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ABSTRACT Cytokeratins are expressed in different types of epithelial cells in certain combi- 
nations of polypeptides of the acidic (type I) and basic (type II) subfamilies, showing "expres- 
sion pairs." We have examined in vitro the ability of purified and denatured cytokeratin 
polypeptides of human, bovine, and rat origin to form the characteristic heterotypic subunit 
complexes, as determined by various electrophoretic techniques and chemical cross-linking, 
and, subsequently, intermediate-sized filaments (IFs), as shown by electron microscopy. We 
have found that all of the diverse type I cytokeratin polypeptides examined can form 
complexes and IFs when allowed to react with equimolar amounts of any of the type II 
polypeptides. Examples of successful subunit complex and IF formation in vitro include 
combinations of polypeptides that have never been found to occur in the same cell type in 
vivo, such as between epidermal cytokeratins and those from simple epithelia, and also 
heterologous combinations between cytokeratins from different species. The reconstituted 
complexes and IFs show stability properties, as determined by gradual "melting" and reasso- 
ciation, that are similar to those of comparable native combinations or characteristic for the 
specific new pair combination. The results show that cytokeratin complex and IF formation in 
vitro requires the pairing of one representative of each the type I and type II subfamilies into 
the heterotypic tetramer but that there is no structural incompatibility between any of the 
members of the two subfamilies. These findings suggest that the co-expression of specific pair 
combinations observed in vivo has other reasons than general structural requirements for IF 
formation and probably rather reflects the selection of certain regulatory programs of expres- 
sion during cell differentiation. Moreover, the fact that certain cytokeratin polypeptide pairs 
that readily form complexes in vitro and coexist in the same cells in vivo nevertheless show 
preferential, if not exclusive, partner relationships in the living cell points to the importance 
of differences of stabilities among cytokeratin complexes and/or the existence of extracyto- 
keratinous factors involved in the specific formation of certain cytokeratin pairs. 

Intermediate-sized filaments (IFs)' are characteristic struc- 
tures present in the cytoplasm of most vertebrate cells which 
are formed by five different classes of  proteins expressed in a 

~Abbreviations used in this paper. DMS, dimethyl suberimidate; 
HPLC, high-performance liquid chromatography; IF, intermediate 
filament. 
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cell type-specific manner: Vimentin is found in mesenchy- 
mally derived cells, desmin in most myogenic cells, glial 
filament protein in astrocytes, neurofilament proteins in neu- 
rons and some related cells, and cytokeratins in epithelial cells 
(for reviews see Franke et al., 1982c; Lazarides, 1982; Steinert 
et al., 1982; Osborn and Weber, 1983). Among these different 
IF protein classes the cytokeratins are particularly complex, 
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and ~20 different cytokeratin polypeptides, ranging in Mr 
from 40,000 to 68,000 and in isolectric pH under denaturing 
conditions from ~5 to 8, have been distinguished and shown 
to be expressed in different sets in different epithelia of human 
(Moll et al., 1982a; Sun et al., 1984), bovine, and rodent 
(Schiller et al., 1982) tissues. All IF proteins are characterized 
not only by their unusually high resistance to treatments with 
various buffers and solvents, including high salt concentra- 
tions, but also by the tendency of the denatured polypeptides 
to reconstitute, in vitro, IFs, which by electron microscopy, 
x-ray diffraction analysis, and various biochemical parameters 
are indistinguishable from native IFs (Cooke, 1976; Lee and 
Baden, 1976; Steinert et al., 1976, 1979, 1980, 1982; Small 
and Sobieszek, 1977; Starger et al., 1978; Steinert, 1978; Sun 
and Green, 1978; Rueger et al., 1979; Geisler and Weber, 
1980, 1981; Huiatt et al., 1980; Cabral et al., 1981; Franke et 
al., 1979, 1981d; Renner et al., 1981; Liem and Hutchinson, 
1982; Zackroff et al., 1982; Aebi et al., 1983). In general, 
nonepithelial IF polypeptides can assemble into IFs alone 
whereas the formation of cytokeratin IFs requires at least two 
different cytokeratin polypeptides (Lee and Baden, 1976; 
Steinert et al., 1976, 1982; Steinert, 1978; Milstone, 1981). 
More specifically, it has been claimed by some authors that 
IFs would only form when the polypeptides are present at 
molar ratios of 2:1 or l: 1: l, in accord with the concept of a 
triple-chain a-helical core structure, which was the prevailing 
model until recently (Skerrow et al., 1973; Lee and Baden, 
1976; Steinert et al., 1976, 1979, 1980, 1982; Steinert, 1978). 
This model, however, is in contrast to other models of IF 
subunit organization, which are based on the existence of 
four-chain subunits, as suggested by analyses of proteolytically 
obtained fragments of sheep wool a-keratins (Ahmadi and 
Speakman, 1978; Ahmadi et al., 1980; Woods and Gruen, 
198 l; Crewther et al., 1983; Gruen and Woods, 1983; Woods 
and Inglis, 1984). A tetrameric subunit organization has first 
been shown for desmin (Geisler and Weber, 1982; Geisler et 
al., 1982) and has been proposed to apply to IFs in general 
(Weber and Geisler, 1984). 

In the last few years it has become apparent that the diverse 
cytokeratin epithelial cell types examined express at least one 
member of either subfamily (Moll et al., 1982a), and Sun and 
colleagues have emphasized the conspicuous patterns of co- 
expression of certain cytokeratins that suggest the existence 
of distinct "expression pairs" (Sun et al., 1984; Cooper et al., 
1985). In addition, it has been shown that pair combinations 
of type I and type II polypeptides (Fuchs et al., 1981, 1984; 
Crewther et al., 1983) form, in vivo and in vitro, complexes 
that are remarkably stable to denaturing agents such as urea, 
and the dissociation ("melting") point of the type I and II 
cytokeratins is a characteristic of a given pair (Franke et al., 
1983, 1984). 

Analyses of the free complexes obtained with moderate 
concentrations of certain denaturing agents (e.g., 4 M urea) 
have revealed the existence of distinct tetrameric subunits in 
cytokeratin IFs, containing two type I and two type II poly- 
peptides arranged in two tightly associated coiled-coils (Quin- 
lan et al., 1984a), in agreement with models proposed for 
sheep wool a-keratins (Ahmadi et al., 1980; Gruen and 
Woods, 1983; Woods and Inglis, 1984; for epidermal keratins 
see also Woods, 1983; Parry et al., 1985) and the homotypic 
four-chain subunit organization of desmin and vimentin IF 
(Geisler and Weber, 1982; Pang et al., 1983; Quinlan et al., 
1984a; Geisler et al., 1985). 

It is not clear, however, whether the co-expression of certain 
cytokeratin pairs merely reflects the coordinated regulation of 
these genes in the same cell differentiation program or whether 
there exist incompatibilities or selective structural require- 
ments of cytokeratin "pairing" and IF formation. For exam- 
ple, Sun et al. (1984) and Cooper et al. (1985) have recently 
emphasized a systematic size difference of Mr ~8,000 between 
the specific type II and type I members of the cytokeratin 
pairs, which, if it were essential for IF formation, would 
exclude certain combinations of cytokeratin polypeptides. In 
the study described here we have systematically examined the 
compatibility of different purified cytokeratin polypeptides in 
the formation of complexes and IFs by combining in vitro 
different members of the type I subfamily with different 
members of the type II subfamily, including combinations 
never observed in vivo and heterologous combinations be- 
tween different species. We show that (a) independent of the 
patterns of expression observed in cells and tissues, all exam- 
ined type I cytokeratins can complex with all type II cytoker- 
atins, which can then form IFs in vitro, and (b) heterologous 
recombinations of cytokeratins are readily obtained. The re- 
sults indicate that cytokeratin If formation does not appear 
to depend on the expression of certain pairs because of 
structural restrictions and incompatibilities of some cytoker- 
atin polypeptides. 

