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Abstract: Bee venom (BV)—a complex mixture of peptides and toxic proteins including phospholipase
A2 and melittin—promotes blood clotting. In this study, we investigated the anti-atopic properties
of BV and the mechanism associated with its regulation of the complement system. BV treatment
upregulated the mRNA and protein levels of CD55 in THP-1 cells. Further experiments revealed that
the phosphorylation of ERK was associated with upregulation of CD55. A complement-dependent
cytotoxicity assay and a bacteria-killing assay showed that BV inactivated the complement system
through the induction of CD55. The serum levels of C3 convertase (C3C) and Membrane attack
complex (MAC) increased, while CD55 decreased in mice with AD-like lesions from DNCB treatment.
However, the levels were inverted when the AD-like mice were treated with BV using subcutaneous
injection, and we observed that the AD symptoms were alleviated. BV is often used to treat AD
but its mechanism has not been elucidated. Here, we suggest that BV alleviates AD through the
inactivation of the complement system, especially by the induction of CD55.

Keywords: Bee venom; complement system; decay accelerating factor; atopic dermatitis; complement
dependent cytotoxicity; membrane attack complex

Key Contribution: This study highlights the potential mechanism of bee venom in the alleviation of
atopic dermatitis, in which CD55-mediated inhibition of the complement system is involved.

1. Introduction

Bee venom (BV) is a secretion from the stinger of the worker bee; it is a complex mixture of
proteins they use to protect themselves. Purified BV from honeybees has been used as a traditional
medicine by the ancient Egyptians, Chinese, and Greeks [1]. BV contains pharmaceutically active
peptides including melittin, apamin, adolapin, and the mast cell degranulating (MCD) peptide;
enzymes (e.g., phospholipase A2, PLA2); biologically active amines (e.g., histamine and epinephrine);
and nonpeptide components [2]. Melittin, the major component (50% of dry weight) of BV, has
anti-inflammatory and anti-arthritis properties, which are driven by the inhibition of nuclear factor
kappa B (NF-κB) [3]. Melittin has shown anticancer, antibacterial, and antiviral activities [4]. PLA2
from BV improved atopic dermatitis (AD)-like skin lesions induced by dust mite extract in mice.
Topical application of PLA2 suppressed AD symptoms, including ear thickness, histological changes,
inflammatory cytokines, and serum IgE concentration [5]. The anti-inflammatory effects of BV are
expected to improve skin inflammatory diseases such as AD, but this has not been clearly demonstrated.
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AD is the most common allergic skin disease, but its pathogenesis is complex and still not
fully understood. Researchers have shown that the complex immune reactions associated with
the Th2 response and IgE production affect AD, but Th22, Th17, and Th1 activation also occur
in AD [6]. In addition, the complement system seems to affect AD. One study reported that
complement components including C3, C4, and C3a are increased in AD patients compared to
non-atopic controls [7,8]. Overactivation of the complement system has been shown to cause damage
to the dermal-epidermal junction [9], which may aggravate AD. In addition, the anaphylatoxin C5a
receptor is increased in AD mice, and treatment with a C5aR antagonist decreased IL-4 and IFN-γ
levels in skin tissue, as well as the levels of IL-4, IFN-γ, histamine, and IgE in the serum, indicating
that blocking C5aR can inhibit AD [10]. However, the role of complement inhibitory proteins (CIPs) in
AD has not been elucidated.

In the current study, we investigated the role of BV in the regulation of the complement system.
We examined the upregulation of CD55 in THP-1 cells and the levels and activities of C3 convertase
(C3C) and membrane attack complex (MAC) from the serum of AD-like mice after treatment with BV
or melittin.

2. Results

2.1. BV Increased CD55 Production in THP-1 Cells

Because complement cascades are regulated by membrane-bound complement regulators
including membrane cofactor protein (MCP/CD46), decay-accelerating factor (DAF/CD55), and
CD59 [11], we investigated whether THP-1 cells express cell membrane CIP in response to BV. CD46
mRNA was reduced by approximately 50% in the cells after stimulation with BV, while the mRNA
levels of CD59 were reduced by a low level of BV (e.g., 0.001–0.1 µg/mL) and slightly upregulated
by 1 µg/mL BV (Figure 1A). However, there were no statistically significant differences between
the samples. These results suggested that BV-induced variations in CD46 and CD59 may not affect
the activation of the complement system and AD symptoms. CD55, unlike other CIPs, showed a
bell-shaped curve when cells were stimulated with BV. The highest induction of CD55 was caused
by 0.01 µg /mL BV, and higher dosages of BV such as 0.1 and 1 µg/mL reduced CD55 expression
compared with untreated cells (Figure 1B). When cells were treated with BV doses of up to 10 µg/mL,
cell death was not observed, indicating that the induction and inhibition of CD55 by BV in cells were
not associated with cell survivability (Figure 1C). Actually, the viability of THP-1 cells was significantly
increased by BV (0.01–1 µg/mL), suggesting that BV may affect cell proliferation. When cells were
treated with 0.01 µg/mL BV, CD55 mRNA peaked at 6 h and then declined (Figure 1D). The protein
levels of CD55 also increased from 3 h after stimulation and peaked at 6 h; they then declined after
12 h but were still higher than in unstimulated cells (Figure 1E). Our data suggest that BV regulates
CD55 expression in immune cells, which may affect complement cascades in the bloodstream.
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Figure 1. Bee venom (BV) increased CD55 production in THP-1 cells. (A) THP-1 cells were treated 

with the indicated doses of BV for 6 h. The mRNA levels of CD46 and CD59 were examined by qRT-

PCR. (B) After BV treatment with the indicated doses for 6 h, CD55 mRNA was examined by qRT-

PCR. (C) Cell viability was examined by WST-1 assay with THP-1 cells treated with the indicated dose 

of BV for 24 h. (D) THP-1 cells were treated with 0.01 μg/mL BV for the indicated time periods. Levels 

of mRNA were normalized with glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The data are 

displayed as the mean ± SD of three independent experiments. Statistical analysis was conducted with 

one-way ANOVA Tukey statistical test. ###p < 0.001 compared to 0 μg/mL or 0 h. (E) THP-1 cells were 

treated with 0.01 μg/mL BV for the indicated times and CD55 protein was examined by Western blot. 

