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A catalytic prior distribution is designed to stabilize a high-
dimensional “working model” by shrinking it toward a “simplified
model.” The shrinkage is achieved by supplementing the observed
data with a small amount of “synthetic data” generated from
a predictive distribution under the simpler model. We apply
this framework to generalized linear models, where we propose
various strategies for the specification of a tuning parameter
governing the degree of shrinkage and study resultant theoret-
ical properties. In simulations, the resulting posterior estimation
using such a catalytic prior outperforms maximum likelihood esti-
mation from the working model and is generally comparable
with or superior to existing competitive methods in terms of fre-
quentist prediction accuracy of point estimation and coverage
accuracy of interval estimation. The catalytic priors have simple
interpretations and are easy to formulate.

Bayesian priors | synthetic data | stable estimation |
predictive distribution | regularization

The prior distribution is a unique and important feature of
Bayesian analysis, yet in practice, it can be difficult to quan-

tify existing knowledge into actual prior distributions; thus, auto-
mated construction of prior distributions can be desirable. Such
prior distributions should stabilize posterior estimation in situa-
tions when maximum likelihood behaves problematically, which
can occur when sample sizes are small relative to the dimension-
ality of the models. Here, we propose a class of prior distributions
designed to address such situations. Henceforth, we call the com-
plex model that the investigator wishes to use to analyze the data
the “working model.”

Often with real working models and datasets, the sample sizes
are relatively small, and a likelihood-based analysis is unstable,
whereas a likelihood-based analysis of the same dataset using
a simpler but less rich model can be stable. Catalytic priors*

effectively supplement the observed data with a small amount of
synthetic data generated from a suitable predictive distribution,
such as the posterior predictive distribution under the simpler
model. In this way, the resulting posterior distribution under the
working model is pulled toward the posterior distribution under
the simpler model, resulting in estimates and predictions with
better frequentist properties. The name for these priors arises
because a catalyst is something that stimulates a reaction to take
place that would not take place (or not as effectively) without
it, but only an insubstantial amount of the catalyst is needed.
When the information in the observed data is substantial, the
catalytic prior has a minor influence on the resulting inference
because the information in the synthetic data is small relative to
the information in the observed data.

We are not the first to suggest such priors, but we embed
the suggestion within a general framework designed for a broad
range of examples. One early suggestion for the applied use of
such priors is in ref. 1, which was based on an earlier proposal by
Rubin in a 1983 report for the US Census Bureau (reprinted as
an appendix in ref. 2). Such a prior was also used in a Bayesian
analysis of data with noncompliance in a randomized trial (3).

As in both of these earlier references, consider logistic
regression as an example:

yi | xi ,β∼Bernoulli
(

1/(1 + exp(−x>i β))
)

, i = 1, . . . ,n,

where, for the i th data point (yi , xi), yi ∈{0, 1} is the
response, and xi = (1, xi1, . . . , xi,p−1)> represents p covariates,
with unknown coefficients β= (β0,β1, . . . ,βp−1)>. The maxi-
mum likelihood estimate (MLE) of β is infinite when there is
complete separation (4, 5) of the observed covariate values in the
two response categories, which can occur easily when p is large
relative to n . Earlier attempts to address this problem, such as
using Jeffrey’s prior (6–9), are not fully satisfactory. This prob-
lem arises commonly in practice: for example, ref. 1 studied the
mapping of industry and occupation (I/O) codes in the 1970 US
Census to the 1980 census codes, where both coding systems had
hundreds of categories. The I/O classification system changed
drastically from the 1970 census to the 1980 census, and a sin-
gle 1970 code could map into as many as 60 possible 1980 codes.
For each 1970 code, the 1980 code was considered as missing
and multiply-imputed based on covariates. The imputation mod-
els were nested (dichotomous) logistic regression models (10)
estimated from a special training sample for which both 1970
and 1980 codes were known. The covariates used in these mod-
els were derived from nine different factors (sex, age, race, etc.)
that formed a cross-classification with J = 2, 304 categories. The
sample available to estimate the mapping was smaller than 10
for some 1970 codes, and many of these logistic regression mod-
els faced complete separation. The successful approach in ref. 1
was to use the prior distribution

π(β)∝
J∏

j=1

(
ex∗j
>β

1 + ex∗j
>β

)pµ̂/J(
1

1 + ex∗j
>β

)p(1−µ̂)/J

, [1]
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We propose a strategy for building prior distributions that sta-
bilize the estimation of complex “working models” when sam-
ple sizes are too small for standard statistical analysis. The sta-
bilization is achieved by supplementing the observed data with
a small amount of synthetic data generated from the predictive
distribution of a simpler model. This class of prior distributions
is easy to use and allows direct statistical interpretation.
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where each x∗j is a possible covariate vector of the cross-
classification; p is the dimension of β; and µ̂=

∑n
i=1 yi/n is

the marginal proportion of ones among the observed responses.
In this example, the simpler model has the responses yi
independent of the covariates:

yi | xi ,µ∼Bernoulli (µ) (i = 1, . . . ,n),

where µ∈ (0, 1) is a probability estimated by µ̂. If we supple-
ment the dataset with pµ̂/J synthetic data points (y∗j = 1, x∗j )
and p(1− µ̂)/J synthetic data points (y∗j = 0, x∗j ) for each x∗j (j =
1, . . . , J ), then the likelihood function of the augmented dataset
has the same form as the posterior distribution with the prior in
Eq. 1:

π(β | {(yi , xi)}ni=1) [2]

∝
J∏

j=1

(
ex∗j
>β

1 + ex∗j
>β

)Nj ,1+pµ̂/J(
1

1 + ex∗j
>β

)Nj ,0+p(1−µ̂)/J

,

where Nj ,1,Nj ,0 are the numbers of (1, x∗j ) and (0, x∗j ), respec-
tively, in the observed data. In this construction, the total amount
of synthetic data is taken to be p, the dimension of β (SI
Appendix, Remark 2.2 has more discussion). The resulting MLE
with the augmented dataset equals the maximum posterior esti-
mator (the value of β that maximizes the posterior distribution),
and it will always be unique and finite when µ̂∈ (0, 1).

How to use the synthetic data perspective for constructing
general prior distributions, which we called catalytic prior dis-
tributions, is our focus. We mathematically formulate the class
of catalytic priors and apply them to generalized linear models
(GLMs). We show that a catalytic prior is proper and yields sta-
ble estimates under mild conditions. Simulation studies indicate
the frequentist properties of the model estimator using catalytic
priors are comparable, and sometimes superior, to existing com-
petitive estimators. Such a prior has the advantages that it is
often easier to formulate and it allows for simple implementation
from standard software.

We also provide an interpretation of the catalytic prior from
an information theory perspective (detailed in SI Appendix,
section 4).

Related Priors
The practice of using synthetic data (or pseudo data) to define
prior distributions has a long history in Bayesian statistics (11).
It is well known that conjugate priors for exponential families
can be viewed as the likelihood of pseudo observations (12).
Some authors have suggested formulating priors by obtaining
additional pseudodata from experts’ knowledge (13–15), which
is not easy to use in practice when data have many dimensions or
when numerous models or experts are being considered. Refs. 16
and 17 proposed to use a conjugate Beta-distribution prior with
specifically chosen values of covariates to approximate a multi-
variate Gaussian prior for the regression coefficients in a logistic
regression model. A complication of this approach is that the
augmented dataset may contain impossible values for a covari-
ate. Another approach is the expected-posterior prior (18–20),
where the prior is defined as the average posterior distribution
over a set of imaginary data sampled from a simple predictive
model. This approach is designed to address the challenges in
Bayesian model selection. Other priors have been proposed to
incorporate information from previous studies. Particularly, the
power prior (21–23) formulates an informative prior generated
by a power of the likelihood function of historical data. One
limitation of this power prior is that its properness requires the
covariate matrix of historical or current data to have full col-
umn rank (22). Recently, the power-expected-posterior prior was

proposed to alleviate the computational challenge of expected-
posterior priors for model selection (24, 25). It incorporates the
ideas of both the expected-posterior prior and the power prior,
but it cannot be applied when the dimension of the working
model is larger than the sample size. Some other priors suggested
in the literature have appearances similar to catalytic priors. Ref.
26 proposed the reference prior that maximizes the mutual infor-
mation between the data and the parameter, resulting in a prior
density function that looks similar to that of a catalytic prior but
is essentially different. Ref. 27 proposed a prior based on the
idea of matching loss functions, which although operationally
similar to the catalytic prior, is conceptually different because
it requires a subjective initial choice for the distribution of the
data. In ref. 28, the class of penalized complexity priors for hier-
archical model components is based on penalizing the complexity
induced by the deviation from a simpler model. The simpler
model there needs to be nested in the working model, which is
not required by the catalytic prior.

Generic Formulation of Catalytic Priors
Catalytic Prior in the Absence of Covariates. Consider the data, Y =

(Y1, . . . ,Yn)>, being analyzed under a working model Yi
i.i.d.∼

f (y | θ) governed by unknown parameter θ, where i.i.d. stands
for independent and identically distributed. Suppose a model
g(y |ψ) with unknown parameter ψ, whose dimension is smaller
than that of θ, is stably fitted from Y and results in a predictive
distribution g∗(y

∗ | Y) for future data drawn from g(y |ψ). The
synthetic data-generating distribution g∗(y

∗ | Y) is used to gener-
ate the synthetic data {Y ∗i }Mi=1, where M is the synthetic sample
size and the asterisk superscript is used to indicate synthetic data.

The synthetic data-generating distribution can be specified
by fitting a model simpler than f (y | θ), but it does not nec-
essarily have to be. Examples: (1) If a Bayesian analysis of
the simpler model can be carried out easily, g∗(y∗ | Y) can be
taken to be the posterior predictive distribution under the sim-
pler model. (2) Alternatively, one can obtain a point estimate
ψ̂, and g∗(y

∗ | Y) = g(y∗ | ψ̂) can be the plug-in predictive dis-
tribution. (3) If two simpler estimated models are g

(1)
∗ (y∗ | Y)

and g
(2)
∗ (y∗ | Y), then g∗(y

∗ | Y) can be taken to be a mixture
w g

(1)
∗ (y∗ | Y) + (1−w) g

(2)
∗ (y∗ | Y) for some w ∈ (0, 1).

