range of the limit.
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alleles across key genes, their copy numbers, and 
sequencing depth. The diverse algorithms that have been 
developed and validated have their respective advantages 
and disadvantages. A selection of these methodologies 
are summarized in table  1. Additionally, a computa-
tional comparison of some of these methods has been 
performed by Abécassis et al.39

PYCLONE
PyClone, a Bayesian statistical model, is designed to estab-
lish a cluster architecture from ctDNA data. It uses allelic 
frequencies, read depth, and copy number variation to 
estimate the size of the cell population that carries a 
given mutation. If several mutations are present at the 
same cell population size, then they are considered clus-
tered. Cluster number and size can then be used as an 
estimation of the number of clones within a sample, in 
other words, heterogeneity. This approach relies on two 
assumptions about clonal populations. One, that they 
are perfect, meaning no single mutation occurs more 
than once and that for each mutation there is only one 
somatic genotype. Two, that they are persistent, meaning 
that mutations do not revert to their somatic genotype. 
With these limitations in mind, PyClone has been used as 
a general way of assessing tumor heterogeneity in several 
studies.40

Patients with highly heterogeneous breast cancer 
(>3 mutation clusters as determined via PyClone) had 
significantly shorter median PFS (30 weeks) versus their 

low heterogeneity counterparts (60 weeks). Further-
more, multivariate analysis showed that poor PFS was 
associated with high heterogeneity (p=0.02), second 
only to the type of therapy received (pyrotinib alone vs 
pyrotinib +chemotherapy).41

PyClone has also been applied to understanding the rela-
tionship between tumor heterogeneity and neoantigen 
burden. High neoantigen NSCLC tumors as measured 
by a bioinformatics pipeline tend to be composed of 
cells that share a greater number of mutations; in other 
words, they are more homogenous. These types of tumors 
were associated with longer PFS. In a second cohort of 
64 patients with melanoma, a similar relationship was 
observed; there was an improved OS in tumors with a low 
tumor heterogeneity and a high neoantigen burden.12

PyClone has been utilized as a primary metric of intra-
tumor heterogeneity in TCGA (The Cancer Genome 
Atlas) pan-cancer studies. PyClone enabled Morris et 
al to investigate the clonal landscape of nine different 
cancer indications, head and neck squamous carcinoma 
(HNSC), urothelial bladder carcinoma, breast invasive 
carcinoma (BRCA), kidney renal clear cell carcinoma 
(KIRC), low-grade glioma (LGG), lung adenocarcinoma, 
lung squamous cell carcinoma, prostatic adenocarci-
noma (PRAD), and skin cutaneous melanoma. They were 
able to show that for five of the nine indications (HNSC, 
BRCA, KIRC, LGG, and PRAD) PyClone had a statistically 
significant relationship with outcome. Most interestingly, 
immune infiltration was inversely proportional to the 

Table 1  Tumor heterogeneity methods compared

Method Summary Input data type Output Publication Tissue/blood

PyClone Allele read counts 
->cellular prevalence 
estimation

.tsv file containing 
variant allele 
frequency and 
copy number 
variability

Clusters Roth et al40 ctDNA and tDNA

SciClone Like PyClone, but takes 
a narrow selection of 
genes (copy number 
neutral and loss of 
heterozygosity free)

.tsv file containing 
variant allele 
frequency, copy 
number variability, 
and common LOH 
site to exclude

Clusters Miller et al44 tDNA

AFH VAF/MSAF VAF and MSAF AFH Score Liu et al47 ctDNA and tDNA

MATH Width of the VAF 
distribution

VAF MATH Score Mroz and Rocco48 tDNA

Shannon’s Diversity 
Index

The negative sum of 
the natural log of the 
probability distribution 
of VAF for all mutated 
loci within a sample.

	
‍
H′ = −

N∑
i=1
pi In pi ‍�

VAF Diversity Index 
Score

Oh et al53 tDNA

AFH, allele frequency heterogeneity; ctDNA, circulating tumor DNA; LOH, loss of heterogeneity; MATH, mutant allele tumor heterogeneity; 
MSAF, maximum somatic allele frequency; tDNA, tumor DNA; VAF, variant allele frequency.
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clone number calculated by PyClone. The authors surmise 
that the heterogeneity captured by PyClone may be an 
indicator of a tumor’s ability to escape immune surveil-
lance, a factor that must be considered during treatment 
selection.42 Building on this work, Dentro et al compared 
the performance of PyClone with other clustering-based 
methodologies. They found that PyClone output relative 
similarity ranged from 0.5 to 0.81 across 10 methods. 
When compared with consensus methods PyClone rela-
tive similarities ranging from 0.76 to 0.78, across three 
methods. Differences in performance are expected due 
to the many assumptions that each method makes during 
data processing. Ultimately, it is clear that PyClone has 
become a mainstay of intratumor heterogeneity measure-
ment studies running from small cohorts all the way to 
large pan-cancer analyses.43