β-actin was used as the internal control. Data are representative of three independent experiments. 

2.2. BV Induced CD55 Through the Activation of ERK 

Next, we investigated the signaling pathway related to the BV-mediated induction of CD55 in 

THP-1 cells. After treatment with BV, activation of extracellular signal regulated kinases (ERKs) was 

observed, while other signaling molecules, including P38 mitogen-activated protein kinase (p38), 

protein kinase B (Akt), and c-Jun N-terminal kinases (JNK1/2), were not altered (Figure 2A). The 

densitometry analysis also indicates that the phosphorylation of ERK1/2 was activated by BV (Figure 

2B). We examined the phosphorylation of NF-κB subunit p65, but it was not activated by BV 

treatment (data not shown). When cells were pretreated with the inhibitors for each signal, only the 

ERK inhibitor reduced CD55 expression in BV-treated cells, indicating that BV increases CD55 

expression through the activation of ERKs in THP-1 cells (Figure 2C). 

Figure 1. Bee venom (BV) increased CD55 production in THP-1 cells. (A) THP-1 cells were treated with
the indicated doses of BV for 6 h. The mRNA levels of CD46 and CD59 were examined by qRT-PCR.
(B) After BV treatment with the indicated doses for 6 h, CD55 mRNA was examined by qRT-PCR.
(C) Cell viability was examined by WST-1 assay with THP-1 cells treated with the indicated dose of BV
for 24 h. (D) THP-1 cells were treated with 0.01 µg/mL BV for the indicated time periods. Levels of
mRNA were normalized with glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The data are
displayed as the mean ± SD of three independent experiments. Statistical analysis was conducted with
one-way ANOVA Tukey statistical test. ### p < 0.001 compared to 0 µg/mL or 0 h. (E) THP-1 cells were
treated with 0.01 µg/mL BV for the indicated times and CD55 protein was examined by Western blot.
β-actin was used as the internal control. Data are representative of three independent experiments.

2.2. BV Induced CD55 Through the Activation of ERK

Next, we investigated the signaling pathway related to the BV-mediated induction of CD55
in THP-1 cells. After treatment with BV, activation of extracellular signal regulated kinases (ERKs)
was observed, while other signaling molecules, including P38 mitogen-activated protein kinase
(p38), protein kinase B (Akt), and c-Jun N-terminal kinases (JNK1/2), were not altered (Figure 2A).
The densitometry analysis also indicates that the phosphorylation of ERK1/2 was activated by BV
(Figure 2B). We examined the phosphorylation of NF-κB subunit p65, but it was not activated by BV
treatment (data not shown). When cells were pretreated with the inhibitors for each signal, only the ERK
inhibitor reduced CD55 expression in BV-treated cells, indicating that BV increases CD55 expression
through the activation of ERKs in THP-1 cells (Figure 2C).
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Figure 2. The extracellular signal regulated kinase (ERK) signaling pathway was associated with 

CD55 induction in THP-1 cells. (A) THP-1 cells were treated with 0.01 μg/mL BV for the indicated 

times and the phosphorylated signaling factors were examined by Western blot. β-actin was used as 

the internal control. The data are representative of two independent experiments. (B) Densitometry 

analysis for the phosphorylation of p38, Akt, JNK1/2, and ERK1/2. (C) THP-1 cells were treated with 

the signaling inhibitors for ERK, p38, JNK, and Akt for 30 min and then treated with 0.01 μg/mL BV 

for 6 h. The mRNA levels of CD55 were examined by qRT-PCR. Levels of mRNA were normalized 

with GAPDH. Data are displayed as the mean ± SD of three independent experiments. Statistical 

analysis was conducted with one-way ANOVA Tukey statistical test. ##p < 0.01; ###p< 0.001 compared 

to none or 0 min. 

2.3. BV Alleviated AD Symptoms 

Since BV has been used as traditional medicine [1], we examined whether BV has a treatment 

effects of AD. An AD-like condition was induced in mice (irritant contact dermatitis (ICD)) by 

treatment with 2.5% 2,4-Dinitrochlorobenzene (DNCB) for 14 days. The experimental group was 

subcutaneously injected with BV and treated with 0.2% DNCB, while the control group was treated 

only with 0.2% DNCB. Clinical assessment of the ICD mice was performed as described in the 

Materials and Methods section. The skin condition such as dryness, hemorrhage, excoriation, edema 

and redness, increased significantly in the DNCB-treated mice (ICD) at 14 days, but it was attenuated 

in the group that was injected with BV (ICD+BV) at 18 days and the skin almost completely recovered 

at 27 days (Figure 3A). The clinical skin score in the BV-injected group also significantly decreased at 

12 days as compared to the control group (Figure 3B). 