The likelihood function of θ under the working model based
on the synthetic data {Yi

∗}Mi=1 is `(θ |Y ∗) =
∏M

i=1 f (Y ∗i | θ).
Because these synthetic data are not really observed data, we
down-weight them by raising this likelihood to a power τ/M ,
where τ > 0 is a tuning parameter called the prior weight. This
leads to the catalytic prior that has an unnormalized density:

πcat,M(θ | τ) ∝

{
M∏
i=1

f (Y ∗i | θ)

}τ/M
, [3]

which depends on the randomly drawn synthetic data {Yi
∗}Mi=1.

The population catalytic prior is formally the limit of Eq. 3 as M
goes to infinity:

πcat,∞(θ | τ) ∝ exp [τEg∗ {log f (Y ∗ | θ)}]. [4]

Here, the expectation Eg∗ {log f (Y ∗ | θ)} in Eq. 4 is taken
with respect to Y ∗∼ g∗(Y

∗ | Y). The dependence of g∗(Y ∗ | Y)
on the observed Y emphasizes that the catalytic prior is data
dependent, like that used in Box and Cox (29) for power
transformations.

The posterior density using the catalytic prior is mathemat-
ically proportional to the likelihood with both the observed
data and the weighted synthetic data. Thus, we can implement
Bayesian inference using standard software. For instance, the
maximum posterior estimate (posterior mode) is the same as the
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MLE using the weighted augmented data and can be computed
by existing MLE procedures, which can be a computational
advantage, as illustrated in ref. 1.

Catalytic Prior with Covariates. Let {(Yi , X i)}ni=1 be the set of n
pairs of a scalar response Yi and a p-dimensional covariate vec-
tor X i ; Yi depends on X i in the working model with unknown
parameter β:

Yi | X i ,β∼ f (y | X i ,β), i = 1, 2 . . . ,n. [5]

Let Y be the vector (Y1, . . . ,Yn)> and X be the matrix
(X1, . . . , Xn)>. The likelihood of these data is f (Y |X,β) =∏n

i=1 f (Yi | X i ,β).
Suppose a simpler model g(y | X,ψ) with unknown param-

eter ψ is stably fitted from (Y ,X) and results in a synthetic
data-generating distribution g∗(y | x, Y ,X). Note that g∗(·) here
is analogous to its use earlier except that now, in addition to the
observed data, it is also conditioned on x. The synthetic covari-
ates X∗ will be drawn from a distribution Q(x), which we call the
synthetic covariate-generating distribution. We will discuss the
choice of Q(x) shortly.

Given the distributions Q(x) and g∗(y | x, Y ,X), the catalytic
prior first draws a set of synthetic data {(Y ∗i , X∗i )}Mi=1 from

X∗i
i.i.d.∼ Q(x), Y ∗i | X∗i ∼ g∗(y | X∗i , Y ,X).

Hereafter, we write Y∗ for the vector of synthetic responses
(Y ∗1 , . . . ,Y ∗M )> and X∗ for the matrix of synthetic covariates
(X∗1, . . . , X∗M )>. The likelihood of the working model based
on the synthetic data `(β | Y∗,X∗) equals

∏M
i=1 f (Y ∗i | X∗i ,β).

Because these synthetic data are not really observed, we down-
weight them by raising this likelihood to a power τ/M , which
gives the unnormalized density of the catalytic prior with
covariates:

πcat,M(β | τ)∝

{
M∏
i=1

f (Y ∗i | X∗i ,β)

}τ/M
. [6]

The population catalytic prior (when M →∞) has unnormalized
density:

πcat,∞(β | τ)∝ exp (τEQ,g∗ [log f (Y ∗ | X∗,β)]), [7]

where the expectation EQ,g∗ averages over both X∗ and Y ∗.
Denote by Zτ ,M and Zτ ,∞ the integrals of the right-hand sides
of Eqs. 6 and 7 with respect to β. When these integrals are finite,
the priors are proper, and Zτ ,M and Zτ ,∞ are their normalizing
constants.

An advantage of the catalytic prior is that the corresponding
posterior has the same form as the likelihood

π(β|X, Y , τ)∝πcat,M(β|τ)f (Y |X,β)

∝ exp

(
τ

M

M∑
i=1

log(f (Y ∗i |X∗i ,β)

+

n∑
i=1

log(f (Yi |X i ,β)

)
,

which makes the posterior inference no more difficult than other
standard likelihood-based methods. For example, the posterior
mode can be easily computed as a maximum weighted likelihood
estimate using standard statistical software. Full posterior infer-
ence can also be easily implemented by treating the synthetic
data as down-weighted data.

Catalytic Prior for GLMs. A GLM assumes that, given a covariate
vector X , the response Y has the following density with respect
to some base probability measure:

f (y | X,β) = exp (t(y)θ− b(θ)), [8]

where t(y) is a sufficient statistic, and θ is the canonical param-
eter that depends on η= X>β through θ=φ(η), where β is the
unknown regression coefficient vector and φ(·) is a monotone
differentiable function. The mean of t(Y ) is denoted by µ(η)
and is equal to b′(φ(η)).