MATERIALS AND METHODS 

Ceils and Tissues: Cells of established cell lines (bovine MDBK and 
BMGE lines, human MCF-7 and Detroit 562) were grown as described (Franke 
et al., 198 lc; Moll et al., 1982a; Schmid et al., 1983). Bovine muzzle epidermis 
and other bovine tissues were obtained from the local slaughterhouse (compare 
Franke et al., 1981c). Human epidermis from breast, abdominal skin, or foot 
soles, human tongue and oral mucosa, and intestinal mucosa were biopsy or 
autopsy materials (compare Franke et al., 1981c, Moll et al., 1982a, b). Rat 
tissues were obtained as described (Franke et al., 1981a-d). 

Preparation of Cytoskeletal Fractions: Cultured cells were lysed 
and extracted with high salt buffers containing 1% Triton X-100 and 5 mM 
EDTA (Franke et al., 1981a-c). Cell residues were usually sheared briefly with 
a Dounce homogenizer in high salt buffer to reduce the amount of residual 
DNA (Quinlan et al., 1984a). 

Cytoskeletal residues were prepared from small pieces of bovine and rat 
tissues by extraction in high salt Triton X-100 buffers as described (Franke et 
al., 1981a-d, 1982a; Quinlan et al., 1984a). 

Cytokeratin-enriched fractions from human tissues were prepared as follows: 
The epithelial layers were scraped off, minced with scissors, homogenized briefly 
in detergent buffer (10 mM Tris-HCl, 150 mM NaC1, 0.5% Triton X-100, 5 
mM EDTA, pH 7.6) using a Polytron homogenizer (Kinematica, Lucerne), 
and then extracted in high salt buffer containing 1% Triton X-100 and 5 mM 
EDTA. 

Purification of Cytokeratins: Individual cytokeratins were electro- 
phoretically separated bands, or were chromatographically purified using ion- 
exchange chromatograpy on DEAE-cellulose, or reverse-phase high-perform- 
ance liquid chromatography (HPLC; Quinlan et al., 1984a). In some cases a 
combination of the two methods was necessary to obtain optimal purification. 
Gel electrophoresis-separated polypeptide bands were visualized by incubating 
the gels in 4 M sodium acetate solution (Higgins and Dahmus, 1979), excising, 
and electrophoretically eluting them. Purified proteins were dialyzed against 
low salt buffer, precipitated with ice-cold acetone, washed several times with 
acetone/water (9:1, vol/vol) and once with pure acetone, and finally air-dried. 

DEAE-cellulose anion-exchange chromatography (DE52, Whatman Chem- 
ical Separation Inc., Clifton, N J; Millipore, Molsheim, France) was performed 
in 8 M urea in 30 mM Tris-HC1 (pH 8) containing 5 mM dithiothreitol. 
Cytoskeletal proteins were dissolved in the 8 M urea buffer, bound to the 
column in the same buffer, and eluted with a linear gradient from 0-100 mM 
guanidinium-HCI (same buffer). Fractions were either used directly for recon- 
stitution assays or applied to the HPLC column. 

For reverse-phase HPLC separations, a pump and control unit (LKB 2150 
HPLC pump, 2152 HPLC controller, LKB Instruments Inc., Bromma, Sweden) 
and a reverse-phase column (Hi-Pore RP304 250 x 4.6 mm; Bio-Rad Labora- 
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tories, Richmond, CA) were used. The solvents applied were 0.1% trifluoroa- 
cetic acid (Fluka AG, Buchs, Switzerland) as aqueous phase and 0.07% TFA 
in acetonitrile (Liquisolv, chromatographic grade, Merck, Darmstadt, Federal 
Republic of Germany) as organic phase. Acetonitrile was removed by vacuum 
evaporation and the samples were then lyophilized. Protein determinations 
were performed according to the method described by Bradford (1976). 

Renaturation of Proteins and geconstitution of Complexes 
and IFs: Total cytoskeletal proteins or various combinations of purified 
cytokeratin polypeptides were dissolved at various ratios (adjusted to near- 
molar concentrations of 1:2, l:l, 2:1) in 9.5 M urea in 5 mM Tris-HC1 buffer 
(pH 8.0) containing 25 mM 2-mercaptoethanol and, for complex reconstitution, 
dialyzed for 3 h against 4 M urea in 5 mM Tris-HCl buffer (pH 8.0) containing 
25 mM 2-mercaptoethanol. In experiments involving chemical cross-linking, 
the dialysis was against 4 M urea, l0 mM sodium phosphate buffer, l0 mM 2- 
mercaptoethanol (pH 8.0). Aliquots were analyzed by two-dimensional gel 
electorphoresis and electron microscopy. For analysis by differential "melting," 
polypeptides were dialyzed from the 9.5 M urea solution to 5 mM Tris-HCl 
buffer (as above) containing various concentrations of urea (4-9 M). 

Reassembly of complexes into IFs was initiated by stepwise dialysis first to 
l0 mM Tris-HCI buffer (pH 7.6) and then to 30 or 50 mM Tris-HCl buffer 
(same pH), both containing l0 mM 2-mercaptoethanol. Aliquots were analyzed 
by electron microscopy and, after pelleting by centrifugation for 20 rain at 
100,000 g (Airfuge, Beckman Instruments, Munich), by SDS PAGE. Amounts 
of pelleted and nonpellcted proteins were determined as described (Bradford, 
1976). 

Gel Electrophoresis: For SDS PAGE the system described by 
Laemmli (1970) was used. For two-dimensional gel electrophoresis isoelectric 
focusing (O'Farrell, 1975) or nonequilibrium pH gradient electrophoresis (O'- 
Farrell et al., 1977) was used for separation in the first dimension (for some 
modifications see Franke et al., 1981~ Moll et al., 1982a). Reconstituted 
complexes were analyzed by isoelectric focusing or nonequilibrium pH gradient 
electrophoresis in the presence of the same concentrations of urea as in the 
sample (Franke et aL, 1983). Gels were stained and densitometrically deter- 
mined using the gel scanner system of the Gilford 2600 spectrophotometer 
(Gilford Instrument Laboratories, Inc., Oberlin, OH). 

Chemical Cross-linking: Combinationsoftwo different cytokeratin 
polypeptides were mixed, at various ratios (see above), in 9.5 M urea, 5 mM 
Tris-HCl (pH 8), 25 mM 2-mercaptoethanol, and then dialyzed against 4 M 
urea in l0 mM sodium phosphate (oH 8.0) containing l0 mM 2-mercaptoeth- 
anol. Dimethyl suberimidate (DMS; Pierce Chemical Co., Rockford, IL) was 
dissolved in the same buffer, the pH was readjusted to 8.0, and the buffer was 
added to the samples so that 0.02-0.05 mg/ml protein was exposed to final 
concentrations of 0.5 and I mg/ml DMS, respectively. After incubation for 1- 
2 h at room temperature the reaction was stopped by precipitation with 10% 
trichloroacetic acid and two subsequent washes of the precipitate with acetone/ 
water (Quinlan et al., 1984a). For SDS PAGE, proteins were dissolved in 
sample buffer. For identification of cross-linked complexes, diagonal electro- 
phoresis was performed as described by Packman and Perham (1982). Cross- 
linked samples were separated on SDS PAGE (7.5% acrylamide), and the gel 
track was excised and treated with -2  M methylamine (analytical grade Merck) 
at pHI  1.5 in 75% acetonitrile for 3 h at 37"C. After cleavage of the cross-links 
the gel tracks were re-equilibrated in SDS-containing sample buffer, and poly- 
peptides were separated by the second dimension SDS PAGE. 

Electron Microscopy: Preparation for electron microscopy, using the 
spraying-rotary shadowing or the negative staining technique, was as described 
(Franke et al., 1982a; Quinlan et al., 1984a). 