Figure 2. The extracellular signal regulated kinase (ERK) signaling pathway was associated with
CD55 induction in THP-1 cells. (A) THP-1 cells were treated with 0.01 µg/mL BV for the indicated
times and the phosphorylated signaling factors were examined by Western blot. β-actin was used as
the internal control. The data are representative of two independent experiments. (B) Densitometry
analysis for the phosphorylation of p38, Akt, JNK1/2, and ERK1/2. (C) THP-1 cells were treated with
the signaling inhibitors for ERK, p38, JNK, and Akt for 30 min and then treated with 0.01 µg/mL BV for
6 h. The mRNA levels of CD55 were examined by qRT-PCR. Levels of mRNA were normalized with
GAPDH. Data are displayed as the mean ± SD of three independent experiments. Statistical analysis
was conducted with one-way ANOVA Tukey statistical test. ## p < 0.01; ### p< 0.001 compared to none
or 0 min.

2.3. BV Alleviated AD Symptoms

Since BV has been used as traditional medicine [1], we examined whether BV has a treatment
effects of AD. An AD-like condition was induced in mice (irritant contact dermatitis (ICD)) by treatment
with 2.5% 2,4-Dinitrochlorobenzene (DNCB) for 14 days. The experimental group was subcutaneously
injected with BV and treated with 0.2% DNCB, while the control group was treated only with 0.2%
DNCB. Clinical assessment of the ICD mice was performed as described in the Materials and Methods
section. The skin condition such as dryness, hemorrhage, excoriation, edema and redness, increased
significantly in the DNCB-treated mice (ICD) at 14 days, but it was attenuated in the group that was
injected with BV (ICD+BV) at 18 days and the skin almost completely recovered at 27 days (Figure 3A).
The clinical skin score in the BV-injected group also significantly decreased at 12 days as compared to
the control group (Figure 3B).
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remission. (A) A photograph of the mice with the best effect among the experimental groups is shown. 

A representative mouse from each group is shown. (B) The severity of AD was quantified by 
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Figure 3. BV alleviated AD symptoms. An AD-like condition was induced in mice with 2.5% (w/v)
DNCB for 3 days followed by 1% (w/v) DNCB at 3-day intervals. After 14 days of treatment with
DNCB, one group (n = 4) was subcutaneously injected with 0.3 mg/kg BV and the other group (n = 4)
was injected with PBS. Both groups were treated with 0.2% (w/v) DNCB to prevent spontaneous
remission. (A) A photograph of the mice with the best effect among the experimental groups is
shown. A representative mouse from each group is shown. (B) The severity of AD was quantified by
individually scoring the symptoms (skin dryness, hemorrhage, edema, redness, and excoriation). Data
are displayed as the mean ± SD of technical repeats of one representative experiment. We performed
two independent experiments. Statistical analysis was conducted with two-way ANOVA Tukey
statistical test. ### p < 0.001 compared to the none group.

2.4. BV Inactivated Complement System in AD-Like Mice

We examined whether BV affects complement in an AD-like mouse model, developed by treatment
with 2.5% DNCB. First, we measured the levels of C3C and MAC in serum using sandwich ELISA
kits. The serum levels of C3C and MAC in normal mice significantly decreased after BV treatment.
In mice that developed ICD, both levels were significantly higher compared with the untreated mice
(‘none’ in Figure 4A–D). When comparing the ICD mice groups, both C3C and MAC significantly
decreased after BV injection compared with PBS injection (Figure 4A,B). On the other hand, the secreted
CD55 serum levels decreased in ICD mice, but significantly increased after BV injection (Figure 4C).
These data suggest that BV inhibits the complement system. The actual activity of complement was
examined in mouse serum. The bactericidal activity decreased with BV in untreated mice, while it
increased in ICD mice compared to the untreated mice. The bactericidal activity in ICD mice decreased
in the BV-injected ICD mice (Figure 4D), indicating that MAC activity was increased in AD, which
is consistent with previous studies [7,8], and it was decreased by BV injection. Since an abnormal
increase of MAC damages skin tissues, it is necessary to maintain an appropriate level of MAC. Thus,
BV may be a good candidate to maintain MAC homeostasis. Next, we examined the role of CD55 in
complement-mediated tissue damage, using a complement-dependent cytotoxicity assay (Figure 4E).
Normal human serum (NHS, 1:20 dilution) significantly decreased HaCaT cell viability, indicating
that complement induced the cell death of keratinocytes. However, when NHS was added to the
BV-treated cells, the viability increased in a BV dose-dependent manner. Increased viability, however,
was not shown when cells were treated with anti-CD55 neutralization antibody prior to BV treatment,
indicating that increased CD55 inhibits MAC activity, which may affect the alleviation of AD symptoms.
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human serum (NHS) in HaCaT cells treated with 0.01 μg/mL BV for 24 h in the presence or absence 
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fluorescent probe) assay. NHS was isolated from blood supplied by the Blood Center of the Korean 
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Tukey statistical test., #p < 0.05; ##p < 0.01; ###p < 0.001 compared between indicated groups (A to D) 

or compared to 0 μg/mL (E) or Two-way ANOVA, ##p < 0.01 compared between Control IgG and 

Anti-CD55. 
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Figure 4. BV injection reduced the activities of C3C and membrane attack complex (MAC) through the
induction of CD55. Blood samples were taken from AD-like mice (n = 4, each group) after 0.3 mg/kg
BV injection, and serum was isolated. (A and B) Serum levels of C3C and MAC were examined
by commercial ELISA kits. (C) The serum CD55 levels were examined by indirect ELISA using an
anti-CD55 antibody. (D) The bactericidal activity of complement was examined with sera isolated from
each group. (E) A complement-dependent cytotoxicity assay was performed with normal human serum
(NHS) in HaCaT cells treated with 0.01 µg/mL BV for 24 h in the presence or absence of anti-CD55
antibody. Cell viability was examined by Calcein-AM (a fluorogenic, cell-permeant fluorescent probe)
assay. NHS was isolated from blood supplied by the Blood Center of the Korean Red Cross. Data are
displayed as the mean ± SD of four independent experiments. Statistical analysis was conducted with
an unpaired two-tailed t test (C). * p < 0.05 compared to none, one-way ANOVA Tukey statistical test,
# p < 0.05; ## p < 0.01; ### p < 0.001 compared between indicated groups (A to D) or compared to
0 µg/mL (E) or Two-way ANOVA, ## p < 0.01 compared between Control IgG and Anti-CD55.