When the working model is a GLM, from Eqs. 7 and 8, we
have

EQ,g∗ [log f (Y ∗ | X∗,β)]

=EQ

{
φ(β>X∗)Eg∗ [t(Y ∗) | X∗]− b(φ(β>X∗))

}
, [9]

so that the expectation of the log likelihood does not depend
on particular realizations of the synthetic response but rather,
on the conditional mean of the sufficient statistic under the syn-
thetic data-generating distribution. Thus, in the case of a GLM
(and exponential family models), instead of a specific realization
of the synthetic response, one only needs to use the conditional
mean of the sufficient statistic Eg∗ [t(Y

∗) | X∗] to form a catalytic
prior. This simplification reduces the variability introduced by
synthetic data.†

As a concrete example, consider a linear regression model
Y =Xβ+ ε, where ε∼Nn(0,σ2In) with known σ. Suppose the
synthetic data-generating model is a submodel with the esti-
mated parameter β∗0, and X∗ is the synthetic covariate matrix.
In this case, the catalytic prior with any positive τ has a normal
distribution:

β∼N

(
β∗0,

σ2

τ

(
1

M
(X∗)>X∗

)
−1

)
.

If limM→∞
1
M

(X∗)>X∗= ΣX , the population catalytic prior is

β∼N

(
β∗0,

σ2

τ
(ΣX)−1

)
.

More details about this example can be found in SI Appendix.

Specifications of the Catalytic Prior
Generating Synthetic Covariates. The synthetic covariate vectors
are generated such that (X∗)>X∗ has full rank. Moreover, a
synthetic covariate should have the same sample space as a
real covariate. The simple choice of resampling the observed
covariate vectors would not guarantee the full rank of (X∗)>X∗;
for example, if the observed covariates are rank deficient,
resampling would still give rank-deficient (X∗)>X∗.

Instead, we consider one option for generating synthetic
covariates: resample each coordinate of the observed covariates
independently. Formally, we define the independent resampling
distribution by the probability mass function

Q0(x) :=
∏
j

(
1

n
#{1≤ i ≤n : (X i)j = xj}

)
,

for all x∈X , where X is the sample space of X . We use this
distribution for simplicity. Alternatively, if historical data are
available, synthetic covariates can be sampled from the historical

†Note that in the previous example of 1970 to 1980 I/O code mapping, instead of the raw
counts of synthetic responses, their expected values pµ̂/J and p(1− µ̂)/J were used.
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covariates. Furthermore, if some variables are naturally grouped
or highly correlated, one may want to resample these grouped
parts together. Other examples are discussed in SI Appendix.

Generating Synthetic Responses. The synthetic data-generating
distribution can be specified by fitting a simple model GΨ =
{g(y | x,ψ) :ψ ∈Ψ} to the observed data. The only requirement
is that this simple model can be stably fit by the observed data
in the sense that the standard estimation of ψ, using either a
Bayesian or frequentist approach, can lead to a well-defined pre-
dictive distribution for future data. Examples include a fixed
distribution and an intercept-only model. GΨ can also be a
regression model based on dimension reduction, such as a princi-
pal components analysis; SI Appendix has a numerical example,
which also suggests to keep GΨ as simple as possible when the
observed sample size is small. For a working regression model
with interactions, a natural choice of GΨ is the submodel with
only main effects. If the main-effect model is overfitted as well,
we could use a mixed synthetic data-generating distribution,
such as g∗(y | x, Y ,X) = 0.5 g∗,1(y | x, Y ,X) + 0.5 g∗,0(y | x, Y ,X),
where g∗,1 and g∗,0 are the predictive distributions of the pre-
liminarily fitted main-effect model and intercept-only model,
respectively. GΨ can also be chosen using additional knowledge,
such as a submodel that includes a few important covariates that
have been identified in previous studies, or if domain experts
have opinions on the range of possible values of certain model
parameters, then the parameter space Ψ can be constrained
accordingly.

Sometimes it is beneficial to draw multiple synthetic responses
for each sampled synthetic covariate vector. We name this sam-
pling the stratified synthetic data generation. It could help reduce
variability introduced by synthetic data.

Sample Size of Synthetic Data. Theorem 4 below quantifies how
fast the randomness in the catalytic prior diminishes as the syn-
thetic sample size M increases. One implication is that for linear
regression with binary covariates, if M ≥ 4p3

ε2
log( p

δ
), then the

Kullback–Leibler (KL) divergence between the catalytic prior
πcat,M and its limit πcat,∞ is at most ε with probability at least
1− δ. Such a bound can help choose the magnitude of M .
When the prior needs to be proper, we suggest taking M larger
than four times the dimension of β (based on Theorem 1 and
Proposition below).

Weight of Synthetic Data. The prior weight τ controls how much
the posterior inference relies on the synthetic data because it
can be interpreted as the effective prior sample size. Here, we
provide two guidelines for systematic specifications of τ .
Frequentist Predictive Risk Estimation. Choose a value of τ using
the following steps. (1) Compute the posterior mode β̂(τ) for
various values of τ . (2) Choose a discrepancy function D(y0, µ̂)
that measures how well a prediction µ̂ predicts a future response
y0. (3) Find an appropriate criterion function Λ(τ) that estimates
the expected (in-sample) prediction error, for a future response
Y0 based on β̂(τ), and (4) pick the value of τ that minimizes
Λ(τ). SI Appendix, section 2.C.1 has a detailed discussion.

