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Aging is a complex process of organismdecline in physiological functions.There is no clear theory explaining this phenomenon, but
the most accepted one is the oxidative stress theory of aging. Biomarkers of oxidative stress, substances, which are formed during
oxidative damage of phospholipids, proteins, and nucleic acids, are present in body fluids of diseased people as well as the healthy
ones (in a physiological concentration). 8-iso prostaglandin F

2𝛼
is themost prominent biomarker of phospholipid oxidative damage,

o-tyrosine, 3-chlorotyrosine, and 3-nitrotyrosine are biomarkers of protein oxidative damage, and 8-hydroxy-2󸀠-deoxyguanosine
and 8-hydroxyguanosine are biomarkers of oxidative damage of nucleic acids. It is thought that the concentration of biomarkers
increases as the age of people increases. However, the concentration of biomarkers in body fluids is very low and, therefore, it is
necessary to use a sensitive analytical method. A combination of HPLC andMS was chosen to determine biomarker concentration
in three groups of healthy people of a different age (twenty, forty, and sixty years) in order to find a difference among the groups.

1. Introduction

Aging is amultifactorial process of time-dependent decline in
physiological function [1]. It is manifested by the decrease of
the efficiency of the organism functions, the accumulation of
various defects and declining ability to repair them, increased
susceptibility to various diseases, and eventually increased
mortality [2, 3].

Many theories explain the phenomenon of aging. The
most popular one is the free radical theory which was pro-
posed byHarman in 1956 [4]. Harman suggested thatOHand
OH
2
radicals are produced endogenously in living organisms

during oxygen-utilizing processes (such as respiration). Later
on, it was found that there are other oxygen compounds
such as hydrogen peroxide or hypochlorous acid which react
with biomolecules in the same way. These are, together
with oxygen radicals, called reactive oxygen species (ROS).
Considering this, the free radical theory was modified to
oxidative stress theory of aging [5, 6].

Oxidative stress is defined as an imbalance between
oxidants (ROS) and the antioxidant defense in the organ-
ism in favor of oxidants [7]. The oxidants interact with

biomolecules in cells such as phospholipids, proteins, and
nucleic acids.This leads to cell dysfunctions and consequently
cell death. The molecules formed during oxidation may
serve as biomarkers as their analysis in various biological
matrices is used for the quantification of oxidative stress in
humans. The most significant biomarker of oxidative stress
is 8-iso prostaglandin F

2𝛼
(8-isoprostane). 8-Isoprostane is

formed by nonenzymatic oxidation of arachidonic acid.
Oxidation of proteins and amino acids gives rise to o-
tyrosine, 3-chlorotyrosine, and 3-nitrotyrosine. FENO (frac-
tional exhaled nitric oxide) present in EBC is also formed
from amino acid, L-arginine, by its oxidation; elevated or
even depressed level of FENO is linked with asthma, upper
airway infections, and other lung diseases [8, 9]. Biomark-
ers of nucleic acid oxidation are 8-hydroxyguanosine and
8-hydroxy-2󸀠-deoxyguanosine. High concentrations of the
biomarkerswere determined not only in body fluids or tissues
of patients with age-related and/or degenerative diseases
such as Alzheimer’s disease, hypertension, type II diabetes,
or several types of cancer (see Table 1 for the summary of
diseases and detected biomarkers) but also in relation to
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Table 1: Age-related diseases and detected biomarkers.

Disease Biomarkers Body fluid/tissue

Alzheimer’s
disease

3-Chlorotyrosine Hippocampus proteins
[14]

3-Nitrotyrosine Brain [15]
Cerebrospinal fluid
[16, 17]

8-Hydroxy-2󸀠-
deoxyguanosine Brain [18]

8-Hydroxyguanosine
Brain [18]
Blood serum [19]
Cerebrospinal fluid [19]

Arthritis

8-Isoprostane Blood plasma [20]
Urine [20]

3-Nitrotyrosine Blood serum [21, 22]
Synovial fluid [22]

8-Hydroxy-2󸀠-
deoxyguanosine

Blood plasma [23]
Synovial fluid [23]
Urine [24]

Atherosclerosis

3-Chlorotyrosine Human aortic tissue [25]

3-Nitrotyrosine Atherosclerotic blood
vessels [26]

8-Hydroxy-2󸀠-
deoxyguanosine Urine [27]

Cataracts

8-Isoprostane Blood plasma [28]
o-Tyrosine Cataractous lenses [29]
m-Tyrosine Cataractous lenses [29]
8-Hydroxy-2󸀠-
deoxyguanosine Blood plasma [30]

Hypertension

8-Isoprostane Blood plasma [31, 32]
3-Nitrotyrosine Lung tissue [33]
8-Hydroxyguanosine Lung tissue [33]
8-Hydroxy-2󸀠-
deoxyguanosine Urine [34]

Osteoporosis 8-Hydroxy-2󸀠-
deoxyguanosine Blood serum [35]

Type II diabetes

8-Isoprostane Blood plasma [36, 37]
Urine [38]

o-Tyrosine Blood plasma [39]
Urine [39]

8-Hydroxy-2󸀠-
deoxyguanosine

Blood serum [40]
Urine [38]

chronic obstructive pulmonary disease [10], smoking [11, 12],
and air pollution [13].