2.5. Melittin Alleviated AD Symptoms Through the Regulation of Complement

When ICD mice were subcutaneously injected with melittin (0.15 mg/kg), AD symptoms were
alleviated as seen in BV-injected mice. Melittin is a major component of BV and contributes
anti-inflammatory and anticancer effects [2,4]. Skin condition was improved in melittin-injected
ICD mice as well as in BV-injected ICD mice (Figure 5A). To examine whether melittin affects
complement, C3C levels were examined in serum from ICD mice that were injected with melittin.
As shown in Figure 5B, serum C3C levels were significantly lower compared with untreated ICD
mice. The same reduction was shown in BV-injected mice. MAC levels in ICD mouse serum were also
significantly decreased in melittin-injected mice compared to the ICD control mice, although they were
slightly higher than in the BV-injected mice (Figure 5C). The secreted CD55 levels in melittin-injected
ICD mice were significantly higher than in the control ICD mice, suggesting that the complement
system was reduced (Figure 5D). These data suggest that BV, especially melittin, can alleviate AD via
controlling complement.
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with interleukin (IL)-4, IL-5, and IL-13 produced by the Th2 cells in most patients [14–18]. In addition, 

complement appears to aggravate AD. Patients with AD show increases in complement components 

Figure 5. Melittin plays an important role in the BV-mediated alleviation of AD symptoms. An AD-like
mouse model (n = 4, each group) was generated with 2.5% DNCB, and mice were subcutaneously
injected with 0.3 mg/kg BV or 0.15 mg/kg melittin. (A) A photograph of the AD-like mice is shown
after 14 daysof treatment with BV or melittin. Serum C3C (B) and MAC (C) levels were examined by
commercial ELISA kits. (D) Secreted CD55 was examined by indirect ELISA with the sera isolated
from BV- or melittin-treated mice and normal mice. Data are displayed as the mean ± SD of three
independent experiments. Statistical analysis was conducted with one-way ANOVA Tukey statistical
test. ### p < 0.001 compared to ICD. Arrows indicate AD-like skin condition (i.e., hemorrhage and
excoriation, and edema and redness).

3. Discussion

Purified BV has anti-inflammatory and anticancer effects [12]. It also reduces AD symptoms,
lowering serum IgE levels and dorsal skin thickness [13]. AD is a chronic skin inflammatory disease
characterized by eczematous, dry, and chapped skin. AD is caused by the invasion of inflammatory
immune cells including mast cells, eosinophils, monocytes/macrophages, and T lymphocytes into the
skin barrier. The circulating eosinophils and serum IgE levels are increased in AD, which is associated
with interleukin (IL)-4, IL-5, and IL-13 produced by the Th2 cells in most patients [14–18]. In addition,
complement appears to aggravate AD. Patients with AD show increases in complement components
including C3, C4, and C3a [7,8]. Because activation of complement generates a high level of MAC,
MAC can worsen AD lesions, aggravating AD symptoms.



Toxins 2019, 11, 239 8 of 12

The complement system is an essential part of the immune system. It has long been described
as belonging to the innate immune system, but recently a number of papers have demonstrated
that it also contributes to adaptive immunity by regulating antigen-presenting cells [19]. As an
inducer for innate immunity, MAC, a final product of complement cascades, kills invading bacteria,
and anaphylatoxins, such as C3a and C5a, activate inflammatory responses. However, excessive
activation of the complement system can induce tissue damage and inflammation, which aggravates
symptoms in patients with AD [20,21]. Thus, it is necessary to reduce excessive activation of the
complement system and restore homeostasis to defend against bacterial infection. Toxins isolated from
insects and snakes seem to have beneficial effects against inflammatory diseases [22], but they are also
toxic and potentially life-threatening for mammals [23].

BV has beneficial effects on idiopathic Parkinson’s disease and oxaliplatin-induced neuropathic
cold allodynia, and it is helpful in reducing glutamate-induced cell toxicity in neurodegenerative
diseases [24–27]. BV components, especially melittin, inhibit complement cleavage and release
bradykinin. These mechanisms are associated with coagulation, thrombolysis, hemolysis, and smooth
muscle tone [28]. Recently, Shaldoum et al. have reported that BV may affect complement system.
According to the results, in patients having various diseases, such as rheumatoid arthritis, back pain,
diabetes mallets, arthritis, gastritis, sebaceous cyst, osteoarthritis, and hepatitis c virus, all abnormal
levels of complement C3 returned to normal values, while abnormal C4 levels did not change when
patients were exposure to natural BV [29]. In this study we have established the following mechanisms
of BV in the alleviation of AD; (i) BV induced CD55 production through the activation of ERK1/2
pathways; (ii) increased CD55 downregulated formation of C3C and MAC; (iii) decreased MAC activity
resulted in the alleviation of AD symptoms. BV may be a promising drug to treat AD, because it inhibits
complement by inducing CD55. Among CIPs, only CD55 dramatically increased in BV-treated THP-1
cells and in serum from BV-injected mice. Although the mechanism for CD55-dependent inactivation of
C3C is complex [30], the expected result is a reduction in MAC formation. The dose-dependent variation
of CD55 in Figure 1B suggests that BV has different activities in mammalian cells. BV causes the
activation of the immune system, which could increase the symptoms of atherosclerosis, diabetes-related
endothelial damage, cancer, and autoimmune diseases [31]. However, it also has anti-inflammatory
properties and is used in the treatment of liver fibrosis, atherosclerosis and other skin diseases [32].