The discrepancy D(y0, µ̂) measures the error of a prediction
µ̂ for a future response Y0 that takes value y0. We consider here
discrepancy functions of the form

D(y0, µ̂) := a(µ̂)−λ(µ̂)y0 + c(y0) [10]

and define D(Y0, µ̂) := 1
n

∑n
i=1 D(Y0,i , µ̂i). This class is gen-

eral enough to include squared error, classification error, and
deviance for GLMs: (a) squared error: D(y0, µ̂) = (y0− µ̂)2 =
µ̂2− 2y0µ̂+ y2

0 ; (b) classification error: D(y0, µ̂) = 1y0 6=µ̂ =
µ̂− 2y0µ̂+ y0 for any y0 and µ̂ in {0, 1}; (c) deviance

for GLMs: D(y0, µ̂) = b(θ̂)− y0θ̂+ sup
θ

(y0θ− b(θ)), where θ̂=

(b′)−1(µ̂).
The criterion function Λ(τ) is an estimate of the expectation

of the (in-sample) prediction error. Such an estimate can be
obtained by using the parametric bootstrap. Take a bootstrap
sample of the response vector Yboot from the distribution f (y |
X, β̂

0
), where β̂

0
= β̂(τ0) is a preliminary estimate, and denote

by β̂
boot

(τ) the posterior mode based on data (Yboot,X) with the
catalytic prior. The bootstrap criterion function is given by

Λ(τ) = D(Y , µ̂τ ) +
1

n

n∑
i=1

Cov(λ(µ̂boot
τ ,i ),Y boot

i ), [11]

where µ̂τ ,i =µ(X>i β̂(τ)) and µ̂boot
τ ,i =µ(X>i β̂

boot
(τ)). SI

Appendix has a detailed derivation. In practice, the term
Cov(λ(µ̂boot

τ ,i ),Y boot
i ) is numerically computed by sampling Yboot

repeatedly. Based on our experiments with linear and logistic
models, the default choices of the initial values can be τ0 = 1 for
linear regression and τ0 = p/4 for other cases. SI Appendix has
a mathematical argument.

The costly bootstrap repetition step to numerically compute
Cov(λ(µ̂boot

τ ,i ),Y boot
i ) can be avoided in two special cases (SI

Appendix has more discussion).
1. If Yi follows a normal distribution and λ(µ̂τ ,i) is smooth in

yi , then the Stein’s unbiased risk estimate yields

Λ(τ) = D(Y , µ̂τ ) +
1

n

n∑
i=1

Var(Yi)E
∂λ(µ̂τ ,i)

∂yi
. [12]

In particular, when squared error is considered and if µ̂τ can be
written as µ̂τ = Hτ · Y + cτ , the risk estimate is

Λ(τ) = ‖Y − µ̂τ‖
2 +

2

n

n∑
i=1

Var(Yi)Hτ (i , i). [13]

2. When responses are binary, say 0 or 1, let Y4i be a copy of
Y but with Yi replaced by 1−Yi , and let β̂

4i
(τ) be the poste-

rior mode based on data (X, Y4i) with the catalytic prior. The
Steinian estimate (30) is given by

D(Y , µ̂τ ) +
1

n

n∑
i=1

µ̂0
i (1− µ̂0

i )(2Yi − 1)
(
λ(µ̂τ ,i)−λ(µ̂4i

τ ,i )
)

,

[14]
where µ̂0

i =µ(X>i β̂
0
), and µ̂4i

τ ,i =µ(X>i β̂
4i

(τ)).
Bayesian Hyperpriors. An alternative way to specify the prior
weight τ is to consider a joint catalytic prior for (τ ,β):

πα,γ(τ ,β)∝Γα,γ(τ)

{
M∏
i=1

f (Y ∗i | X∗i ,β)

}
τ/M , [15]

where Γα,γ(τ) is a function defined as follows for positive scalar
hyperparameters α and γ. Denote

κ := sup
β∈Rp

1

M

M∑
i=1

log f (Y ∗i | X∗i ,β).

For linear regression, the function Γα,γ(τ) can be taken to be

Γα,γ(τ) = τ
p+α
2
−1e−τ(κ+γ−1) [16]

and for other models,

Γα,γ(τ) = τp+α−1e−τ(κ+γ−1). [17]
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The form of Γα,γ(τ) is chosen mainly for practical conve-
nience; by separating the dependence on p and κ, we have mean-
ingful interpretations for α and γ. For GLMs, prior moments
of β up to order α exist, and γ controls the exponential decay
of the prior density of τ (Theorem 3). For linear regression, the
marginal prior for β induced by Eq. 15 is a multivariate t dis-
tribution centered around the MLE for the synthetic data with
covariance matrix 2σ2

αγ
· ( 1

M
(X∗)>X∗)−1 and degrees of freedom

α. The analysis in Theorem 3 reveals how the parameters α
and γ affect the joint prior. Roughly speaking, a larger value
of α (or γ) tends to pull the working model more toward the
simpler model. Admittedly, it appears impossible to have a sin-
gle choice that works the best in all scenarios. We recommend
(α, γ) = (2, 1) as a simple default choice based on our numerical
experiments.