RESULTS 

Previous cytokeratin IF reconstitution studies, using polypep- 
tides separated and/or analyzed by preparative gel electropho- 
resis (e.g., Lee and Baden, 1976; Steinert et al., 1976, 1982; 
Milstone, 1981), have documented the purity of their prepa- 
rations by one-dimensional gel electrophoresis. Since certain 
cytokeratin polypeptides display very similar mobilities on 
SDS PAGE but differ in their isoelectric pH values (Franke 
et al., 1981c; Moll et al., 1982a), we found it necessary to 
monitor the purity and integrity of the preparations obtained 
by two-dimensional gel electrophoresis. 

Purification of Cytokeratin Polypeptides 
For this study it was necessary to purify individual cytoker- 
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atin polypeptides. To achieve this, different purification meth- 
ods had to be used for different polypeptides. Whereas some 
cytokeratin polypeptides could be obtained in a form that 
appeared homogenous on two-dimensional gel electrophoresis 
by HPLC alone, by use of the technique of Quinlan et al. 
(1984a), other polypeptides could only be separated from 
each other by the combined use of DEAE-cellulose ion- 
exchange chromatography and subsequent HPLC. Still others 
could only be separated by dissecting electrophoretically sep- 
arated protein bands from polyacrylamide gels. Fig. l, a-j 
document the purity of several of the human cytokeratin 
polypeptides used in this study and also show that the proce- 
dures used for purification do not considerably alter the 
isoelectric pH value (compare with Moll et al., 1982a). Fig. 
l, a, d-f, i, and j present examples of purification of cytoker- 
atin polypeptides by HPLC alone or in combination with ion- 
exchange chromatography. Fig. l, g and h present examples 
of cytokeratin polypeptides (Nos. 13 and 14) separated by 
preparative SDS PAGE (these two polypeptides could also be 
purified by combinations of ion-exchange chromatography 
and HPLC, when cytoskeletal material from especially suita- 
ble tissues was used; see Moll et al., 1982a). In certain 
examples, two closely related polypeptides of very similar 
sizes and isoelectric points could not be separated from each 
other and therefore had to be used as mixtures. Fig. l, b and 
c present examples of preparations of mixtures of such related 
polypeptides, i.e., cytokeratins Nos. 4 and 5 (Fig. 1 b) and 5 
and 6 (Fig. I c), obtained as two different gel electrophoretic 
fractions of cytoskeletal proteins from human oral mucosa. 

Fig. l, k-n presents some similar purifications of various 
bovine cytokeratin polypeptides. Methodological details of 
preparations and characterization are published elsewhere 
(Achtst~itter et al., 1985). Cytokeratin polypeptides A and D 
from rat liver were separated by ion-exchange chromatogra- 
phy, usually followed by HPLC, resulting in purifications 
comparable to those obtained for human and bovine cytoker- 
atins A and D (not shown). Proteolytic breakdown, as indi- 
cated by the appearance of characteristic staircase patterns 
(e.g., indicated by arrows in Fig. I k), was low in all prepara- 
tions, including cytokeratin No. 8, whose terminal regions are 
particularly prone to proteolytic digestion (compare Schiller 
and Franke, 1983). 

Formation of Heterotypic Cytokeratin Complexes 
from Purified Polypeptides 

Individual cytokeratins were examined for their ability to 
reassociate into the heterotypic complexes of two type I and 
two type II cytokeratin polypeptides that have been shown to 
be identical to the tetrameric subunits of IFs (Geisler and 
Weber, 1982; Woods, 1983; Quinlan et al., 1984a, b; Parry et 
al., 1985). The individually purified human cytokeratin poly- 
peptides A (No. 8) and D (No. 18), which are co-expressed in 
many types of simple epithelial cells (Moll et al., 1982a; 
Cooper et al., 1985), were denatured (Fig. 2, a and b), mixed 
in 9.5 M urea containing buffer and dialyzed to buffer con- 
taining 4 M urea to induce complex formation. At molar 
ratios of l: 1 maximal recovery of both polypeptides in the 
isoelectric complex was obtained. The stability of this in vitro- 
formed complex to dissociation in increasing concentrations 
of urea ("melting") was compared with that of naturally 
occuring complexes of human components A and D as ob- 
tained from cultured hepatocellular carcinoma cells of the 



FIGURE 1 Some examples demonstrating the purity of isolated 
human (a-j; numbers according to Moll et al., 1982a) and bovine 
(k-n; for numbering see Schiller et al., 1982) cytokeratin polypep- 
tides as demonstrated by two-dimensional electrophoresis. Proteins 
were separated by reverse-phase HPLC (a, f), DEAE anion-exchange 

PLC line (our unpublished data), as determined by two- 
dimensional gel electrophoresis using different urea concen- 
trations (see Franke et al., 1983). The "mating cross" sum- 
mary of Table I lists the successful complex formations of 
purified human cytokeratins. Fig. 2, c-e presents some se- 
lected examples from such "melting series," showing the intact 
complex at 5 M urea, the partly dissociated polypeptides at 7 
M urea (Fig. 2 d), and the almost completely separated poly- 
peptides at 7.5 M urea. The melting curve and the mid- 
melting point (at ~6.7 M urea; for definition of "melting 
points," Urn, see Franke et al., 1983, 1984) were essentially 
the same as those observed for the complex occurring in vivo 
(see also Franke et al., 1984), indicating that the purification 
methods did not have any influence upon the association 
characteristics of the polypeptides. Similar observations were 
made with in vitro recombinations of purified bovine and rat 
cytokeratins A and D (data not shown). 

To examine the compatibility of the corresponding cyto- 
keratins from different species that are expressed in the same 
cell type, bovine cytokeratin A and human component D 
(No. 18) were mixed in nearly equimolar amounts in the 
presence of 9.5 M urea and allowed to reassociate into com- 
plexes by dialysis against lower concentrations of urea. Inter- 
species complexes were readily obtained (Fig. 2 f )  and showed 
melting properties similar to those of the homologous com- 
plex of human cytokeratins A and D (Urn, ~6.7 M urea; Fig. 
2, g-j). The reciprocal combination of human cytokeratin A 
(No. 8) and bovine cytokeratin D also resulted in stable 
interspecies complexes (Fig. 2, k-n) that revealed dissociation 
characteristics somewhat intermediate (Urn, ~6.4 M urea) 
between those of the native human and bovine complexes 
(Urn of the latter, -6.0 M urea; compare Franke et al., 1983, 
1984). 

Complex formation was also successful when we mixed 
cytokeratin polypeptides that in vivo are never co-expressed, 
such as epidermal cytokeratins with those of simple epithelia. 
Table I summarizes several examples of human cytokeratin 
complexes of this kind, and Fig. 3 presents in some detail two 
examples of bovine cytokeratin complexes, namely that 
formed by the simple epithelium-specific component A (No. 
8) and the epidermis-specific component VI (No. 13), as well 
as that recombined from purified polypeptides A and VII 
(No. 16), the latter of which occurs in various stratified 
epithelia and certain cultured cells (Franke et al., 1981c; 
Schiller et al., 1982; Schmid et al., 1983; Schiller, 1985). The 
stability of the complex of cytokeratin polypeptides A and VI 
(Fig. 3, a-e) was comparable to that of the naturally occurring 
complexes containing component VI (Franke et al., 1983). 
The complex between polypeptides A and VII, however, 
appeared considerably less stable (Fig. 3, f - j )  than the in vivo 
complexes between basic epidermal cytokeratins (I-IV) and 
VII (compare l~ranke et al., 1983). 

chromatography combined with reverse-phase HPLC (d, e, i-I), or 
preparative gel electrophoresis (b, c, g, h, m, n). Nonequilibrium 
pH gradient electrophoresis (NE; a-c, e-h, j, m, n) or isoelectric 
focusing (IEF; d, i, k, I) was used in the first dimension and electro- 
phoresis in the presence of SDS was used in the second dimension. 
Bovine serum albumin (B), actin (a), and phosphoglycerokinase (P) 
were added as marker proteins. Shown are human cytokeratins 
Nos. 1 (a), 4 and 5 (b), 5 and 6 (c), 8 (d), 9 (e), 10/11 (f), 13 (g), 14 
(h), 18 (i), 19 (j), bovine cytokeratins A (No. 8, k) and D (No. 21,/), 
and epidermal cytokeratins Vl (No. 13, m) and VII (No. 16, n). 
Arrows in k indicate typical degradation products of cytokeratin 8. 