We found that CD55 did not completely inhibit C3C in BV-injected mice. As shown in Figure 3,
the increased C3C in BV-injected mice was restored to a normal state. The MAC level and activity
also recovered to a normal state. These data suggest that BV does not inhibit the complement system
completely, but can still protect against invasion of bacteria and support the repair of damaged tissues.
However, the appropriate dosage should be considered when applied to mammals. The complement
inhibitory effects of BV and melittin suggest that they can be used to treat complement-mediated
diseases such as ischemia/reperfusion injury and autoimmune disorders, which are caused by excessive
complement activation [21].

In conclusion, BV, especially melittin, appears to alleviate AD. This phenomenon appears
to be mediated by ERK pathway activation leading to the induction of CD55 in BV-treated cells.
CD55-mediated inhibition of complement alleviates AD symptoms, which can otherwise be aggravated
by inflammation and MAC. Thus, BV can be considered as a therapeutic reagent to treat AD as well as
inflammatory diseases.

4. Materials and Methods

4.1. Cell Culture

HaCaT and THP-1 cells were maintained with Dulbecco’s modified Eagle’s medium (DMEM,
Welgene, Gyeongsangbuk-do, Korea) and RPMI 1640 (Welgene), respectively, supplemented with
10% (v/v) heat-inactivated fetal bovine serum (FBS, Welgene) and 1% (v/v) penicillin–streptomycin
(P/S, Welgene). These cells were incubated at 37 ◦C in a CO2 atmosphere.
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4.2. Drugs

Bee venom was purchased from Guju Pharmaceutical Company, Ltd. (Gyeonggi-do, Korea). Bee
venom was dissolved in Dulbecco’s phosphate-buffered saline (DPBS).

4.3. Real-Time PCR

For real-time PCR, total RNA was extracted using TRIzol reagent (Takara Bio Inc., Shiga, Japan),
following the manufacturer’s instructions. cDNA was synthesized using an iScript cDNA synthesis kit
(Bio-Rad, San Diego, CA, USA), following the manufacturer’s instructions. CFX Connect™ Real-Time
PCR Detection System (Bio-Rad) and SYBR Ex TaqTMII (Takara) were used for real time PCR. The
following forward and reverse primers were used; 5′-GTGAGGAGCCACCAACATTT-3′ and 5′-GCGG
TCATCTGAGACAGGT-3′ for CD46; 5′-CAGCACCACCACAAATTGAC-3′ and 5′-CTGAACTGTTGG
TGGGACCT-3′ for CD55; 5′-CCGCTTGAGGGAAAATGAG-3′ and 5′-CAGAAATGGAGTCACCAG
CA-3′ for CD59; and 5′-AAGGTCGGAGTCAACGGATT-3′ and 5′-GCAGTGAGGGTCTCTC TCCT-3′

for GAPDH. The target gene expression was normalized with glyceraldehyde-3-phosphate
dehydrogenase (GAPDH). The contamination of Mycoplasma was examined with EZ-PCR™
Mycoplasma Detection Kit (Catalog # SKU:20-700-20; Biological Industires, Cromwell, CT, USA)
and we found no contamination.

4.4. Western Blot

THP-1 cells treated with BV (0.01 µg/mL) were lysed with Laemmli buffer and boiled for 5 min
at 100 ◦C. Proteins were separated by 10% (w/v) or 12% (w/v) SDS-PAGE in a Glycine/Tris/SDS buffer
and transferred onto polyvinylidene fluoride membranes for 2 h at 100 V. The membranes were
blocked with 5% (w/v) bovine serum albumin in TBST (20 mM Tris-HCl, 150 mM NaCl, 0.05% (v/v)
Tween 20) for 2 h at room temperature (RT) and washed three times with TBST. The membrane was
incubated with the primary antibodies such as anti-phospho p38 (#9211), anti-phospho Akt (#9271),
anti-phospho SPAK/JNK (#9251), anti-phospho ERK1/2 (#9101) (Those were purchased from Cell
Signaling Technology Inc., Danvers, MA, USA), and β-actin (SC47778, Santa Cruz Biotechnology, Inc.,
Dallas, TX, USA) diluted in TBST (1:1000) for 2 h at RT and then washed with TBST three times. Next,
the membrane was incubated with secondary HRP-conjugated anti-rabbit or anti-mouse antibody
(diluted to 1:2000 in TBST) for 2 h at RT. After washing three times with TBST, the bands were detected
by ECL reagent. β-actin was used as the internal loading control.

4.5. Animals

Male BALB/c mice (7 weeks old) were purchased from Nara Bio (Gyeonggi, Korea). They were
kept in individual cages at 24 ± 2◦C and 50 ± 10% moisture, and fed nutritionally balanced rodent
food (Central Lab Animal Inc., Seoul, Korea) and sterilized water. The mice were cared for and used in
accordance with the guidelines of the Animal Ethics Committee of Kyung Hee University (KHU14-021,
the date of the approval: 26 October 2015).