Illustration of Methods
Logistic Regression. We illustrate the catalytic prior using logistic
regression. Another example using linear regression is presented
in SI Appendix. Here, the mean of Y depends on the linear
predictor η= X>β through µ= eη/(1 + eη). Suppose the syn-
thetic data-generating model includes only the intercept, so it
is Bernoulli(µ0), where a simple estimate of µ0 is given by
µ̂0 = (1/2 +

∑
i≤n Yi)/(1 +n). The synthetic response vector

Y∗ can be taken to be µ̂0 · 1M , and each synthetic covariate vec-
tor X∗i is drawn from the independent resampling distribution;
this prior is proper when (X∗)>X∗ is positive definite according
to Theorem 1.
Numerical Example. We first generate the observed covariates X i

by drawing a Gaussian random vector Zi whose components have
mean 0, variance 1, and common correlation ρ= 0.5; set

X i,j =

{
2 · 1Zi,j>0− 1, 2j < p

Zi,j , 2j ≥ p.

This process yields covariate vectors that have dependent com-
ponents and have both continuous and discrete components
as one would encounter in practical logistic regression prob-
lems. We consider three different sparsity levels and three
different amplitudes of the regression coefficient β in the under-
lying model. More precisely, β is specified through scaling
an initial coefficient β(0) that accommodates different levels
of sparsity. Each coordinate of β(0) is either one or zero.
ζ proportion of the coordinates of β(0) is randomly selected
and set to 1, and the remaining 1− ζ proportion is set to 0,
where ζ is the level of nonsparsity and is set at 1/4, 1/2,
3/4. This factor controls how many covariates actually affect
the response. Then, the amplitude of β is specified indirectly:
β0 = c1, β1:(p−1) = c2β

(0)

1:(p−1), where parameters (c1, c2) are
chosen such that the oracle classification error r (the expected
classification error of the classifier given by the true β) is equal
to 0.1, 0.2, 0.3. Here, r =EX (min(Pβ(Y = 1), Pβ(Y = 0)))=
EX
(
1 + exp(|X>β|)

)−1 is numerically computed by sampling
2,000 extra covariate vectors. The value of r represents how far
apart the class Y = 1 is from the class Y = 0, and small values of
r correspond to large amplitudes of β.

In this example, the number of covariates is 16, so the dimen-
sion of β is p = 17, and the sample size is n = 30. We use
the predictive binomial deviance, EX0

[
D(µ(X>0 β),µ(X>0 β̂))

]
,

where D(a, b) = a log(a/b) + (1− a) log((1− a)/(1− b)) mea-
sures the discrepancy between two Bernoulli distributions with
probability a and b to evaluate the predictive performance of β̂.
The expectation EX0 is computed by sampling 1,000 extra inde-
pendent copies of X0 from the same distribution that generates
the observed covariates.

To specify catalytic priors, we use the generating distribu-
tions for synthetic data just described and fix M at 400. The
first estimator of β is the posterior mode of β with τ = τ̂boot
selected by predictive risk estimation via the bootstrap with
deviance discrepancy (denoted as Cat. Boot.). This estimator can
be computed as the MLE with the weighted augmented data. The
second estimator of β is the coordinatewise posterior median of
β with the joint prior πα=2,γ=1 (denoted as Cat. Joint). The pos-
terior median is used here because there is no guarantee that the
posterior distribution of β is unimodal in this case. These esti-
mators are compared with two alternatives: the MLE and the
posterior mode with the Cauchy prior (31) (calculated by the
authors’ R package bayesglm).

Table 1 presents the average predictive binomial deviance
over 1,600 simulations in each cell. The column Comp. Sep.
shows how often complete separation occurs in the datasets;
when complete separation occurs, the MLE does not exist, but
a pseudo-MLE can be algorithmically computed if the change in
the estimate is smaller than 10−8 within 25 iterations. The col-
umn of MLE averages across only the cases where either MLE
or pseudo-MLE exists. In Table 1, bold corresponds to the best-
performing method under each simulation scenario. Based on
this table, the catalytic prior with τ̂boot predicts the best and the
MLE predicts the worst in all cases considered. Although the
Cauchy prior seems to perform close to the joint catalytic prior,
Table 2 shows that the prediction based on the joint catalytic
prior is statistically significantly better than that of the Cauchy
prior (Table 2 directly calculates the difference of the prediction
errors between the Cauchy prior and the joint catalytic prior and
shows that the difference is significantly positive with Bonferroni-
corrected P value smaller than 0.02). Tables 1 and 2 focus on

Table 1. Mean and SE of predictive binomial deviance of
different methods

Performance of methods

Setting Comp. Mean Cat. Cat. MLE

ζ r Sep.,% and SE Boot. Joint Cauchy (pseudo)