HATZFELD AND FRANKE Cytokeratin Pair Formation 1829  



FIGURE 2 Two-dimensional gel electrophoresis of homologous and heterologous combinations of cytokeratins A and D at 
different urea concentrations. Isoelectric focusing (IEF) was used in the first dimension, as indicated in some of the figures (a, f, 
k). BSA (B) and actin (a) were co-electrophoresed as marker proteins. All purified proteins were dissolved alone or in a mixture 
with the other polypept ide in 9.5 M urea and dialyzed against the different urea concentrations, as indicated in the upper right 
corner. Isoelectric positions of purified human cytokeratins A (a) and D (b) are not altered by the purification procedure. (c-e) 
Melt ing behavior of isolated and recombined human cytokeratins A and D: (c) at 5 M urea the complex is still intact, and both 
polypeptides focus together (A' and D'  indicate positions of cytokeratins A and D in the complex); (d) at 7 M urea a portion of 
the polypeptides has dissociated and migrates as individual polypeptides (D, D'); (e) at 7.5 M urea the complex is completely 
dissociated (compare Franke et al., 1983, 1984). (f-j) Melting behavior of the heterologous complex of bovine component A (Ao 
and A~') and human component  D (D0 and Dh'): (f) the complex is stable at 5 M urea and partly dissociated at 6 M urea (g); (i) 
almost complete separation is achieved at 7.5 M urea; (j) complete dissociation occurs at 9.5 M urea. (k-o) Dissociation 
characteristics of the complex of human component  A (Ah and Ah') and bovine component D (Db and Db'): (k, t) at 4 and 5 M 
urea the complex is still intact; (m) it partly dissociates at 6.5 M urea; complete separation is achieved at 7 M (n) and 8 M (o) 
urea. 

TABLE I. Human Cytokeratin Polypeptide Pairs Observed in Complexes and Filaments In Vitro and In Vivo* 

No.* 3 4 5 6 7 8 

9 + / +  ND 
10/11 ,s + / +  N D 
12 ND/o ND 
13 +/o N D 
14 +/o  ND 
15 ND/o ND 
16 + /o  N D 
17 + /o  N D 
18 + /o  N D 
19 +/o N D 

ro + 

ro + 
~+ ND 
~o + 
ro + 
~o ND 
fo + 
ro + 

ro + 
to + 

~o + 
fo + 

ro ND 
~+ + 

fo + 
to ND 
fo + 
ro + 
to + 

fo + 

Io + /o  + 
ro + /o  + 
t+ N D/o N D 
t+ + / +  + 

~+ +Io  + 
t+ N D/o N D 
to + /+  N D 
~+ + / +  + 
to + /o  + 
~+ +/o + 

Io +/o  
Io +/o  

Io N D/o 
~o + /o  
Io +Io 
fo N D/o 
to + Io  
t+ + /o  
to +/+ 
r+ +/+ 

Complex formation observed by two-dimensional gel electrophoresis, using different urea concentrations in the first dimension separation, and IFs observed 
by electron microscopy. In many experiments complexes have also been analyzed by "differential melting" in urea, and chemical cross-linking and proteins 
recovered in reconstituted IFs have been determined by gel electrophoresis, o, not observed in vivo (this does not exclude its possible existence in a specific 
cell type not yet identified). ND, not determined. 

* Cytokeratin polypeptides are indicated by numbers according to Moll et al. (1982a). 
* Component No. 2 is a minor polypeptide of epidermis and related epithelia and has not been included in this study. 
t Components Nos. 10 and 11 are not well separated by the techniques used. 
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FIGURE 3 Two-dimensional gel electrophoresis of mixtures of recombined bovine cytokeratins. Labels are explained in the 
legend to Fig. 1. IEF in the first dimension was performed as indicated (a-m). NE was used in n and o. The downward arrows 
denote the direction of second dimension electrophoresis in the presence of SDS. Proteins were dissolved and mixed in 9.5 M 
urea and dialyzed against different urea concentrations, as indicated in the upper right corner. (a-e) Combinations of bovine 
cytokeratins A (from MDBK cells) and Vl (from snout epidermis): (a) at 4 M urea polypeptides A and Vl form a complex (A',* V/'), 
which begins to dissociate already at ~5 M urea (b) at which a part of cytokeratin Vl is separated from the position of the 
complex; (c) at 6 M urea, most of the polypeptides migrate according to their individual isoelectric points; (d) at 6.5 M urea 
separation is almost as complete as in 9.5 M urea (e). (f- j) Combinations of bovine cytokeratin A and epidermal cytokeratin VII: 
(f) at 4 M urea both polypeptides co-migrate in the complex position (A', VII'); (g) at 5 M urea small amounts of VII have left 
the complex and migrated to a more acidic position at 6 M (h) and 7 M (i) urea; dissociation increases and is complete at 9.5 M 
urea (j). Some controls for bovine cytokeratins are shown in k-o. Combinations of two acidic (type I) components (D, VI, and VII 
in k-m) and two basic (type II) cytokeratins (n, o; component I is from epidermis) do not result in complex formation, but the 
polypeptides migrate at 4 M urea according to their specific isoelectric position as at 9.5 M urea. 

In contrast, combinations of two different cytokeratin poly- 
peptides of the same subfamily never resulted in such com- 
plexes, not only with combinations of polypeptides from 
different tissues but also with cytokeratins that are co-ex- 
pressed in certain cells (Fig. 3, k-o  shows some examples). 

We have previously shown (Franke et al., 1984) that certain 
cytokeratin polypeptides expressed in the same cell exist pre- 
dominantly, if not exclusively, in different heterotypic com- 
plexes, which indicates that these polypeptides are not ex- 
changeable in the living cell but display different affinities to 
the specific components of the other subfamily. We have 
therefore studied complex formation in vitro between cyto- 
keratin polypeptides that are co-expressed but not complexed 
in vivo. Fig. 4, a-e  shows that human epidermal cytokeratin 
polypeptide No. 1, which in vivo is complexed primarily with 
cytokeratins Nos. l0 and l l, in vitro can form complexes 
with epidermal cytokeratin Nos. 14, which in vivo is predom- 
inantly found in complexes with cytokeratins No. 5. However, 
the stability of the in vitro complex between cytokeratins Nos. 
1 and 14 was found to be significantly lower (Urn --6.7 M 
urea) than that of the corresponding in vivo complex of 
cytokeratins Nos. 5 and 14 (Urn ~8.2 M urea) but similar to 

that of the in vivo cytokeratin complex of Nos. 1 and 10/11. 
The reciprocal in vitro combination between polypeptides 
Nos. 5 and 10/11 also formed stable complexes (Fig. 4, f - j ) ,  
which, interestingly, were similar in their stability to dissocia- 
tion in urea to the natively occurring epidermal complexes 
between cytokeratins Nos. 5 and 14. For controls, we show 
in vitro reconstitutions of the complexes between polypeptides 
Nos. 5 and 14 (Fig. 4k) and 1 and 10/11 (Fig. 4e), which are 
known to occur in vivo (Franke et al., 1984). 