4.6. Development of Irritant Contact Dermatitis (ICD) Mouse

Mice were shaved on the dorsal flank and back. They were left for 24 h to heal any abrasions that
might have been caused by shaving. Olive oil and acetone were mixed at a ratio of 1:3, and then DNCB
was added to make concentrations of 2.5% (2,4-dinitrochlorobenzene; Sigma-Aldrich Co., St. Louis,
MO, USA), 1.0%, and 0.2%. Mice were topically treated with the 2.5% (w/v) DNCB mixture (200 µL).
After 3 days exposure, mice were treated with 150 µL 1.0% (w/v) DNCB at 3-day intervals until 14 days,
and then were treated with the 0.2% (w/v) DNCB mixture (100 µL).
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4.7. Treatment of ICD Mice Using BV

The mice were randomly divided into four experimental groups of four animals each as follows
(Figure 6): untreated normal group (None), BV-treated normal group (BV), untreated ICD group (ICD),
and BV-treated ICD group (ICD+BV). The BV and ICD+BV groups were subcutaneously injected with
0.3 mg/kg BV at 2-day intervals, and None and ICD groups were subcutaneously injected with 60 µL
PBS. For the analysis of serum complement components, blood samples were collected at day 25 before
sacrifice. The blood samples were maintained at room temperature for 20 min. Then, the serum was
separated by centrifugation at 12,000 rpm for 20 min. The serum samples were used to examine the
MAC and C3C quantities and the bacterial killing assay.
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4.8. Clinical Skin Score.

Mice in each experimental group were photographed using a digital camera to analyze AD
symptoms and the clinical appearance of the skin. AD symptoms were evaluated by scoring scaling
and dryness, hemorrhage and excoriation, and edema and redness. The sum of the individual symptom
scores was calculated (0 = normal, 1 = mild, 2 = moderate, 3 = severe). The total score for each animal
ranged from 0 to 9 points.

4.9. Enzyme-Linked Immunosorbent Assay (ELISA)

The quantities of MAC and C3C were measured in mouse serum. The MAC and C3C ELISA kits
were purchased from MyBioSource (San Diego, CA, USA). The assay was performed according to
the manufacturer’s instructions. The absorbance was measured at the wavelength of 450 nm using
an ELISA reader. The concentrations of MAC and C3C were calculated using the standard included
in the kits. For the detection of soluble CD55 from mouse serum, rabbit anti-CD55 (Santa Cruz, CA,
USA) was coated on an ELISA plate (Corning Costar flat-bottom high-binding EIA/RIA 3690 plate) in
PBS (pH 7.4; 0.4 µg/well) at 37 ◦C for 2 h. The plate was blocked with 2% BSA in PBS. Mouse serum
was added in triplicate to experimental or control wells. After incubation at 4 ◦C overnight, wells
were washed and bound CD55 was detected by serial addition of a biotin-labeled secondary antibody,
avidin–horseradish peroxidase (HRP) conjugate (Pierce Immunopure streptavidin-HRP conjugate),
and peroxidase substrate (Pierce Chemicals, IL). The absorbance at 450 nm was read and presented
after subtraction of reagent-control values reacting against BSA-coated negative controls.

4.10. Complement-Dependent Cytotoxicity Assay

HaCaT cells were seeded on a 96-well plate with DMEM supplemented with 10% FBS and P/S.
The cells were pretreated with BV together with a control IgG or an anti-CD55 neutralization antibody
(Santa Cruz Biotechnology, SC51733, Dallas, TX, USA) and washed with DPBS. Normal human serum
(NHS) was diluted 1:20 with DMEM without supplement, and the cells were incubated for 6 h. The cells
were washed with DPBS and the viability of the HaCaT cells was measured with the Calcein AM cell
viability assay system (EMD Millipore, #206700, Burlington, MA, USA). Briefly, 2 µM Calcein AM (final
concentration) was added to each well and incubated for 15 min at 37 ◦C under CO2. Fluorescence was
examined at at 490 nm excitation and 520 nm emission wavelengths.
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4.11. Bactericidal Assay

Escherichia coli was cultured in LB overnight. Then, the bacteria were washed and diluted with
DPBS. Escherichia coli at 1 × 104 cells was cultured with mouse serum (1:50) at 37 ◦C for 60 min.
The incubated bacteria were washed with DPBS and spread on an LB plate. After overnight culturing,
CFU were counted.

4.12. Statistical Analysis

All the experiments were repeated at least three times. The data shown are representative results
of the means ± SD of triplicate experiments. Statistical analyses were conducted with an unpaired
two-tailed t-test, then one-way ANOVA, followed by Tukey’s honestly significant difference (HSD)
post hoc test, or two-way ANOVA. Prism 5 software was used for the analysis (Graphpad software Inc.,
Prism 5 (Version 5.01, San diego, CA, USA, 2007). p < 0.05 was considered significant. The * represents
the t-tests while the # represents the ANOVA in the figures.

Author Contributions: H.K. conceived and designed the experiments; Y.K. and Y.-W.L. performed the experiments;
D.K.C. analyzed the data; H.K. and Y.K. wrote the paper.

Funding: This research was supported by a grant from the regional innovation center program of the Ministry of
Trade, Industry and Energy at the Skin Biotechnology Center of Kyung Hee University, Korea.

Acknowledgments: We thank members of Industrial Microbiology Laboratory (Kyung Hee University) for helpful
discussions concerning this work.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Hoyt, J. Literature Review of Bee Venom Therapy: Mechanisms of Action and Selected Therapeutic Uses.
Orient. Med. J. 2015, 23, 6–9.

