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Abstract

The cumulative effect of mild traumatic brain injuries (mTBI) can result in chronic neurologi-

cal damage, however the molecular mechanisms underpinning this detriment require further

investigation. A closed head weight drop model that replicates the biomechanics and head

acceleration forces of human mTBI was used to provide an exploration of the acute and

chronic outcomes following single and repeated impacts. Adult male C57BL/6J mice were

randomly assigned into one of four impact groups (control; one, five and 15 impacts) which

were delivered over 23 days. Outcomes were assessed 48 hours and 3 months following

the final mTBI. Hippocampal spatial learning and memory assessment revealed impaired

performance in the 15-impact group compared with control in the acute phase that persisted

at chronic measurement. mRNA analyses were performed on brain tissue samples of the

cortex and hippocampus using quantitative RT-PCR. Eight genes were assessed, namely

MAPT, GFAP, AIF1, GRIA1, CCL11, TARDBP, TNF, and NEFL, with expression changes

observed based on location and follow-up duration. The cortex and hippocampus showed

vulnerability to insult, displaying upregulation of key excitotoxicity and inflammation genes.

Serum samples showed no difference between groups for proteins phosphorylated tau and

GFAP. These data suggest that the cumulative effect of the impacts was sufficient to induce

mTBI pathophysiology and clinical features. The genes investigated in this study provide

opportunity for further investigation of mTBI-related neuropathology and may provide tar-

gets in the development of therapies that help mitigate the effects of mTBI.

Introduction

Mild traumatic brain injuries (mTBI) are the most common form of closed head injury [1]

and may be asymptomatic or result in concussion [2]. Symptoms generally resolve spontane-

ously within a couple of days, however some patients report persistent cognitive dysfunction

[3]. An emerging concept in mTBI research is the role of repetitive subconcussive impacts,

rather than frank concussions, in driving neurodegeneration [4]. A subset of individuals who
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sustain repetitive subconcussive mTBI develop chronic consequences of these injuries includ-

ing decline in cognitive function, dementia, and neurodegenerative diseases [5]. However, the

aetiology of chronic neurodegeneration stemming from repetitive mTBI is poorly understood

[6].

There are concurrent and self-exacerbating processes that are triggered in response to

mTBI. Physical and chemical damage lead to synaptic influx and inhibited reuptake of neuro-

transmitters that leads to calcium dysregulation in the process known as excitotoxicity [7].

This results in breakdown of postsynaptic structure and axonal damage, and compromised

transport of energy and organelles within the cell [8]. In response to these processes, inflam-

matory mechanisms are initiated by the microglia in order to repair damage, however this

defence may be overwhelmed and serve to exacerbate the excitotoxic response [9]. The concept

of the ‘window of cerebral vulnerability’ has been hypothesised in explaining the exacerbation

of negative outcomes when repeated impacts are sustained in a short period of time [10].

There remain many questions regarding these concepts and the possible progression to

chronic detriment, such as the number and severity of impacts, the duration between impacts,

and the pathological mechanisms driving neurodegeneration.

Animal models are a common method for investigating the outcomes of head trauma [11].

To investigate the pathology induced by mTBI, a key requirement is a model that incorporates

forces on the brain that are clinically relevant to human injury, including both linear and rota-

tional acceleration and deceleration forces, causing diffuse injury [12, 13]. Recently, several

models have been developed that utilise these biomechanics, and in doing so have moved away

from models inducing focal damage indicative of moderate or severe TBI [14]. These recent

studies have used a varied number of impacts between 1 and 42 [15, 16], and have focused on

measuring cognitive outcomes [17], glial cell activation, neuronal damage, and aggregation of

proteins such as phosphorylated tau [18]. Despite this work, pathways underpinning these

processes require additional examination.

This study aimed to examine the cognitive, biochemical, and molecular changes resulting

from repetitive mTBI in mice at very low impact thresholds. Three different impact totals were

used to assess the possibility of a dose-dependent relationship with pathology and cognition.

Behavioural changes were investigated with the use of tests previously demonstrated to evalu-

ate acute and chronic mTBI symptoms involving neurological function and spatial learning

and memory. mRNA expression changes in hippocampus and cerebral cortex were examined

for neuronal damage with tau protein (MAPT), TDP-43 (TARDBP), and neurofilament light

(NEFL); glial response with glial fibrillary acidic protein (GFAP) and allograft inflammatory

factor 1(AIF1); excitotoxicity with glutamate ionotropic receptor AMPA type subunit 1

(GRIA1); and inflammation with C-C motif chemokine ligand 11 (CCL11) and tumour necro-

sis factor (TNF) (see discussion for a detailed description of gene selection and S1 Fig for a

module map of the connection between these genes). Serum changes in levels of Tau and

GFAP were assessed to investigate biochemical changes. It was our hypothesis that increasing

numbers of mTBIs would have a cumulative effect on chronic behavioural deficits, levels of

protein damage in collected sera, and mRNA expression of axonal damage, astrocyte reactivity,

neuroinflammation and excitotoxicity genes in this murine model of repeated mTBI.