Of special interest in this connection were certain epidermal 
keratins with unusual biochemical properties, which occur 
only in special body sites. The most prominent example is 
human cytokeratin No. 9, which is by far the largest type I 
cytokeratin (Mr 64,000) with a rather low isoelectric pH value 
when denatured in urea (pH 5.4) and which has been found 
only in foot soles and palms (Moll et al., 1982a). Recently 
Sun et al. (1984) have expressed some doubts that this is a 
genuine type I cytokeratin at all. When we examined the 
ability of purified cytokeratin No. 9 to complex with various 
other purified type I and type II human cytokeratins we found 
that it formed stable complexes with ,all type II. cytokeratins 
examined, including cytokeratin No. 1 (Fig. 4, m and n), 
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FIGURE 4 Two-dimensional gel electrophoresis of isolated and recombined human cytokeratin polypeptides at different urea 
concentrations. First dimension separation was NFPHGE (NE), as indicated in a, f, k, and p. Treatment of proteins and labels are 
as in previous figures. (a-e) Combinations of epidermal cytokeratins 1 and 14, which do not form complexes in vivo can complex 
in vitro: (a) at 4 M urea both polypeptides appear in an isoelectric position (1' and 14') due to their inclusion in a complex, 
which starts to dissociate at 6 M urea (b) and further at 7 M (c) and 8 M (d) urea. Total separation is achieved at 9.5 M urea (e). 
(~ j )  Combinations of cytokeratins 5 and 10/11, which do not form complexes in vivo do so in vitro: (f) both polypeptides are in 
the position of a complex (5' + 10"111') at 4 M urea. This complex is still stable in 6 M (g) and 7 M (h) urea, whereas at 8 M 
urea considerable amounts are dissociated (i). (j) Positions of fully separated cytokeratins Nos. 5 and 10/11 at 9.5 M urea. (k) 
Recombinations of complexes of purified epidermal cytokeratins Nos. 5 and 14 (a-d), which form a very stable naturally occurring 
complex (compare Franke et al., 1984). The complex (5':14') is stable at 7 M urea. (/) In vitro recombination of complexes from 
purified epidermal cytokeratins which form a complex in vivo (isoelectric complex positions denoted 1' and 10'/11' at 4 M 
urea). (m, n) Cytokeratin No. 1 from normal epidermis and No. 9 from human foot sole epidermis focus in the same position at 
4 M urea due to complex formation (m) and are separated at 9.5 M urea (n). (o, p) Purified type II cytokeratin polypeptides Nos. 
5/6 and 4/5 form complexes in vitro with the foot sole specific cytokeratin No. 9 (5' /6 ' :9 '  and 4' /5' :9 ') .  (q) In vitro complex of 
cytokeratin No. 8 from simple epithelia and cytokeratin No. 9 from human foot sole epidermis (8':9'). Note that in p and q, 
approximately equal amounts of the basic (type II) cytokeratins 4/5 and 8 co-migrate wtih cytokeratin No. 9 due to their inclusion 
in a complex (4' /5 ' :9 '  in p, 8':9'  in q), whereas the excess amounts of components 4/5 and 8 are separated, indicating that they 
are excluded from complex formation. (r-t) Recombination of purified type II cytokeratins Nos. 5/6 and 4/5 with small type I 
cytokeratins Nos, 17 (5 ' /6 '  and 17' in r), 18 (5 ' /6 '  and 18' in s), and 19 (4'(5) and 19' in t) from simple epithelia. 

which is its predominant partner in vivo, as well as cytoker- 
atins Nos. 4, 5, and 6 (Fig. 4, o and p), with which it is not 
found to be complexed in vivo. Remarkably, the foot sole 
epidermal cytokeratin No. 9 could also form complexes with 
cytokeratin No. 8 from simple epithelial cells, both in ho- 
mologous (Fig. 4 q) and heterologous (with bovine and rat 
cytokeratin A; not shown) combinations. Similar observations 
were made with complexes formed in vitro between the 

corresponding bovine hoof-specific epidermal cytokeratin 
No. 9 (Schiller et al., 1982; Schiller, 1985) which formed 
complexes not only with its epidermal type II in vivo partners 
(bovine cytokeratins Nos. 1-6 of Schiller et al., 1982) but also 
with nonepidermal cytokeratin No. 8 (data not shown). 

Table I summarizes our results of complex formations in 
vitro with all human cytokeratins, except cytokeratins Nos. 3 
and 12, which are specific for cornea (Moll et al., 1982a; 
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FIGURE 5 Cross-linking of in vitro complexes from 
purified bovine cytokeratins A with VII, I with Vl, 
and I with VII in 4 M urea-containing buffer. Poly- 
peptides were mixed in 9.5 M urea containing 
buffer, then dialyzed against 4 M urea buffer, and 
cross-linked with DMS for 2 h. Cross-linked products 
were characterized by one-dimensional (a) and "di- 
agonal" (b and c) gel electrophoresis. (a) Complexes 
of A and VII are shown in lanes 1 and 2, those of I 
and VII in lanes 3 and 4, and those of I and Vl in 
lanes 5 and 6. Lanes 1, 3, and 5 present the cross- 
linked products, and lanes 2, 4, and 6 show the 
protein complexes not treated with DMS. Arrow- 
heads denote the position of monomeric cytokeratin 
I. The upper white horizontal bars in lanes 1 and 2 
indicate cytokeratin A, and the lower white bars in 
lanes I-4 denote cytokeratin VII. The black bar in 
the right-hand lane R denotes the position of cyto- 
keratin Vl in lanes 5 and 6. Brackets indicate the 
position of tetramers; the angles denote the posi- 
tions of the specific dimers (the small arrows pointing 
to lanes 1 and 3 denote the position of a dimer 
subspecies; for discussion see Quinlan et al., 1984a). 
Molecular weight markers (lanes denoted R) are 

(dots, from top to bottom) myosin heavy chain (Mr 200,000), phosphorylase a (Mr 94,000), bovine serum albumin (M, 68,000), L-glutamate 
dehydrogenase (M, 55,000), actin (Mr 42,000), and carbonic anhydrase (M, 29,000). (b) Analysis of the A:Vll complex by diagonal gel 
electrophoresis. After cross-linking with DMS the sample was subjected to SDS PAGE (UC, direction of electrophoretic separation of 
uncleaved products). The gel track was then excised, treated with methylamine in acetonitrile to cleave the cross-links, and laid on top of 
a second gel and the cleaved products were separated by SDS PAGE in the second dimension (C, direction of separation of cleaved 
products). Polypeptides not cross-linked lie on a diagonal, including a large proportion of monomeric cytokeratins A and VII. Components 
below the diagonal have been cross-linked when separated in the first dimension. Brackets indicate positions of tetramers; arrowheads 
denote dimer positions. All cross-linked products contained both cytokeratin polypeptides. M, reference proteins run on the left margin in 
the second dimension SDS PAGE are the same as in a; however, carbonic anhydrase is not included in the picture shown here. (c) Analysis 
of complexes of components I and Vl analyzed by the same procedure as in b. 

Schiller et al., 1982; Sun et al., 1984; Cooper et al., 1985; 
Schiller, 1985), and cytokeratin No. 15, which is a minor 
component in most epithelial cells that contain this protein. 
As three representative examples of recombined complexes 
formed in vitro from purified small type I cytokeratins, com- 
plexes of polypeptides Nos. 17, 18, and 19 with type II 
cytokeratins of the group Nos. 4 - 6  are shown in Fig. 4, r-t .  

In all cases examined, complex formation appeared maxi- 
mal with equimolar mixtures. Material of one polypeptide 
that was in excess appeared to be excluded from the complexes 
(Fig. 4, p and q present two examples of 2:1 mixtures). 

The nature of the complexes formed in vitro was also 
examined, in many of the cases, by cross-linking in 4 M urea- 
containing buffer as previously described for naturally occur- 
ring cytokeratin complexes of the rat (Quinlan et al., 1984a). 
As shown for several examples in Fig. 5, a-c ,  cross-linking 
resulted in the appearance of dimers and tetramers that could 
be split into their specific monomeric constituents by treat- 
ment with methylamine and identified by "diagonal electro- 
phoresis," which indicates that these complexes formed in 
vitro were similar to the tetrameric subunit identified in partly 
disassembled IFs (Quinlan et al., 1984a). 