1/4 0.1 100 Mean 1.692 1.772 1.793 2.081
1/4 0.1 SE ×103 (6.8) (6.7) (6.7) (8.7)
1/4 0.2 98 Mean 0.675 0.769 0.802 1.123
1/4 0.2 SE ×103 (5.2) (5.0) (5.0) (7.2)
1/4 0.3 91 Mean 0.297 0.399 0.445 0.751
1/4 0.3 SE ×103 (2.3) (2.0) (1.9) (7.3)
2/4 0.1 100 Mean 1.661 1.742 1.749 2.048
2/4 0.1 SE ×103 (3.9) (3.8) (3.8) (5.0)
2/4 0.2 98 Mean 0.648 0.743 0.771 1.107
2/4 0.2 SE ×103 (2.5) (2.2) (2.0) (3.4)
2/4 0.3 92 Mean 0.287 0.392 0.438 0.748
2/4 0.3 SE ×103 (2.1) (1.8) (1.7) (7.1)
3/4 0.1 100 Mean 1.664 1.746 1.749 2.052
3/4 0.1 SE ×103 (4.0) (3.9) (3.8) (4.9)
3/4 0.2 99 Mean 0.649 0.745 0.771 1.104
3/4 0.2 SE ×103 (2.5) (2.2) (2.0) (3.4)
3/4 0.3 91 Mean 0.287 0.391 0.435 0.738
3/4 0.3 SE ×103 (2.1) (1.9) (1.7) (7.3)

The first two columns are the settings of the simulation: ζ is the nonspar-
sity, and r is the oracle prediction error. The column of Comp. Sep. shows
how often complete separation occurs in the datasets. The last four columns
report the mean and SE of the predictive binomial deviance of the differ-
ent methods, which are the catalytic posterior mode with τ̂boot , denoted by
Cat. Boot.; the posterior median under joint catalytic prior, denoted by Cat.
Joint; the Cauchy posterior mode, denoted by Cauchy; and the MLE. Bold
corresponds to the best-performing method in each simulation scenario.

12008 | www.pnas.org/cgi/doi/10.1073/pnas.1920913117 Huang et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1920913117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1920913117


ST
A

TI
ST

IC
S

Table 2. Mean and SE of the difference in predictive binomial
deviance between the Cauchy posterior mode and the joint
catalytic posterior median

Difference between the error of Cauchy and that of Cat. Joint

ζ r Mean SE ×103

1/4 0.1 0.021 0.98
1/4 0.2 0.033 0.91
1/4 0.3 0.047 0.86
1/2 0.1 0.007 0.79
1/2 0.2 0.028 0.85
1/2 0.3 0.046 0.84
3/4 0.1 0.003 0.76
3/4 0.2 0.026 0.83
3/4 0.3 0.044 0.82

ζ is the nonsparsity; r is the oracle prediction error.

predictive binomial deviance. SI Appendix, section 3.D consid-
ers other error measurements, including the classification error
and the area under curve, where a similar conclusion can be
drawn regarding the performance of different methods: predic-
tions based on catalytic priors are generally much better than
those based on the MLE and are often better than those based
on the Cauchy prior.

Table 3 presents the average coverage probabilities (in per-
centage) and widths of the 95% nominal intervals for βj aver-
aging over j . Because all of the intervals given by the MLE have
widths too large to be useful (thousands of times wider than those
given by the other methods), we do not report them in this table.
The intervals from the other three priors are reasonably short in
all cases and have coverage rates not far from the nominal lev-
els. Specifically, the intervals given by the Cauchy prior and the
joint catalytic prior tend to overcover when the true β has small
amplitudes (r = 0.2 or 0.3) and tend to under-cover when β has
large amplitudes (r = 0.1), whereas the intervals given by the cat-
alytic prior with τ̂boot perform more consistently. This example,
together with more results given in SI Appendix, illustrates that,
for logistic regression, the catalytic prior is at least as good as
the Cauchy prior. SI Appendix also illustrates the performance
of the catalytic prior in linear regression, where it is at least as
good as ridge regression. Catalytic priors thus appear to provide
a general framework for prior construction over a broad range of
models.

Theoretical Properties of Catalytic Priors
We show the properness and the convergence of a catalytic prior
when the working model is a GLM. Without loss of generality,
we assume that the sufficient statistic in the GLM formula Eq.
8 is t(y) = y ; otherwise, we can let the response be Y ′= t(Y )
and proceed. We assume that every covariate has at least two
different observed values. Denote by Y the nonempty interior of
the convex hull of the support of the model density in Eq. 8. Our
results apply to any positive prior weight τ .

Properness. A proper prior is needed for many Bayesian infer-
ences, such as model comparison using Bayes factors (32).
We show that catalytic priors, population catalytic priors, and
joint catalytic priors are generally proper, with proofs in SI
Appendix.

Theorem 1. Suppose (1) φ(·) satisfies infη 6=0 |φ(η)/η|> 0, (2)
the synthetic covariate matrix X∗ has full column rank, and (3)
each synthetic response Y ∗i lies in Y or there exists a linearly inde-
pendent subset {X ∗ik }

p
k=1 of the synthetic covariate vectors such that

the average of synthetic responses with the same X ∗ik lies in Y . Then,
the catalytic prior is proper for any τ > 0.

The condition infη 6=0 |φ(η)/η|> 0 is satisfied for the canoni-
cal link for any GLM and also, for the commonly used probit
link and the complementary log–log link in binary regression.
The condition that X∗ has full column rank holds with high
probability according to the following result.

Proposition. If each synthetic covariate vector is drawn from the
independent resampling distribution, then there exists a constant
c> 0 that only depends on the observed X such that for any M > p,
with probability at least 1− 2exp(−cM ), the synthetic covariate
matrix X∗ has full column rank.