2. Lariviere, W.R.; Melzack, R. The bee venom test: A new tonic-pain test. Pain 1996, 66, 271–277. [CrossRef]
3. Lee, G.; Bae, H. Anti-Inflammatory Applications of Melittin, a Major Component of Bee Venom: Detailed

Mechanism of Action and Adverse Effects. Molecules 2016, 21, E616. [CrossRef]
4. Raghuraman, H.; Chattopadhyay, A. Melittin: A membrane-active peptide with diverse functions. Biosci. Rep.

2007, 27, 189–223.
5. Jung, K.H.; Baek, H.; Kang, M.; Kim, N.; Lee, S.Y.; Bae, H. Bee Venom Phospholipase A2 Ameliorates House

Dust Mite Extract Induced Atopic Dermatitis Like Skin Lesions in Mice. Toxins 2017, 9, 68. [CrossRef]
6. Gittler, J.K.; Shemer, A.; Suárez-Fariñas, M.; Fuentes-Duculan, J.; Gulewicz, K.J.; Wang, C.Q.F.; Mitsui, H.;

Cardinale, I.; de Guzman Strong, C.; Krueger, J.G.; et al. Progressive activation of Th2/Th22 cytokines and
selective epidermal proteins characterizes acute and chronic atopic dermatitis. J. Allergy Clin. Immunol. 2012,
130, 1344–1354. [CrossRef]

7. Kapp, A.; Wokalek, H.; schöpf, E. Involvement of complement in psoriasis and atopic dermatitis-measurement
of C3a and C5a, C3, C4 and C1 inactivator. Arch. Dermatol. Res. 1985, 277, 359–361. [CrossRef]

8. Kapp, A.; Schöpf, E. Involvement of complement in atopic dermatitis. Acta. Derm. Venereol. Suppl. (Stockh)
1985, 114, 152–154.

9. Zhuang, Y.; Lyga, J. Inflammaging in skin and other tissues—the roles of complement system and macrophage.
Inflamm. Allergy Drug Targets 2014, 13, 153–161. [CrossRef]

10. Dang, L.; He, L.; Wang, Y.; Xiong, J.; Bai, B.; Li, Y. Role of the complement anaphylatoxin C5a-receptor
pathway in atopic dermatitis in mice. Mol. Med. Rep. 2015, 11, 4183–4189. [CrossRef]

11. Noris, M.; Remuzzi, G. Overview of Complement Activation and Regulation. Semin. Nephrol. 2013, 33,
479–492. [CrossRef] [PubMed]

12. Son, D.J.; Lee, J.W.; Lee, Y.H.; Song, H.S.; Lee, C.K.; Hong, J.T. Therapeutic application of anti-arthritis,
pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Parmacol. Ther. 2007,
115, 246–270. [CrossRef] [PubMed]

13. Gu, H.; Kim, W.H.; An, H.J.; Kim, J.Y.; Gwon, M.G.; Han, S.M.; Leem, J.; Park, K.K. Therapeutic effects of bee
venom on experimental atopic dermatitis. Mol. Med. Rep. 2018, 18, 3711–3718. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/0304-3959(96)03075-8
http://dx.doi.org/10.3390/molecules21050616
http://dx.doi.org/10.3390/toxins9020068
http://dx.doi.org/10.1016/j.jaci.2012.07.012
http://dx.doi.org/10.1007/BF00509233
http://dx.doi.org/10.2174/1871528113666140522112003
http://dx.doi.org/10.3892/mmr.2015.3301
http://dx.doi.org/10.1016/j.semnephrol.2013.08.001
http://www.ncbi.nlm.nih.gov/pubmed/24161035
http://dx.doi.org/10.1016/j.pharmthera.2007.04.004
http://www.ncbi.nlm.nih.gov/pubmed/17555825
http://dx.doi.org/10.3892/mmr.2018.9398
http://www.ncbi.nlm.nih.gov/pubmed/30132547


Toxins 2019, 11, 239 12 of 12

14. Leung, D.Y.; Guttman-Yassky, E. Deciphering the complexities of atopic dermatitis: Shifting paradigms in
treatment approaches. J. Allergy Clin. Immunol. 2014, 134, 769–779. [CrossRef]

15. Schlapbach, C.; Simon, D. Update on skin allergy. Allergy 2014, 69, 1571–1581. [CrossRef] [PubMed]
16. Lim, S.J.; Kim, M.; Randy, A.; Nam, E.J.; Nho, C.W. Effects of Hovenia dulcis Thunb. extract and methyl

vanillate on atopic dermatitis-like skin lesions and TNF-α/IFN-γ-induced chemokines production in HaCaT
cells. J. Pharm. Pharmacol. 2016, 68, 1465–1479. [CrossRef] [PubMed]

17. Galli, S.J.; Tsai, M.; Piliponsky, A.M. The development of allergic inflammation. Nature 2008, 454, 445–454.
[CrossRef] [PubMed]

18. Owen, C.E. Immunoglobulin E: Role in asthma and allergic disease: Lessons from the clinic. Pharmacol. Ther.
2007, 113, 121–133. [CrossRef]

19. Killick, J.; Morisse, G.; Sieger, D.; Astier, A.L. Complement as a regulator of adaptive immunity.
Semin. Immunopathol. 2018, 40, 37–48. [CrossRef]

20. Tsokos, G.C.; Fleming, S.D. Autoimmunity, complement activation, tissue injury and reciprocal effects.
Curr. Dir. Autoimmun. 2004, 7, 149–164.