Electron Microscopy of Reconstituted Cytokeratin 
Complexes and Filaments 

When individual purified cytokeratin polypeptides were 
first denatured in 9.5 M urea and then allowed to renature in 
low salt buffer solutions, we observed in no case the formation 
of 2- or 4-nm-diam protofilaments of considerable length. 
Using rotary metal shadowing and negative staining tech- 
niques, we noted that such preparations consisted primarily 

of rods 40-48 nm long (Fig. 6, a - c  present examples of three 
different nonepidermal and epidermal cytokeratin polypep- 
tides), which in negatively stained preparations revealed a 
diameter of 2-3 nm (not shown; compare Franke et al., 
1982a, 1984). These rodlike complexes reconstituted from 
individual cytokeratin polypeptides were similar to the cyto- 
keratin rods seen upon disintegration of hepatocytic IFs by 4 
M urea or 2 M guanidinium hydrochloride (Franke et al., 
1984; Quinlan et al., 1984a) and reconstituted bovine epider- 
mal keratin structures arrested in 4 M urea (Franke et al., 
1982a). In some preparations, especially those made from 
type II cytokeratins, we also found sizable, but variable, 
proportions of 10-30-nm-diam granules or short cylinders 
(not shown), similar to those reported for renatured type I 
bovine keratin (Steinert et al., 1982) and bovine keratin 
mixtures (Franke et al., 1982a; for similar granules in prepa- 
rations of vimentin IF see Renner et al., 198 l). 

When purified cytokeratin polypeptides were mixed in 
buffer containing 9.5 M urea so that the cytokeratin comple- 
ment of the specific cytoskeletal IF was restored, and then 
allowed to renature and assemble in appropriate low salt 
buffer, protofilamentous structures and IFs readily formed. 
Fig. 7 a presents such a control showing IFs formed from an 
~2:1:1 (wt/wt/wt) mixture of human cytokeratins Nos. 8, 18, 
19 as they occur in cultured human carcinoma cells of the 
MCF-7 line (Moll et al., 1982a). With prolonged incubation 
times the ratio of IFs to protofilament structures usually 
increased, but some residual rod complexes and protofila- 
ments were always noticed (Figs. 7, a - d  and 8a). That IF 
reconstitution was obtained independently of the specific 
method of polypeptide purification used (HPLC, DEAE-chro- 
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FIGURE 6 Examples of structures formed by isolated individual 
cytokeratin polypeptides demonstrated by electron microscopy 
using the rotary shadowing technique. Bovine cytokeratins D from 
MDBK cells (a), VII from snout epidermis (b), and cytokeratin A 
from rat liver (c) were dissolved in low salt buffers containing 9.5 
M urea and stepwise dialyzed first into 4 M urea containing 10 mM 
Tris-HCI buffer (pH 7.6) and then into 50 mM Tris buffer (pH 7.6). 
Most of the molecules appear as rods 40-50 long. With type II 
cytokeratins we frequently have noted the appearance of short 30- 
35-nm thicker rods (horizontal bars), in addition to the thinner 40- 
50-nm rods (arrows). Bars, 0.2/~m. 

matography, SDS PAGE) shows that none of the methods 
resulted in irreversible polypeptide damage or in modifica- 
tions interfering with reassembly into IFs. 

Reconstitution of protofilamentous and IF structures was 
consistently observed with approximately equimolar combi- 
nations of a given type II cytokeratin with the corresponding 
type I cytokeratin partner with which it is complexed in vivo. 
For example, human cytokeratin No. 8 formed IFs when 
combined with human cytokeratin No. 18 as well as with 
human cytokeratin No. 19. Such IF reconstitutions from co- 
expressed type I and type II cytokeratins were successful not 
only with proteins from the same species (data not shown) 
but also in heterologous combinations. Fig. 7, b and c present, 
as an example, IFs formed from human cytokeratin A, i.e. 
No. 8, with bovine cytokeratin D, i.e. No. 21. The same result 
was obtained when human cytokeratin A (No. 8) was com- 
bined with cytokeratin polypeptide D from rat liver or vice 
versa (not shown). The IFs formed in such heterologous 
recombinations were indistinguishable from the IFs formed 
by cytokeratins of the same species and usually included long 
(up to several micrometers) filaments (e.g., Fig. 7, b and c). 

IFs from both homologously and heterologously combined 
cytokeratins showed the typical -20-nm periodicity revealed 
upon spraying and rotary metal shadowing (e.g., Fig. 7c) 
typical for reconstituted IFs of various kinds of IF proteins, 
cytokeratins included (Ahmadi and Speakman, 1978; Franke 
et al., 1982a; Henderson et al., 1982; Milam and Erickson, 
1982). In both homologous and heterologous recombinations 
we also observed, besides normal IFs, loosely fasciated pro- 
tofilaments and residual 2-nm rods, 10-25-nm diam granules 
or annuli (e.g., Figs. 7, b-d, 8, a-d).  We did not notice any 
systematic differences of frequencies of any of these structures 
with respect to the specific polypeptide combination exam- 
ined. Therefore, we suspect that the variations in the relative 
frequencies of residual rods, granules, or protofilaments reflect 
variable minor differences of quantities (see also below) of 
polypeptides and/or marginal experimental influences during 
reconstitution. 

An example of IF reconstitution from two purified epider- 
mal polypeptides, i.e., a member of the bovine cytokeratin 
group Ia-c (for nomenclature see Franke et al., 1978, 198 l c; 
these are Nos. 1-3 of the bovine catalog of Schiller et al., 
1982), representative of the type II subfamily; and cytokeratin 
VI (No. 13), representative of type I cytokeratins, is shown in 
Fig. 8, a-c (see also Jorcano et al., 1984). Similar IF prepa- 
rations were obtained in combinations of approximately equi- 
molar amounts of other bovine epidermal cytokeratins such 
as Ia-c with VII, Ill/IV with VI, Ill/IV with VII (not shown). 
Moreover, when epidermal type I cytokeratins such as bovine 
epidermal components VI or VII were combined with type II 
cytokeratins from a different tissue that did not express cyto- 
keratins VI and VII, reconstitution of IFs was also observed. 
For example, Figs. 8, d and e present IFs formed from purified 
bovine cytokeratin A (No. 8) from cultured kidney epithelial 
cells of the MDBK line and purified bovine cytokeratin VI 
(No. 13) purified from muzzle epidermis. This showed that 
in vitro a cytokeratin from a simple epithelium can properly 
recombine with a cytokeratin specific for epidermal differen- 
tiation and form normal IFs. Essentially identical results were 
obtained when bovine cytokeratin A was recombined with 
bovine cytokeratin VII (No. 16) or when epidermal cytoker- 
atin polypeptides III and IV (Nos. 6 and 7) were allowed to 
react with cytokeratin D (No. 21). 

Similarly, IFs were observed when various purified human 
type I cytokeratins were recombined with purified human 
type II cytokeratins, including combinations not found in 
vivo. The results of the various reconstitution experiments 
with human cytokeratins are summarized in Table I. Positive 
examples included recombinations of cytokeratin polypep- 
tides that were not found to coexist in any of the cell lines 
and the tissues examined (compare Moll et al., 1982a; Schiller 
et al., 1982; Quinlan et al., 1984b; Schiller, 1985). We specif- 
ically examined whether certain human cytokeratins of unu- 

FIGURE 7 Electron microscopy showing IF structures formed from purified cytokeratin polypeptides. (a) Purified human 
cytokeratin polypeptides Nos. 8 (A), 18 (D), and 19 (Mr 40,000) from MCF-7 cells were recombined in 9.5 M urea buffer and 
dialyzed to 50 mM Tris-HCI (pH 7.6). Typical compact IFs can be seen in negatively stained preparations. The bracket indicates 
a bundle of loosely arranged protofilaments. (b) Experiment similar to that in a, showing IFs formed from the heterologous 
combination of human cytokeratin A (No. 8) and bovine cytokeratin D (bovine catalog No. 21). Note also some small granular 
aggregates in the background. (c, d) Sample similar to that in b but visualized by spraying and rotary metal shadowing. IFs are 
prominent and display the typical 20-nm periodicity. However, small and variable amounts of protofilament bundles (bracket 
with arrowheads in d), individual 40-45-nm rodlets (some are denoted by brackets in d), and annular structures (arrows are also 
seen at variable frequencies) are seen. Bars, 0.2 ~m. 
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FIGURE 8 Electron microscopy showing IFs formed in vitro from purified cytokeratin polypeptides. (a-c) IFs formed by 
polypeptides I and Vl from bovine epidermis as visualized by rotary metal shadowing (a, b) or negative staining (c). Procedure 
was as in Fig. 8. Typical IFs but also some 40-45-nm rodlets (brackets in a) are seen. (d, e) IFs from purified bovine cytokeratin 
polypeptides A (No. 8) and V[ (No. 13) using the rotary metaf shadowing technique. Note IFs as well as a few annular structures 
(arrows in a, b, and d). Bars, 0.2 ~am (a, b, c, e) and 0.5 ~.m (d). 