SCICLONE
A variation of PyClone, SciClone was recently developed 
to provide higher confidence heterogeneity assessment. 
This approach takes a narrower range of loci as input. 
Specifically, these genes come from copy number neutral 
and loss of heterozygosity free portions of the genome. 
The intention is to provide a higher confidence measure 
of variable allele frequency (VAF). VAFs are subsequently 
clustered using a variational Bayesian mixture model. 
During validation, SciClone was able to interrogate a 
cluster architecture in both pre and post treatment 
samples from Acute Myeloid Leukemia (AML) and breast 
cohorts. In both samples, it was able to illustrate which 
clusters responded to treatment and thus were no longer 
present in post treatment tumors and those which were 
resistant. Ultimately, SciClone can help clinicians identify 
targetable subclonal populations.44

SciClone has been used as an effective tool to quan-
tify and compare heterogeneity among several biopsies 
from the same tumor among six patients with colorectal 
cancer. It was able to identify both shared and distinct 
subclones between spatially separated areas of each 
tumor. Although the sample size of this study was small it 
does provide evidence for the utility of SciClone in tumor 
heterogeneity research.45

The use of SciClone as a method to investigate inflam-
matory cancers has also been tested. Among a cohort 
of TCGA breast cancer patients, 20 were inflammatory 
(IBC) and 23 were non-inflammatory (non-IBC). All the 
non-IBC patients were found to be made up of at least 
two clones while 30% of their IBC counterparts were 
composed of a single clone. The authors hypothesize 
that the homogeneity of IBC allowed it to grow more 
aggressively, while non-IBC clones grew slowly due to 
inter-clonal competition for resources. Nevertheless, the 
statistically significant findings of this group show the 
utility of SciClone.46

Lastly, we have begun to see the use of SciClone in 
clinical case reports. Despite the ‘cold’ status of ER+/
HER2– metastatic breast cancer Wang et al describe the 

significant response experience by a patient to a combi-
nation therapy of camrelizumab and vinorelbine. During 
therapy plasma ctDNA was monitored, not only did bTMB 
levels decline from 149.2 to 40.88 mut/Mb but also large 
fluctuations in clonal clusters were observed via SciClone. 
This suggested to the clinicians that the immunotherapy 
was effective in targeting specific clones. Unfortunately, 
the patient did experience progressive disease after 5 
months of being progression-free. This study is one of the 
first to make active use of SciClone as a treatment moni-
toring tool.24

ALLELE FREQUENCY HETEROGENEITY
Allele frequency heterogeneity (AFH) is a simpler 
approach which yields a score rather than a set of clusters. 
It uses the abundance of low frequency alleles as an indi-
cator of high or low heterogeneity. Allele frequency (AF) 
can be defined as the number of reads for a given mutant 
at a specified position divided by the total number of reads 
for that position. Maximum somatic allele frequency 
(MSAF) represents the allele frequency of the somatic 
mutant for a given position. The ratio of AF to MSAF 
can have a wide range of values. A cut-off value must be 
chosen for this metric to be useful. For example, in prior 
work a cut-off value of 10% or 0.1 was chosen. Whether 
a sample is above or below this cut-off dictates its allele 
fraction heterogeneity status. Consequently, a sample’s 
heterogeneity can be determined in this binary way.47

Although AFH has seen limited use it has been applied 
to two well studied cohorts. Applying AFH to (POPLAR 
and OAK), the presence of AFH (AF/MSAF<10%) was 
significantly correlated with unfavorable OS in patients 
with NSCLC. Median OS was also shorter in AFH present 
(7.7 months) than in AFH absent (11.7 months) group. 
More generally, AFH was associated with shorter OS 
regardless of treatment arms (immunotherapy and 
chemotherapy). In another independent cohort of 259 
patients with NSCLC treated with EGFR Tyrosine Kinase 
Inhibitors, the presence of AFH was significantly associ-
ated with shorter OS (p=0.039).47

MUTANT ALLELE TUMOR HETEROGENEITY
Another approach is mutant allele tumor heterogeneity 
(MATH). The basic unit of this calculation is the mutant 
allele fraction (MAF), which represents the percentage of 
sequencing reads that contain a tumor-specific mutant at 
a given locus. The higher the MAF, the older the mutant 
is in terms of clonal lineage.

The distribution of all MAF values and their respective 
abundance can represent the heterogeneity of a tumor 
sample. For example, MAF values for normal tissue will 
be either 0.5 or 1. However, due to the mutated nature of 
tumor tissue, MAF values can vary significantly from the 
expected 1 or 0.5. The extent of this variance is captured 
by the normalized width of the MAF distribution, other-
wise called the MATH score. The higher the score, the 
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more the low fraction alleles are present within a tumor 
sample, thus capturing heterogeneity.48

MATH was initially applied to a HNSC cohort of 74 
patients. This metric was associated with three poor 
outcome classes of HNSC: tumors with disruptive TP53 
mutations, tumors negative for HPV (Human Papilloma-
virus), and smokers who were negative for HPV. Although 
this cohort was small, the relationship between MATH 
and outcome warrants more investigation.49 Extending 
MATH to a 305 patient TCGA HNSC cohort not only 
confirmed an association with known prognostic factors 
(clinical stage, HPV status, TP53 mutation, extent of 
Copy Number Alterations (CNAs), and mutational load) 
but also showed that higher MATH scores were inde-
pendently associated with decreased OS.50