2. Biomarkers of Oxidative Stress

2.1. 8-Isoprostane. 8-Isoprostane is formed by nonenzymatic
oxidation of arachidonic acid (Figure 1) which is present in
phospholipid membranes [40]. A similar metabolic pathway,
the enzymatic 𝜔-hydroxylation of arachidonic acid in the

COOH COOH

OH

OH

OH

Arachidonic acid 8-Isoprostane

ROS

Figure 1: The formation of 8-isoprostane from arachidonic acid.

presence of an increased cytochrome P450 4A, owing to
organism aging, leads to a similar compound, that is, 20-
hydroxyeicosatetraenoic acid (20-HETE), as a very potent
vasoconstriction agent [41].

Although it was thought that 8-isoprostane acts only
through thromboxane (TP) receptors, the biological activity
of 8-isoprostane is slightly different which suggests the
existence of a specific isoprostane receptor. Incubation of
8-isoprostane with platelets causes only shape changes of
platelets and in very high concentrations a reversible aggre-
gation, while thromboxane A

2
(TXA

2
) causes an irreversible

aggregation of platelets [43]. Isoprostanes have a strong vaso-
constriction effect also partly by influencing TP receptors
but have stronger influence on renal vasoconstriction and
weaker influence on bovine coronary arteries than TXA

2

agonists [44, 45]. According to these findings, a hypothesis for
existence of specific isoprostane receptor on smooth muscle
cells in vascular system has been proposed. Other studies
showed that there are high-affinity and low-affinity binding
sites for 8-isoprostane on smooth muscle cells in vascu-
lar system and on endothelium cells. Low-affinity binding
sites could represent TP receptors and high-affinity binding
sites specific isoprostane receptors [46]. In conclusion, 8-
isoprostane causes vasoconstriction of blood vessels and
bronchi, lowers blood flow in kidneys, influences aggregation
of platelets, and, thus, participates in pathology of several
diseases (Table 2).

Concentration of 8-isoprostane in body fluids is used
for the monitoring of oxidative stress. Higher concentration
levels were observed, for example, in smokers (24 ± 8 pg/mL)
and patients with cystic fibrosis (43 ± 7 pg/mL) compared to
healthy nonsmokers (11 ± 4 pg/mL) [47] and also in arthritis
[20], age-related cataracts [28], hypertension [31, 32], asthma
[48, 49], and type II diabetes [36, 37].

2.2. o-Tyrosine and m-Tyrosine. In the organism, tyrosine is
formed from phenylalanine. Physiological p-tyrosine occurs
by enzymatic oxidation of phenylalanine by phenylala-
nine hydroxylase. Important derivates of tyrosine are cat-
echolamines (dopamine, adrenaline, and noradrenaline) or
thyroid hormones.

o-Tyrosine (o-Tyr) and m-tyrosine (m-Tyr) are formed
by the attack of ROS on phenylalanine (Figure 2). Unlike p-
tyrosine, o-Tyr andm-Tyr are not natural amino acids and are
considered to be oxidative stress biomarkers.

Estrogen receptor 𝛼 (ER𝛼) is a nuclear protein which
is overexpressed in breast cancer cells [50]. The anticancer
property of chlorambucil linked to estradiol was observed
[51]. Nevertheless, estrogenic drug can not only target
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Figure 2: The formation of tyrosine from phenylalanine. A: enzymatic oxidation; B: oxidation by hydroxyl radicals.
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Figure 3: The formation of 3-chlorotyrosine and 3-nitrotyrosine by myeloperoxidase (MPO), adapted from [42].

Table 2: Potential pathogenic role of 8-isoprostane in several
diseases (reviewed in [46]).