Population catalytic priors are also proper.
Theorem 2. Suppose (1) φ(·) satisfies infη 6=0 |φ(η)/η|> 0, (2)

the synthetic covariate vector is drawn from the independent resam-
pling distribution, and (3) there exists a compact subset Ycom⊂Y
such that P(Y ∗ ∈Ycom) = 1. Then, the population catalytic prior is
proper for any τ > 0.

The following result shows the properness of the joint prior
πα,γ(τ ,β) in Eq. 15 and the role of the hyperparameters.

Theorem 3. Suppose α and γ are positive. If Γα,γ(τ) equals
Eq. 16 for linear regression or equals Eq. 17 for other GLMs,
then under the same condition as Theorem 1, (1) the joint prior
is proper; (2) for any m ∈ (0,α), the mth moment of β exists;
(3) limτ→∞

1
τ

log hα,γ(τ) =−1/γ < 0, where hα,γ(τ) denotes the
marginal prior on τ .

Convergence to the Population Catalytic Prior. When synthetic
sample size, M , is large enough, the randomness in the syn-
thetic data will not affect the catalytic prior regardless of the
observed real sample size because, as a distribution of the param-
eters, the catalytic prior converges to the population catalytic
prior.

We can quantify how fast the catalytic prior, as a random distri-
bution, converges to the population catalytic prior by establishing
an explicit upper bound on the distance between these two dis-
tributions in terms of M . This result shows how large M needs to
be so that the randomness in the synthetic data no longer influ-
entially changes the prior. We present here a simplified version
of the theoretical result; precise and detailed statements are in
SI Appendix.

Table 3. Average coverage probability (percentage) and width
of 95% posterior intervals under the catalytic prior with τ̂boot ,
the joint catalytic prior, and Cauchy prior

Setting Performance of methods

ζ r Cat. Boot. Cat. Joint Cauchy

1/4 0.1 Cover 90.5% 88.1% 90.1%
1/4 0.1 Width 3.5 2.9 3.3
1/4 0.2 Cover 93.3% 97.2% 98.0%
1/4 0.2 Width 2.8 2.7 3.0
1/4 0.3 Cover 95.0% 97.6% 97.6%
1/4 0.3 Width 2.2 2.4 2.8
2/4 0.1 Cover 89.8% 85.7% 86.2%
2/4 0.1 Width 3.5 2.9 3.2
2/4 0.2 Cover 93.4% 97.5% 98.4%
2/4 0.2 Width 2.7 2.7 3.0
2/4 0.3 Cover 95.7% 97.7% 97.7%
2/4 0.3 Width 2.1 2.4 2.8
3/4 0.1 Cover 89.4% 85.6% 86.1%
3/4 0.1 Width 3.5 2.9 3.2
3/4 0.2 Cover 93.9% 97.6% 98.6%
3/4 0.2 Width 2.7 2.7 3.0
3/4 0.3 Cover 95.9% 97.8% 97.8%
3/4 0.3 Width 2.1 2.4 2.7

ζ is the nonsparsity; r is the oracle prediction error.
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Theorem 4. Under mild regularity conditions,
1. For any given τ and p, there exists a constant C1, such that for

any small positive ε0, ε1, and any M ≥C1

(
1 + log2( 1

ε1
)
)

1
ε21

log( 1
ε0

), with probability at least 1− ε0 the total variation distance
between the catalytic prior and the population catalytic prior is
bounded by

dTV (πcat,∞,πcat,M)≤ ε1.
2. If the working model is linear regression with Gaussian noise,

then there exists a constant C2 that only depends on the observed
covariates, such that for any ε0 > 0 and any M > 16

9
C 2

2 p log( p
ε0

),
with probability at least 1− ε0, the KL divergence between the cat-
alytic prior and the population catalytic prior with any τ > 0 is
bounded by

KL(πcat,∞,πcat,M)≤ 2C2

√
1

M
p3 log

(
p

ε0

)
.

Data Availability. All of the data used in the article are simu-
lation data. The details, including the models to generate the
simulation data, are described in Illustration of Methods and SI
Appendix, section 3.

Discussion
The class of catalytic prior distributions stabilizes the estima-
tion of a relatively complicated working model by augmenting

the actual data with synthetic data drawn from the predictive
distribution of a simpler model (including but not limited to
a submodel of the working model). Our theoretical work and
simulation-based evidence suggest that the resulting inferences
using standard software, which treat the augmented data just
like actual data, have competitive and sometimes clearly superior
frequency operating characteristics, compared with inferences
based on alternatives that have been previously proposed. More-
over, catalytic priors are generally easier to formulate because
they are based on hypothetical smoothed data that resemble
the actual data. Two tuning constants, M and τ , require selec-
tion, and wise choices for them appear to be somewhat model
dependent: for example, differing for linear and logistic regres-
sions, both of which are considered here. We anticipate that
catalytic priors will find broad application, especially as more
complex Bayesian models are fit to more and more complicated
datasets. Some open questions for future investigation include
(1) how to apply the catalytic priors to model selection and (2)
how to study the asymptotic properties when both the sample
size and the dimension of the working model go to infinity—
in such a regime, it is also interesting to investigate what the
simple model should be in order to achieve good bias–variance
tradeoffs.
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