sual molecular properties and an unusually restricted occur- 
rence could form IFs in vitro. For example, human cytoker- 
atin No. 9 (see above) formed normal-looking IFs when 
combined in vitro with purified cytokeratin No. 1 (Fig. 9), 
with which it co-exists in vivo. However, it also formed IFs 
together with cytokeratin No. 8, with which it does not coexist 
in any of-the cell types and tissues examined so far (Moll et 
al., 1982a). Similarly, human cytokeratins Nos. 10 and l 1, 

two other relatively large acidic (type I) keratins of  epidermis 
and some other related stratified epithelial (Moll et al., 1982a), 
could form IFs with cytokeratin No. 1 and other type II 
cytokeratins (data not shown). 

Stoichiometry of Cytokeratin Polypeptides in 
Reconstituted Filaments 

In several of  our reconstitution experiments we examined 
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FIGURE 9 IFs assembled from purified cytokeratin polypeptides Nos. 1 (from normal breast epidermis) and 9 (from human foot 
sole epidermis). The negatively stained preparation shows long IFs (and some small granular aggregates). Bar, 0.2/~m. 

the polypeptide composition of the pelleted IFs (see Materials 
and Methods) by SDS PAGE and densitometry of the stained 
bands. In all cases the ratio of the type I and type II polypep- 
tides in the IFs formed was close to equimolarity (Fig. 10). 
Moreover, in experiments in which one partner was added in 
excessive amounts this excess appeared to be excluded from 
the complexes (Fig. 4, p and q) and the resulting pelletable 
filament material (for two examples see Fig. 10, a, b and d). 
An experimental problem was encountered in such experi- 
ments with certain large epidermal cytokeratins (e.g., human 
and bovine components 1) which do not complex with each 
other into IFs but form unspecific aggregates pelletable in a 
non-IF form. 

DISCUSSION 

The results of our systematic study on the in vitro recombi- 
nation of the diverse cytokeratins from different species allow 
us to draw several general conclusions about the interaction 
of polypeptides in cytokeratin complexes and IFs. 

Our results confirm observations of other groups (Lee and 
Baden, 1976; Steinert et al., 1976, 1982; Moll et al., 1982a) 
that individual cytokeratin polypeptides of either subfamily 
cannot form IFs. Our present data further suggest that indi- 
vidual cytokeratin polypeptides cannot form protofilaments 
of appreciable length. On the other hand, we have found that 
several purified cytokeratin polypeptides can renature and 
reassemble into rodlike structures, which, in their shape and 
dimensions (~2 x 45 nm), are almost indistinguishable in the 
electron microscope from the rodlike heterotypic tetramer 

subunits that have been observed upon disintegration of cy- 
tokeratin IF denaturing agents (Franke et al., 1984; Quinlan 
et al., 1984a). We think, however, that the rodlets formed by 
individual cytokeratin polypeptides in the present study are 
predominantly homodimers, as judged from sedimentation 
equilibrium analysis, gel electrophoresis of the undenatured 
complex, and chemical cross-linking data (Hatzfeld, M., R. 
A. Quinlan, A. Lustig, and W. W. Franke, unpublished ob- 
servations). We suggest that individual cytokeratin polypep- 
tides can arrange, at least in vitro, into coiled-coil homodi- 
mers, and perhaps even a few homotetramers, but cannot 
tandemly associate to form protofilaments and IFs. This 
seems to be at odds with the recently published suggestion of 
Parry et al. (1985) which proposes that cytokeratin IFs formed 
are composed of heterodimer complexes (for discussion see 
also Steinert et al., 1984). 

Probably the most important conclusion from our study is 
the finding that in vitro all of the examined cytokeratin 
polypeptides of either cytokeratin subfamily can form com- 
plexes and filaments with any member of the other subfamily. 
This does not hold only for co-expressed cytokeratins but also 
for polypeptides that obviously are not simultaneously syn- 
thesized in any cell type, i.e. proteins that never form com- 
plexes in vivo. Formation of heterotypic complexes and IFs 
is even observed in extreme combinations such as between 
cytokeratin A (No. 8 of the human and bovine catalogs), 
specific for various simple epithelia (Franke et al., 198 l a-d, 
1982c; Wu and Rheinwald, 1981; Moll et al., 1982a; Cooper 
et al., 1985), and cytokeratin No. 9, which is an epidermis- 
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specific keratin expressed only in certain body locations (in 
human foot soles and palms and in the posterior hoof pad of 
the cow; Moll et al., 1982a, b; Schiller et al., 1982; Sun et al., 
1984; Cooper et al., 1985; Schiller, 1985). 

This principle of pair requirement for cytokeratin IF for- 
mation is in agreement with the concept of "expression pairs" 
of Sun et al. (1984) and Cooper et al. (1985). The pair 
combinations successful in IF formation in vitro described in 
this study also provide an explanation for some earlier reports 
of in vitro formation of IFs, such as that describing filaments 
formed from two murine epidermal keratin polypeptides 
(Steinert et al., 1979) designated KI (Mr 68,000, now known 
to belong to the type II subfamily) and K2 (Mr 59,000, now 
known to be type I) and closely related to bovine epidermal 
cytokeratin VI (compare Jorcano et al., 1984). Short (<0.2 
um) pieces of IFs have also been described (Whitman-Aynardi 
et al., 1984) in reconstitutions in vitro of Mr 54,000 HeLa 
cytokeratins (which is a mixture of cytokeratins Nos. 7 and 
8; compare Franke et al., 1981c, 1982c; Moll et al., 1982a) 
and the low molecular weight range proteins of HeLa cells 
(which include cytokeratins Nos. 17 and 18; compare Franke 
et al., 1981c). The principle of type I-type II cytokeratin 
pairing is also compatible with most of the observations of 