Disease Potential pathogenic role of 8-isoprostane

Atherosclerosis

(i) Vasoconstriction in blood vessels
(ii) Influencing the aggregation of platelets
(iii) Inducement of proliferation of smooth
muscle cells
(iv) Stimulation of proliferation of calcification
blood vessel cells
(v) Inhibition of differentiation of preosteoblasts

Diabetes
mellitus

(i) Increase in DNA synthesis in smooth
muscle cells
(ii) Inducement of proliferation of smooth
muscle cells
(iii) Influencing membrane fluidity and
permeability
(iv) Renal vasoconstriction can cause systemic
hypertension

Hepatorenal
syndrome

(i) Renal vasoconstriction
(ii) Increasing the release of endothelin-1

Preeclampsia Renal vasoconstriction

Lung diseases (i) Bronchoconstriction
(ii) Vasoconstriction of lung artery

the cancer cells but also induce transcriptional activity [52].
Such estrogenic activity could be avoided by choosing non-
steroidal drugs with structural similarities. Tyrosine shows
some structural similarities with estradiol and the phenol
groupwas found important for binding to ER𝛼.The affinity of

tyrosine-chlorambucil derivate to ER𝛼 was tested in order to
investigate the role of the position of the hydroxyl group (use
of o-tyrosine, m-tyrosine, and p-tyrosine). All compounds
with tyrosine showed higher cytotoxicity than pure chloram-
bucil. Compared to the other regioisomers, the m-tyrosine-
chlorambucil compound showed greater cytotoxicity and
it was also slightly more specific for hormone-dependent
cancer cells, probably due to closer similarity to estradiol [53].

Higher concentration of o-Tyr was found, for example, in
lenses of patients with cataracts [29] and in blood plasma and
urine of patients with type II diabetes [39]. Elevated levels
of m-Tyr were confirmed in lenses of patients with cataracts
[29].

2.3. 3-Chlorotyrosine and 3-Nitrotyrosine. 3-Chlorotyrosine
(3-ClTyr) is formed by the reaction of hypochlorous acid
(HClO) and p-tyrosine (Figure 3). Hypochlorous acid is
formed from hydrogen peroxide and chloride anion by
myeloperoxidase (MPO) as a catalyst. MPO is a phagocyte
heme protein, catalyses the transformation of hydrogen
peroxide (H

2
O
2
) and chloride anion (Cl−) into highly reac-

tive hypochlorous acid, and plays an important role in the
microbicidal activity of phagocytes [54, 55].

MPO causes also nitration of tyrosine (the formation
of 3-nitrotyrosine). 3-Nitrotyrosine (=3 NOTyr) can also be
formed by the reaction of peroxynitrite (ONOO−) and p-
tyrosine in proteins (Figure 3).

The formation of 3-ClTyr in proteins plays an important
role in cardiovascular system. HDL (high-density lipopro-
tein) and its major protein, apolipoprotein A-I (apoA-I),
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are thought to protect the organism against atherosclerosis.
One of the mechanisms is the removal of excess intracellular
cholesterol frommacrophages [56].The removal is controlled
by ATP-binding cassette transporter (ABCA1) [57], a mem-
brane protein that exports cholesterol from cells to apoA-I.
ABCA1 is induced by intracellular cholesterol and is highly
expressed in cholesterol-loaded cells (such as foam cells in
early atherosclerosis lesions) [58]. The cholesterol removal
requires (1) direct binding of apoA-I to ABCA1 [59, 60], (2)
solution of lipid domains formed byABCA1 in cellmembrane
by apoA-I [61–64], and (3) activation of several signaling
pathways. It was shown that MPO-mediated chlorination of
apoA-I impairs the direct binding of apoA-I to ABCA1 and,
thus, contributes to atherogenesis by impairing cholesterol
efflux from macrophages [65].

It was also found that free 3-ClTyr promotes the migra-
tion of human aortic smooth muscle cells (the major mecha-
nism of the vascular lesion formation) and that increased lev-
els of 3-ClTyr under inflammation conditionsmay contribute
to vascular diseases [66].

Also nitration of proteins changes the function of pro-
teins. Nitration of tyrosine lowers the pK

𝑎
from 10.0–10.3 to

7.2–7.5 [67] and, thus, changes the pI of a protein; 3-NOTyr
containing proteins are more hydrophobic [68]; and the
nitrogroup is a relatively bulky substituent, which may add
steric restrictions to the molecule of protein [69]. However,
only a limited number of proteins constitute preferential
target to nitration and only few tyrosines can be nitrated
within a protein [70], but several common features of tyrosine
nitration have been revealed: (1) the presence of one or
more acidic residues in the vicinity of the target tyrosine
(glutamic or aspartic residues), (2) the small number of
cysteine or methionine residues adjacent to the nitrated
tyrosine residue, and (3) the presence of turn-inducing amino
acids such as proline and glycine [70, 71]. In the organism,
posttranslational modification such as nitration can cause
(1) no change in protein function, (2) loss of function, or
(3) gain of function. The loss of function was demonstrated,
for example, on MnSOD (manganese superoxide dismu-
tase, a mitochondrial enzyme) [72] or PGI

2
(prostacyclin

(prostaglandin I
2
) synthase, a vascular enzyme) [73].The gain

of function was demonstrated, for example, on cytochrome c,
which gains peroxidase activity [74, 75]; on fibrinogen (higher
aggregation in coagulation) [76]; or on protein kinase C𝜀 [77]
(summary in Table 3, adapted from [71]).