Furthermore, the value of MATH as a predictive score 
was validated in other indications. A seven patient 409 
gene panel colon cancer cohort from the UNM Cancer 
Center Human Tissue Repository showed an association 
between MATH score and tumor stage. Additionally, stage 
II individuals who later went on to develop metastasis had 
higher MATH scores (p=0.025) than stage II individuals 
who did not develop metastasis. Per the author’s sugges-
tions, stage II individuals with high MATH scores may be 
ideal candidates for additional treatment and at the very 
least more aggressive screening.51 Another group applied 
MATH to a TCGA colorectal cancer cohort of 79 patients. 
As a further confirmation of the work of previous groups, 
in this cohort higher MATH scores were associated with 
advanced stage and lymph node metastasis. Post neoad-
juvant chemoradiation treatment samples in five of seven 
patients showed higher MATH scores than their pretreat-
ment counterparts (41.7 vs 28.8, p=0.04).52

MATH was used in studying a breast cancer cohort. 
MATH scores were dichotomized based on cut-offs that 
yielded statistically significant differences in survival. 
High MATH tumors were associated with worse OS, less 
antitumor CD8 and CD4 T cell infiltration, more immune 
suppressing regulatory T cells, and generally lower cyto-
lytic activity.14

SHANNON’S DIVERSITY INDEX
Shannon’s Diversity Index (SDI) takes VAFs of a given set 
of mutated loci and sums the natural log of the probability 

distribution for each across all the loci, yielding a score/
index. A numerical representation of this calculation can 
be found in table 1. In applying this index to a colorectal 
cancer cohort, it was observed that stage I-III patients with 
high SDI exhibited a shorter PFS. In stage IV patients, 
this association was not observed, most likely because at 
the metastatic phase other factors play a more significant 
role. A similar result was obtained for a breast cancer 
cohort.53 High SDI has also been shown to be associated 
with poor prognostic biomarkers such as prostate specific 
membrane antigen in prostate cancer.54 Another study 
illustrated a relationship between SDI and adverse patho-
logic features in breast cancer tumors. These features 
include high histologic grade, lymphovascular invasion, 
p53 overexpression, high Ki-67 index, and negative HR.55

CALCULATING A SUBCLONALITY SCORE
As discussed above, mutations found in blood and tissue 
can differ significantly. Thus, heterogeneity measured 
via ctDNA and tissue DNA cannot be directly compared. 
More importantly, we believe that it is the detection and 
quantification of subclonal mutations that determines 
how heterogeneous a tumor is. The effectiveness of this 
approach relies on our ability to determine if a given 
mutation is subclonal.

We propose a hypothetical index called the Tumor 
Heterogeneity Index (THI) that we believe may be able 
to quantify heterogeneity by more constantly differenti-
ating between clonal and subclonal mutations. First, we 
must score each mutation. In our initial iteration we focus 
on three mutation conditions (table  2). Although we 
ascribe one point to each condition, during future vali-
dation studies we expect that to optimize this approach 
the weight of each condition will need to be carefully 
considered.

Once all mutated loci have been scored, we then calcu-
late the fraction of all alleles that have a score greater than 
or equal to 2. We call this ratio the THI. By performing 
this calculation for both tissue and blood samples, we 
obtain tissue THI (tTHI) (figure  2B) and blood THI 
(bTHI) (figure 2A), respectively. The mean of these two 
values we call the composite THI (cTHI).56

Subclonality scores and indexes like cTHI may act as 
another tool in effectively predicting outcome. In addi-
tion to being used on its own, this metric can be coupled 
with others. Much the same as allele frequency cut-offs 
were used by Liu et al,38 subclonality can be used along-
side TMB to minimize bias. Although this approach 
needs to be validated, it does open the door for further 
investigation.

CONCLUSION
Even though TMB is actively used in clinical decision-
making, evidence across multiple studies shows that TMB 
derived from tissue versus blood can have varying predic-
tive value. Additionally, biopsies obtained from different 

Table 2  Scoring matrix

Condition
Assigned 
point value

Is this mutation not present in the highest 
frequency cluster as determined by PyClone?

1

Is the AF/MSAF ratio for this mutation <10%? 1

Is this mutation only detected in ctDNA or 
tissue DNA?

1

AF, allele frequency; ctDNA, circulating tumor DNA; MSAF, 
maximum somatic allele frequency.
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parts of the same tumor are inherently variable. The same 
is true for blood samples obtained before, during, and 
after treatment. All these observations make it difficult to 
accurately capture the mutational landscape of a tumor 
within a given patient. However, considering both tumor 
and blood biopsy and generating a score based on the 
presence and frequency of certain mutations, we believe 
that a more accurate index can be calculated. The cTHI 
is one example of such an index, which can be used on its 
own and in conjunction with other metrics. The next step 
is to test and validate the value of cTHI on both publicly 
and privately available data sets. This is crucial for the 
field of precision medicine to move forward and become 
a more accurate and effective means of improving treat-
ment outcomes.
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