FIGURE 10 Some examples demonstrating the stoichiometry of 
cytokeratin polypeptides in reconstituted, pelletable IFs as shown 
by SDS PAGE and densitometry of the Coomassie Blue-stained 
bands. In separate experiments, human cytokeratin No. 8 (A) was 
mixed with human cytokeratin No. 19 (denoted by the arrows in a, 
lane 6) or with bovine epidermal component VII (No. 16 of the 
bovine catalog of Schiller eta[., 1982; denoted by the lower of the 
two arrows at the right margin in (a) in low salt buffer containing 
9.5 M urea in molar ratios of 1:1 (lanes 1 and 7), 1:1.9 (lane 4), and 
1:1.6 (lane 10). The samples were dialyzed stepwise first into 10 
mM Tris-HCI buffer (pH 8) containing 4 M urea, and then into 30 
mM Tris-HCI buffer (pH 7.6). After centrifugation supernatant frac- 
tions (a, lanes 2, 5, 8, 11) and pelleted IFs (a, lanes 3, 6, 9, 12) were 
analyzed by SDS PAGE and densitometry. With near equimolar 
mixtures of type I and type II cytokeratins (a, lanes 1-3 and 7-9), 
supernatant fractions (lanes 2 and 8), as well as pelleted IFs (lanes 
3 and 9) contained both poiypeptides in a near-equimolar ratio 
(1:1.15 in lane 3, 1:0.8 in lane 9). Combinations in which one 
cytokeratin polypeptide exceeded that of cytokeratin No. 8 (e.g., 
human component No. 19 in lanes 4-6, and bovine component VII 
in lanes 10-12) showed near-equimolar ratios of the two specific 
cytokeratins in the pelletable IF material (a, lanes 6 and 12), whereas 
an enrichment of the excessive cytokeratin was noted in the super- 
natant fraction (component no. 19 in lane 5, component VII in lane 
11 ). (b-e) Densitometric scans of gel tracks 5 and 6 (b, c) and 11 
and 12 (d, e) showed for the supernatant material not recovered in 
reconstituted IFs, a molar ratio of 1:2.45 for the experiment using 
cytokeratins Nos. 8 and 19 (b) and 1:2.45 for the combination of 
human cytokeratin No. 8 and bovine component VII (d). In contrast, 
the corresponding pelleted IF contained polypeptides Nos. 8 and 
19 as well as human No. 8 and bovine component VII in about 
equimolar amounts (1:1.2 in d and 1:1.01 in e, respectively). Num~ 
bers on top of each peak denote the integral peak areas. Molecular 
weight markers (lanes denoted R in a) are (dots, from top to bottom): 
myosin heavy chain (Mr 200,000), /3-galactosidase (Mr 120,000), 
phosphorylase a (Mr 94,000), bovine serum albumin (Mr 68,000), 
and actin (Mr 42,000). Arrowheads (a, lane 5, and b) denote a minor 
contaminating protein which is highly enriched in the supernatant 
fraction and not recovered in the pelleted IFs, thus demonstrating 
the specificity of IF formation. 
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Lee and Baden (1976) and Steinert et al. (1976) who, using 
bovine epidermal keratins, have reported successful IF for- 
mation in vitro from combinations of purified large cytoker- 
atins (components la-3 of Steinert et al., 1976; components 
B and B' of Lee and Baden, 1976), which include the basic 
type II cytokeratins, with smaller cytokeratins (components 
4-6 of Steinert et al., 1976; A and A' of Lee and Baden, 
1976) representing the acidic type I cytokeratins. However, 
our findings are at odds with reports of Steinert et al. (1976, 
1982) that IFs can also be formed from combinations of 
bovine epidermal keratins 1 and 2, 1 and 3, 4 and 5, and 4 
and 6 (apparently these are components I and III, I and IV, 
VI and VII, and VI and VIII, respectively, in our nomencla- 
ture; Franke et al., 1978, 1981c). Combinations of the latter 
type have not been positive in our experiments and also do 
not meet the type I/type II pair-complex requirement. It may 
be, however, that the preparations of polypeptides designated 
2 and 3 by Steinert et al. (1976) were contaminated with the 
unusually large, hoof-specific type I epidermal keratin of Mr 
-64,000 (No. 9 of the catalog of Schiller et al., 1982). 

In all combinations of cytokeratin polypeptides examined, 
using nearly equimolar amounts of type I and II polypeptides 
we have obtained good yields of pelletable material in the 
form of protofilaments and IFs. In experiments in which the 
concentration of one component has been chosen to exceed 
that of the other component we have observed that the excess 
amount is excluded from the heterotypic complexes formed 
(e.g., Fig. 4, p and q) and also from the IFs harvested (Fig. 
10). This is in contrast with several reports in the literature 
such as those by Lee and Baden (1976) and Steinert et al. 
(1976, 1979, 1982) whose statements that molar ratios 1:2 or 
2:1 are necessary for IF formation have been taken as support 
for the triple-chain helix model (Skerrow et al., 1973; Lee and 
Baden, 1976; Steinert et al., 1976, 1979, 1982; Steinert, 1978). 
It is obvious that the findings of our present study as well as 
our previous reports that IFs of certain epithelial cells such as 
early embryonic epithelia, hepatocytes, several cultured cell 
lines such as rat and human hepatoma cells, and bovine 
MDBK cells all contain only two cytokeratin polypeptides in 
nearly equal amounts (Jackson et al., 1980; Franke et al., 
1981a-c; Moll et al., 1982a) are best explained by a 1:1 
stoichiometry requirement for IF formation. 

We have not identified any other requirement for successful 
pair formation than the principle that representatives of either 
subfamily react with each other. Sun and colleagues have 
recently proposed a model that requires that "within each 
keratin pair the basic member is always larger than the acidic 
member by approximately 8 kD" (Sun et al., 1984; Cooper et 
al., 1985). Although we agree that such a size difference 
between the two partners is frequently observed with cytoker- 
atin complexes in vivo, we also note that certain in vivo 
complexes do not comply with this rule, such as the Mr 
-64,000 (No. 9) keratin of human foot soles and bovine 
hooves, which is complexed with cytokeratin No. 1 of Mr 
68,000. From our in vitro experiments we conclude that size 
differences are not generally necessary for heterotypic com- 
plex formation and assembly into IFs. For example, the largest 
acidic (type I) cytokeratin (No. 9) of Mr 64,000 can readily 
complex with the smallest type II cytokeratin, i.e. No. 8 (Mr 
52,500). 

In all cases examined we have found that in vitro recom- 
bination of type I and type II polypeptides is possible not only 

between different cytokeratins of the same species but also 
between cytokeratins of different species such as man, cow, 
and rat. This indicates that there are no species restrictions in 
cytokeratin pairing and IF formation. Cross-species recom- 
binations ofcytokeratin polypeptides have also been reported, 
in the form of very short IF pieces, for certain mixtures of 
human HeLa and mouse epidermal cytokeratins (Whitman- 
Aynardi et al., 1984) and for several combinations ofmurine 
and bovine epidermal keratins (Steinert et al., 1982). The 
latter report, however, also claims successful IF formation 
between different members of the same subfamily, which 
disagrees with our findings (see also above). 

Whereas our data show that there is no exclusiveness for a 
given cytokeratin to mate with any cytokeratin of the other 
subfamily, they also provide evidence for differences of sta- 
bility between the diverse IFs and complexes formed in vitro. 
Analysis by melting in urea shows that the specific melting 
curve and Um value of a given cytokeratin complex reconsti- 
tuted in vitro is almost identical to that of the same cytoker- 
atin pair complex formed in vivo. Systematic differences of 
melting characteristics can be observed for those in vitro 
combinations of cytokeratins that do not occur in vivo, and 
examples both for "dominance" of a given component and 
for "intermediate" properties have been found. The reasons 
for these differences of stability are at present not understood. 
Whether the greater stabilities of certain cytokeratin com- 
plexes correlate with greater affinities and/or lower dissocia- 
tion constants of the constituent polypeptides has to be ex- 
amined. It will be particularly important to elucidate the 
forces involved in establishing and maintaining cytokeratin 
complexes and IFs as such studies might provide a clue to the 
understanding of some phenomena observed with cytokera- 
tins of living cells. For example, in certain cells different, 
apparently mutually exclusive, cytokeratin pair complexes 
coexist, which indicates that polypeptide exchange and pro- 
miscuous recombinations occur rarely, if at all, in those cells 
(examples include keratinocytes of human and bovine epi- 
dermis and cells of the human Detroit 562 line; Franke et al., 
1984 and this study). Whether this selectivity and "segrega- 
tion" of certain cytokeratin pair in vivo is related to quanti- 
tative differences of affinity and/or dissociation rates or is 
effected by "factors" mediating the preferential formation of 
some complexes remains to be seen. 

The finding that in vitro most, probably all, cytokeratins of 
one type (subfamily) can form pairs and IFs with most, 
probably all, cytokeratins of the other type has to be discussed 
in relation with the observation that in vivo only certain pairs 
are coordinately synthesized in a mode characteristic for a 
given cell type (e.g., see Franke et al., 1982c, 1984; Moll et 
al., 1982a; Schiller et al., 1982; Tseng et al., 1982; Cooper et 
al., 1985). Our present study shows that these selective pair 
combinations formed in vivo are not necessary for the for- 
mation of IF as such, and therefore the selectivity of expres- 
sion observed in vivo is not explained by structural require- 
ments of IF formation. It may be, however, that the regulatory 
elements of the different cytokeratin genes show pairwise 
similarities, that result in the coordinate transcription of only 
certain combinations related to the specific differentiation 
program of a given epithelial cell. 
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