Higher concentration of 3-ClTyr was found in patients
with Alzheimer’s disease. These patients have higher activity
of MPO, increased formation of hypochlorous acid, and
therefore higher concentration of 3-ClTyr [14]. In the blood
plasma, 3-ClTyr can bind to HDL and LDL (high- and
low-density lipoprotein) and thus cause the progress of
atherosclerosis. The concentration of 3-ClTyr in LDL of
patients with atherosclerosis was 30 times higher compared
to healthy people [25]. 3-ClTyr serves also as a biomarker
of MPO increased activity because it is not formed by other
mechanisms and is stable at elevated temperature [42].

Higher concentrations of 3-NOTyr were found in cere-
brospinal fluid [20, 21] of Alzheimer’s disease patients. The
concentration of 3-NOTyr was 11.4 ± 5.4 nM in patients

Table 3: Functional changes of nitrated proteins, adapted from [71]
(shortened version).

Protein Normal activity Activity after nitration

Cytochrome c Electron transfer and
apoptosis

Higher peroxidatic
activity [74, 75]
Decreased apoptosome
activation [78]

Fibrinogen Coagulation Higher aggregation [76]

Protein kinase C𝜀 Serine/threonine
kinase

Translocation and
activation [77]

𝛼-Synuclein Presynaptic protein Higher aggregation [79]
Nerve growth
factor Neurotrophic factor Neuronal apoptosis [80]

MnSOD Superoxide
dismutation Decreased activity [72]

Prostacyclin
synthase

Synthesis of
prostacyclin Decreased activity [73]

Tyrosine
hydroxylase Synthesis of L-DOPA Decreased activity [81]

Protein kinase C Serine/threonine
kinase Decreased activity [82]

and 1.6 ± 0.4 nM in the group of healthy volunteers [16].
Besides, elevated 3-NOTyr levels can be found in patients
with arthritis [21, 22], atherosclerosis [26], and hypertension
[33].

2.4. Advanced Oxidation Protein Products. Extracellular flu-
ids contain only minor amounts of antioxidant enzymes and
thus plasma proteins (e.g., albumin) are prone to oxida-
tion by ROS. Elevated levels of oxidized protein products
are termed “advanced oxidation protein products” (AOPP).
AOPP are produced by the myeloperoxidase- (MPO)-H

2
O
2
-

halide system of activated phagocytes. First step of this
reaction is oxidation of coenzyme NADPH by hydrogen
peroxide. During this reaction hypochlorous acid (HOCl)
is produced. The Cl− ion is used as a substrate by the
MPO enzyme. Myeloperoxidase is produced from hydrogen
peroxide activated leukocytes. The generation of cytotoxic
HOCl also causes the formation of advanced oxidation
protein products (AOPP) by attacking normal tissue with
consequent protein oxidation.

Higher concentrations of AOPP were found in plasma
or urine of patients with acute coronary syndrome or active
ulcerative colitis. The concentration of AOPP in plasma was
determined by 140–180 𝜇M for patients and 60–70𝜇M for the
group of healthy volunteers [83, 84].

2.5. 8-Hydroxy-2󸀠-deoxyguanosine and 8-Hydroxyguanosine.
8-Hydroxy-2󸀠-deoxyguanosine (8-OHdG; Figure 4) is the
main product of DNA oxidation. 8-Hydroxyguanosine (8-
OHG; Figure 5) is formed by oxidation of RNA.

Two mechanisms are possible for the release of 8-
OHdG to urine and blood plasma. First, 2󸀠-deoxyguano-
sine triphosphate and hydroxyl radical form 8-hydroxy-2󸀠-
deoxyguanosine triphosphate which is enzymatically trans-
formed to 8-hydroxy-2󸀠-deoxyguanosinemonophosphate (8-
OHdGMP). 8-OHdG is released by digestion of 8-OHdGMP.
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Second, 8-OHdG is formed by nucleotide excision repair
(NER) mechanism.The whole sequence containing damaged
nucleic base (oligonucleotide) is removed fromDNA and the
missing part of the strand is synthesized according to the
other complementary strand [85].

8-OHG is formed by the reaction of RNA and hydroxyl
radical [86]. Human polynucleotide phosphorylase (ribonu-
clease hPNPase) is assumed to remove 8-OHG from RNA
[87]. Oxidation of mRNA lowers the effectiveness of trans-
lation (synthesis of primary protein structure according to
the genetic information in mRNA), induces formation of
abnormal proteins [88], and is one of the primary factors
causing cell death [89].