21. Markiewski, M.M.; Lambris, J.D. The Role of Complement in Inflammatory Diseases From Behind the Scenes
into the Spotlight. Am. J. Pathol. 2007, 171, 715–727. [CrossRef]

22. Sales, T.A.; Marcussi, S.; da Cunha, E.F.F.; Kuca, K.; Ramalho, T.C. Can Inhibitors of Snake Venom
Phospholipases A2Lead to New Insights into Anti-Inflammatory Therapy in Humans? A Theoretical Study.
Toxins 2017, 9, 341. [CrossRef]

23. Harris, J.B.; Scott-Davey, T. Secreted Phospholipases A2 of Snake Venoms: Effects on the Peripheral
Neuromuscular System with Comments on the Role of Phospholipases A2 in Disorders of the CNS and Their
Uses in Industry. Toxins 2013, 5, 2533–2571. [CrossRef]

24. Doo, K.H.; Lee, J.H.; Cho, S.Y.; Jung, W.S.; Moon, S.K.; Park, J.M.; Ko, C.N.; Kim, H.; Park, H.J.;
Park, S.U. A Prospective Open-Label Study of Combined Treatment for Idiopathic Parkinson’s Disease Using
Acupuncture and Bee Venom Acupuncture as an Adjunctive Treatment. J. Altern. Complement Med. 2015, 21,
598–603. [CrossRef]

25. Lee, J.H.; Li, D.X.; Yoon, H.; Go, D.; Quan, F.S.; Min, B.I.; Kim, S.K. Serotonergic mechanism of the relieving
effect of bee venom acupuncture on oxaliplatin-induced neuropathic cold allodynia in rats. BMC Complement
Altern. Med. 2014, 14, 471. [CrossRef]

26. Lim, B.S.; Moon, H.J.; Li, D.X.; Gil, M.; Min, J.K.; Lee, G.; Bae, H.; Kim, S.K.; Min, B.I. Effect of bee venom
acupuncture on oxaliplatin-induced cold allodynia in rats. Evid. Based Complement Alternat. Med. 2013, 2013,
369324. [CrossRef]

27. Lee, S.M.; Yang, E.J.; Choi, S.M.; Kim, S.H.; Baek, M.G.; Jiang, J.H. Effects of bee venom on glutamate-induced
toxicity in neuronal and glial cells. Evid. Based Complement Alternat. Med. 2012, 2012, 368196. [CrossRef]

28. Mingomataj, E.C.; Bakiri, A.H. Episodic hemorrhage during honeybee venom anaphylaxis: Potential
mechanisms. J. Investig. Allergol. Clin. Immunol. 2012, 22, 237–244.

29. Shaldoum, F.M.; Hassan, M.I.; Hassan, M.S. Natural Honey Bee venom Manipulates Human Immune
Response. Egypt J. Hosp. Med. 2018, 72, 4252–4258.

30. Janeway, C.A., Jr.; Travers, P.; Walport, M.; Shlomchik, M.J. Immunobiology: The Immune System in Health and
Disease, 5th ed.; Garland Science: New York, NY, USA, 2001; Available online: https://www.ncbi.nlm.nih.gov/

books/NBK27100/ (accessed on 5 January 2019).
31. Park, J.H.; Yim, B.K.; Lee, J.H.; Lee, S.; Kim, T.H. Risk associated with bee venom therapy: A systematic

review and meta-analysis. PLoS ONE 2015, 10, e0126971.
32. Lee, W.R.; Pak, S.C.; Park, K.K. The protective effect of bee venom on fibrosis causing inflammatory diseases.

Toxins 2015, 7, 4758–4772. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jaci.2014.08.008
http://dx.doi.org/10.1111/all.12529
http://www.ncbi.nlm.nih.gov/pubmed/25283085
http://dx.doi.org/10.1111/jphp.12640
http://www.ncbi.nlm.nih.gov/pubmed/27696405
http://dx.doi.org/10.1038/nature07204
http://www.ncbi.nlm.nih.gov/pubmed/18650915
http://dx.doi.org/10.1016/j.pharmthera.2006.07.003
http://dx.doi.org/10.1007/s00281-017-0644-y
http://dx.doi.org/10.2353/ajpath.2007.070166
http://dx.doi.org/10.3390/toxins9110341
http://dx.doi.org/10.3390/toxins5122533
http://dx.doi.org/10.1089/acm.2015.0078
http://dx.doi.org/10.1186/1472-6882-14-471
http://dx.doi.org/10.1155/2013/369324
http://dx.doi.org/10.1155/2012/368196
https://www.ncbi.nlm.nih.gov/books/NBK27100/
https://www.ncbi.nlm.nih.gov/books/NBK27100/
http://dx.doi.org/10.3390/toxins7114758
http://www.ncbi.nlm.nih.gov/pubmed/26580653
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	BV Increased CD55 Production in THP-1 Cells 
	BV Induced CD55 Through the Activation of ERK 
	BV Alleviated AD Symptoms 
	BV Inactivated Complement System in AD-Like Mice 
	Melittin Alleviated AD Symptoms Through the Regulation of Complement 

	Discussion 
	Materials and Methods 
	Cell Culture 
	Drugs 
	Real-Time PCR 
	Western Blot 
	Animals 
	Development of Irritant Contact Dermatitis (ICD) Mouse 
	Treatment of ICD Mice Using BV 
	Clinical Skin Score. 
	Enzyme-Linked Immunosorbent Assay (ELISA) 
	Complement-Dependent Cytotoxicity Assay 
	Bactericidal Assay 
	Statistical Analysis 

	References