In rat model, 8-OHdG was found to have anti-inflam-
matory effect [90]. Rats treated with lipopolysaccharide
(LPS) exhibited inflammatory lung injury dependent on
neutrophils with increase in proinflammatory cytokines such
as interleukins 6 and 18 (IL-6, IL-18) and tumor necrosis
factor 𝛼 (TNF-𝛼). Rats pretreated with 8-OHdG prior to
LPS treatment showed inhibited LPS-induced inflammatory
responses. 8-OHdG anti-inflammatory action was found to
be higher than that for aspirin andother nucleosides (8-OHG,
deoxyguanosine, guanosine, and adenosine). 8-OHG and
adenosine also exhibited anti-inflammatory activity, but it
was much lower than that for 8-OHdG. Deoxyguanosine was
found to be almost ineffective. Compared to aspirin, which
acts through cyclooxygenase (COX) inhibition, 8-OHdG
seems to be more versatile and, therefore, more effective as it
was found that 8-OHdG suppresses ROS formation in human
neutrophils. However, in humans, 8-OHdG is excreted in
much lower concentrations than in rats and, therefore, only
exogenously administered 8-OHdG could have a therapeutic
potential as anti-inflammatory agent [90].

Higher concentration of 8-OHdG was found, for exam-
ple, in patients with Alzheimer’s disease [18], arthritis [23,
24], atherosclerosis [27], cataracts [30], hypertension [34],
osteoporosis [35], or type II diabetes [38, 40]. 8-OHdG is also
considered to be a potential biomarker of cancers related to
smoking (e.g., lung cancer). The concentration was 1.57 ±
0.86 nM in patients with cancer and 1.09 ± 0.52 nM in the
control group of healthy volunteers [91].

8-OHG can be found in patients with Alzheimer’s disease
and it has been shown that oxidative damage of RNA is
higher than damage of DNA [18, 19]. The concentrations
in cerebrospinal fluid for Alzheimer’s disease were 500 ±
213 pM in the patients and 97 ± 32 pM in the control group.
The difference of the concentration in blood serum was not
significant [19].

3. Methods for Determination of
Oxidative Stress Biomarkers

The complexity of biological matrices, different molecular
structures of biomarkers, and variety of existing analytical
methods gives us a lot of possibilities to determine the
biomarkers. The most common analytical methods are sum-
marized in Table 4.

Table 4: Analytical methods used for determination of age-related
diseases.

Detected biomarker Analytical method

8-Isoprostane
EIA [28, 32, 37, 38], ELISA [20, 31, 36], RIA
[92–94], GC/MS [95], HPLC-MS [96], and
LC-ESI-MS/MS [97]

o-Tyrosine
GC-MS [98–100], GC-ECD [101],
HPLC-UV [29, 39], HPLC-APCI/MS/MS
[101], and HPLC-MS/MS [102]

m-Tyrosine
GC-MS [99, 100], GC-ECD [101],
HPLC-UV [39], and HPLC-APCI/MS/MS
[101]

3-Chlorotyrosine
GC-MS [14, 77], GC-ECD [101],
HPLC-APCI/MS/MS [101], and
HPLC-ECD [103]

3-Nitrotyrosine
Immune histochemistry [33], ELISA [21],
HPLC-ECD [15, 16], LC-MS/MS [17],
HPLC-UV [22, 26], and HPLC-MS [22]

8-Hydroxy-2󸀠-
deoxyguanosine

Immunostaining [18], ELISA
[23, 24, 34, 35, 38, 40], LC-MS/MS [27],
HPLC-UV [27], and HPLC-ECD [27]

8-Hydroxyguanosine Immunostaining [18], immune
histochemistry [33], and HPLC-ECD [19]

Biochemical methods such as ELISA (enzyme-linked
immunosorbent assay) and EIA (enzyme immunoassay)
allow the determination of lower concentrations than meth-
ods combining chromatographic methods and mass spec-
trometry (GC-MS, HPLC-MS). However, the disadvantage
of biochemical methods is the possibility of cross-reactions
which cause false-positive or false-negative results [104].
Currently, the limit of detection (LOD) of methods com-
bining chromatography and mass spectrometry is pico-
and femtomoles per milliliters which are concentrations of
biomarkers in body fluids. Additionally, both quantitative
and qualitative (structure of the substance) information
are gained. Therefore MSn techniques, which have a high
selectivity, are used more often.

ELISA (enzyme-linked immunosorbent assay), also
called EIA (enzyme immunoassay), is one of the most
frequently used methods applicable in the quantitative
analysis of antigens. This method exists in a range of modi-
fications which are all based on a highly specific interaction
of antigen and antibody. One of these binding partners
is covalently bound to an enzyme (usually peroxidase,
acetylcholinesterase, or alkaline phosphatase) whose role is
the catalytic conversion of the added substrate to a colored
product. The color intensity, determined by spectrophoto-
metric or fluorimetric methods, directly or indirectly reflects
the amount of the antigen present in the sample. When the
antigen is determined, the immobilization (via adsorption or
a covalent bonding) of the antibody on a solid support is a
common characteristic of all ELISA methods. The immobi-
lization of antibodies (e.g., on a microtiter plate) enables the
separation of antigens (biomarkers) from biological matrices
(exhaled breath condensate, blood plasma, and urine).

Radioimmunoassay (RIA) works on a similar principle as
ELISA. The main difference is in the use of a labeled antigen.
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The enzyme on the antigen is replaced by a tyrosine moiety
containing a 𝛾-radioactive iodine isotope. The 𝛾-radiation is
monitored by the presence of the nonbonded labeled antigen
in the sample. The very sensitive and specific methods based
on RIA for 8-isoprostane determination in EBC have been
successfully developed and validated [104]. RIA is also very
suitable for determination of FENOor prostaglandins in EBC
from patients suffering from asthma or cystic fibrosis [105,
106]. However, radioactive species can be operated only in
specialized laboratories with appropriate equipment, which
is a relevant disadvantage and explains the less frequent
utilization of RIA in practice.

For detection of proteomics markers of oxidative stress
(AOPP), ELISA test [107, 108] or methods with mass spec-
trometric detection [104, 109, 110] can be used. During
MS detection can be used protein digest method (digest of
proteins to smaller peptides using a protease such as trypsin)
or protein nondigest method (intact proteins are ionized by
ESI or MALDI ionization and then introduced into a mass
analyzer. This approach is referred to as “top-down” strategy
of protein analysis).

Electronic nose as a novel analytical technique for deter-
mination of volatile compounds in EBC usually comprises an
array containing a number of chemical sensors. The choice
of the sensors represents difficult task due to their specificity,
response and recovery time, range of compounds detected,
sensitivity, operating temperature, physical size, temperature
and humidity effect on sensor functioning, portability, and
cost and circuitry complexity. The molecules of analyte are
adsorbed on the sensor surface providing the signal that
fades with desorption.The similarity to biochemicalmethods
mentioned above and detection limits as low as tens of ppb
make this innovative technique really promising [111, 112].

Nuclear magnetic resonance (NMR) is primarily intend-
ed for qualitative structural analysis although it has been
proven to be a valuable tool for comparison of different
groups of individuals and statistical evaluation of collected
data using methods such as PCA (principle component
analysis) for key biomarkers present in EBC [113, 114]. This
method uses the interaction of strong magnetic field with
atomic nuclei possessing nonzero spin. The signal is created
via absorption of high frequency radiation causing specific
spin energy distribution. NMR technique can be used for
both proteomics and metabolomics [115, 116].

Gas chromatography coupled with mass spectrometry
(GC-MS) can be used for the analysis of analytes giving infor-
mation about both their structures and their quantities. This
analytical method takes advantage of its (1) high separation
selectivity determined by the type of capillary columns used
and (2) high specificity and sensitivity enabled by the integra-
tion of the mass spectrometric detector. Therefore, the GC-
MS method allows the quantification of substances in bio-
logical matrices or tissue on nanogram per milliliter or gram
level.Themost significant disadvantage is the need for a suffi-
cient volatility and thermal stability of analytes in the sample.
To resolve it, pretreatment procedures (extraction andderiva-
tization) are necessary to be included in this particular case
prior to quantitative and qualitative analysis. Derivatization is
a chemical reaction of an analytewith a suitable derivatization

reagent which changes its physical and chemical proper-
ties (in this case mainly volatility and thermal stability).
Additionally, derivatization prior to a GC-MS analysis is
carried out to improve the sensitivity of the MS detection by
enabling a better fragmentation in the detector. For example,
3-NOTyr is measured as methyl ester-diheptafluorobutyl
amide-methyl ether (Me-HFB-Me) derivative [117], di-O-
methyldi-N-heptafluorobutyryl derivate [117],n-propyl-PFP-
TMS derivative [118, 119], and pentafluorobenzyl derivate
[120]. 3-ClTyr is measured as N(O)-ethoxycarbonyl trifluo-
roethyl amino acid ester [121].

High performance liquid chromatography (HPLC) in
combination with mass spectrometry (MS) is generally used
for the analysis of low volatile and thermally labile substances.
The high selectivity of separation is achieved by a suitable
choice of chromatographic phase systems, that is, the liquid
and stationary phase. Reversed-phase HPLC is the most
commonly used with the stationary phase consisting of
silica gel modifiable by nonpolar octadecyl groups and the
polar liquid phase usually consisting of water, acetonitrile,
or methanol, optionally with addition of buffers. For the
detection, usually UV, fluorescence, electrochemical, or MS
methods are used. Nowadays, the combination of HPLC
and MS allows facile separation and parallel detection of
even very low analyte concentrations present in complex
matrices. Since the remaining detectors mentioned above do
not allow the quantification of analytes and lack the high
specific structural information, HPLC-MS is becoming the
first choicemethod for the analysis of substances in biological
matrices. Therefore, the analysis of complex body fluids on
a picogram scale is viable using HPLC-MS and also suitable
for future routine practice. In order to increase the detector
precision and sensitivity, the following is advisable prior to
the HPLC-MS analysis: (1) the addition of an isotopically
labeled internal standard and (2) the use of a pretreatment
method (immunoextraction, solid phase extraction, and
lyophilisation) to remove undesired species and concentrate
the sample. When MS detection is utilized, the analytes need
to be evaporated and ionized. As this can be carried out
at atmospheric pressure (API: atmospheric pressure ioniza-
tion), it is also feasible with thermally labile substances. Elec-
trospray ionization (ESI) is one of the most frequently used
API techniques. It is a soft ionization technique characterized
by the preservation of a molecular ion peak with minimal
fragmentation of the analyzed molecule. Depending on the
molecule charge of a measured analyte, two measurement
modes can be distinguished, that is, positive electrospray
ionization (ESI+) inwhich protonatedmolecular ion [M+H]+
is produced and negative electrospray ionization (ESI−),
where the molecule is deprotonated [M−H]−. The molecule
ion ([M+H]+ or [M−H]− ion (given chemical structure of
the detected biomarkers)) is preferred for all determined
biomarkers. The combination of ESI ionization and a triple-
stage quadrupole analyzer (TSQ) is a suitable detection
technique for the quantification of the analytes. The first and
the third quadrupole (Q1 and Q3) are identical and capable
of using the same scan modes. On the contrary, the second
quadrupole (Q2) is different in both its construction and
function, allowing the fragmentation of the analyte upon
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Table 5: SRM transitions for the quantification of biomarkers.

Biomarker Molecular ion
[Da]

Product ion
[Da]

Collision energy
[eV]

8-iso PGF
2𝛼

352.9 193.2 27
o-Tyr 180.1 119.1 20
3-ClTyr 214.2 153.1 17
3-NOTyr 225.2 164.1 15
8-OHdG 282.2 192.1 21
8-OHG 298.2 208.1 20

elastic collision with an inert gas (argon). Therefore, it is
often referred to as the collision cell. A mass spectrometer
equipped with a triple quadrupole uses a highly selective
single reaction monitoring mode (SRM) for the quantifica-
tion and structural identification of substances. In the case
of oxidative stress biomarkers, Q1 isolates the deprotonated
[M−H]− molecular ions, which are further used as precursor
ions for the subsequent collision-induced dissociation (CID)
in Q2. In the collision cell, the molecule selectively degrades
and yields product ions which are analyzed on quadrupole
Q3 giving MS/MS spectra (Figure 6). Methods used for the
quantification of the biomarkers are in Table 5. For HPLC,
a gradient elution with flow rate of 200𝜇L/min was used
(Table 6) [97], mobile phase A was a water solution of
ammonium hydroxide (pH = 10.5), and mobile phase B was
a mixture of MeOH/ACN (60 : 40 v/v) with 0.1% ammonium
hydroxide. The retention times were as follows: dead time of
the column = 0.8min; 𝑅

𝑡
(8-OHdG) = 1.9min; 𝑅

𝑡
(8-OHG) =

3.1min; 𝑅
𝑡
(3-ClTyr) = 14.4min; 𝑅

𝑡
(3-NOTyr) = 17.0min; 𝑅

𝑡

(o-Tyr) = 20.6min; and 𝑅
𝑡
(8-iso) = 29.5min (Figure 7).

4. Clinical Study

It is generally accepted that concentrations of oxidative stress
biomarkers are increasing with increasing age. Although it
has not been proven for every single known biomarker,
several studies confirm initial statement [122]. The studies
that have been published so far are generally not focused
on relation between levels of biomarkers in healthy subjects
and their age, but they are focused on monitoring of levels
of oxidative stress biomarkers linked to particular disease
(e.g., Alzheimer’s disease andParkinson’s disease; see Table 1).
Some authors [123, 124] have observed the elevation of
specific oxidative stress biomarker in biological matrix, but
so far there has not been performed wider metabolomic
screening of oxidative stress biomarkers in relation to the age
of healthy individuals.

We compared three groups of people with similar age.
The first, labelled “20,” consisted of 30 people of an average
age 21 ± 4.3 years. The second, labelled “40,” consisted of
30 people of an average age 39 ± 8.4 years and the third,
labelled “60,” consisted of 30 people of an average age 62±9.1
years. All subjects were healthy nonsmokers. As a biological
matrix, we have chosen exhaled breath condensate (EBC).
The EBC sampling is noninvasive and can be used as a tool
for diagnosis of lung diseases [97, 102]. The most significant

Table 6: HPLC elution program. Solvent A: water solution
of ammonium hydroxide (pH 10.5); solvent B: solution of
methanol : acetonitrile (60 : 40, v/v) with 0.1% of ammonium
hydroxide.

Time [min] Solvent A [%] Solvent B [%]
0:00 70 30
10:00 70 30
25:00 5 95
30:00 5 95
32:00 70 30
40:00 70 30

difference in biomarker concentration can be observed for 8-
iso PGF

2𝛼
, but all biomarkers show a trend of an increasing

concentration with increasing age. The levels of oxidative
stress biomarkers in first group were 8-iso PGF

2𝛼
(15.0 ±

1.9 pg/mL EBC); o-Tyr (33.3 ± 3.4 pg/mL EBC); 3-ClTyr
(14.5±1.9 pg/mL EBC); 3-NOTyr (25.4±4.8 pg/mL EBC); 8-
OHdG (11.4±2.1 pg/mL EBC); and 8-OHG (10.4±2.7 pg/mL
EBC). The second group exhibited increased values of mon-
itored biomarkers: 8-iso PGF

2𝛼
(26.8 ± 1.9 pg/mL EBC);

o-Tyr (41.4 ± 4.1 pg/mL EBC); 3-ClTyr (17.1 ± 2.4 pg/mL
EBC); 3-NOTyr (31.3 ± 4.6 pg/mL EBC); 8-OHdG (14.9 ±
2.2 pg/mL EBC); and 8-OHG (15.7 ± 3.2 pg/mL EBC). The
highest levels were confirmed in the third group: 8-iso PGF

2𝛼

(44.5 ± 5.3 pg/mL EBC); o-Tyr (55.6 ± 4.7 pg/mL EBC); 3-
ClTyr (27.1 ± 3.2 pg/mL EBC); 3-NOTyr (43.4 ± 3.0 pg/mL
EBC); 8-OHdG (24.6 ± 2.4 pg/mL EBC); and 8-OHG (32.4 ±
4.1 pg/mL EBC) (Syslova et al., unpublished results).

The study was carried out according to the Helsinki
Declaration. The Ethics Committee of the 1st Faculty of
Medicine, Charles University, approved all examinations and
tests, and all of the study subjects gave their written informed
consent for all tests and examinations.

5. Conclusion

Oxidative stress plays an important role inmany pathological
processes including age-related diseases such as atherosclero-
sis, hypertension, and type II diabetes. The level of oxidative
damage can be measured through specific molecules, which
are formed in the organism via oxidative stress. Subsequently,
these substances, biomarkers of oxidative stress, not only can
be monitored in body fluids and tissues of patients but also
are present in healthy people in a physiological concentration.
Regarding low concentrations of biomarkers in body fluids,
it is necessary to choose a sensitive analytical method for
the detection. A combination of separation by HPLC and
detection by MS enables determination of picogram concen-
trations of analytes in complex biological matrices. By com-
paring three groups of healthy people with a different age, we
found that the concentration of oxidative stress biomarkers
(8-isoprostane, o-tyrosine, 3-chlorotyrosine, 3-nitrotyrosine,
8-hydroxy-2󸀠-deoxyguanosine, and 8-hydroxyguanosine) is
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Figure 6: MS/MS spectra for (a) 8-isoprostane, (b) o-tyrosine, (c) 3-chlorotyrosine, (d) 3-nitrotyrosine, (e) 8-hydroxy-2󸀠-deoxyguanosine,
and (f) 8-hydroxyguanosine.
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increasing with the increasing age of people. This study con-
firms the hypothesis that the physiological level of biomarkers
depends on the age of people.
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and G. Bérubé, “Design, synthesis and biological evaluation
of estradiol-chlorambucil hybrids as anticancer agents,” Bioor-
ganic and Medicinal Chemistry Letters, vol. 20, no. 5, pp. 1614–
1618, 2010.

[52] C. Van Themsche, S. Parent, V. Leblanc et al., “VP-128,
a novel oestradiol-platinum(II) hybrid with selective anti-
tumour activity towards hormone-dependent breast cancer
cells in vivo,” Endocrine-Related Cancer, vol. 16, no. 4, pp. 1185–
1195, 2009.
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