Materials and methods

Animals and general overview

Experimental procedures were approved by the Animal Ethics Committee of Central Queens-

land University (CQU AEC 0000020614) under guidelines from the National Medical

Research Council of Australia. The ARRIVE guidelines were adhered to for the design and
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reporting of the study. A total of 64 male C57BL/6J mice (Animal Resource Centre, Canning

Vale, WA, Australia) were housed in a constant 12:12 hour light-darkness cycle, with the tem-

perature controlled at 22 ± 2˚C. Mice were housed four to six per cage, and food and water

access as permitted ad libitum. At the time of arrival mice were 8 weeks old and undertook a

two-week habituation period to allow acclimatisation to their new environment before the ini-

tiation of the study protocol. Bodyweight of each mouse was assessed before the commence-

ment of mTBI administration, weekly during administration, and at time of euthanasia.

Groups

There were two separate study arms: an acute branch of animals sacrificed 48 hours following

final impact, and a chronic branch of animals were sacrificed 90 days following final impact

(Fig 1). Mice were randomised using the random number generator function of Excel to one

of four protocols: i) a single impact (1-IMP); ii) five total impacts (5-IMP); iii) 15 total impacts

(15-IMP); and iv) control (CON). For all groups not receiving 15 impacts, sham procedures

were undertaken on corresponding impact days whereby mice were anesthetised on the same

schedule as the 15-impact group, but no injuries were administered. In this way, CON received

15 sham anaesthesia bouts, 1-IMP received 14 sham bouts, and 5-IMP received 10 sham bouts,

to control for the possibility of anaesthesia interacting with injury and influencing function.

Impacts or anaesthesia for all groups were delivered across a 23-day span, on a rotation of

three impact/sham days followed by 2 rest days (Fig 2A). Following final injury, groups were

assessed in behavioural measures and samples were collected (Fig 2B). No animal in any group

died during impact or in the recovery phase, there was no evidence of bleeding or skull frac-

ture at post-mortem analysis of any animal, and no animals were excluded from analysis.

mTBI modelling

To mimic the head acceleration forces sustained in human mTBI, mice were subjected to

mTBI via an apparatus designed and built for this purpose, as previously described [19]. An

enclosed inhalation chamber (1 L) containing 0.5mL of isoflurane (Zoetis, Rhodes, NSW, Aus-

tralia) in a cotton ball (yielding a steady 4% concentration) was used to anesthetise the mice.

Inhalation between 1 to 2 minutes resulted in light anaesthesia, as determined by lack of

response to tail pinch. A steel weight (12mm diameter) of 25g was used for impacting the

skull. In attempting to model subconcussive impact, this 25g weight is a considerable develop-

ment, as the lowest weight previously used in an animal model was 53g by Mannix and col-

leagues [14]. The weight was dropped from a height of 1m and guided through a PVC tube

(15mm diameter). A small rubber cap (1x10mm) was attached to the bottom of the weight to

restrict the contact zone. Prior to mTBI, the mouse was positioned chest down on the appara-

tus platform, which consisted of two magnetically adjoined acetate panels. This platform could

Fig 1. Group allocations for the acute and chronic arms of each treatment. 64 total mice were used for the study,

with N = 8 randomly allocated to each group.

https://doi.org/10.1371/journal.pone.0251315.g001
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support a maximum weight of 33g, so that the platform collapsed upon impact, resulting in

minimal platform resistance applied to the head of the mouse. The head was positioned under

the vertical tube, through which the impact weight protruded. Specific alignment was such

that the weight made contact between the bregma and lambda intersection. Upon impact, the

mouse fell and rotated about a horizontal axis, and landed in a supine position on the padded

landing area 10 cm below the stage, which was composed of a sponge cushion (15cm length x

9cm width x 7.5cm depth). The impact weight was tethered to the guide tube by commercially

available braided nylon line (Spear and Jackson, Melbourne, VIC, Australia), restricting the

fall of the weight so that it could continue downward no more than 1 cm beyond the starting

position of the dorsal surface of the skull, thereby avoiding unintentional secondary contact.

Following impact, the mouse was immediately moved to a recovery heating pad, and recovery

was monitored.

Neurological restoration

To assess neurological restoration following mTBI, time to recover righting reflex (RR) was

monitored following isoflurane-induced anaesthesia (controls) or mTBI (n = 8 per group).

Mice were placed in a supine position on the recovery pad, and the time taken for the animal

to adopt a prone position was recorded after each impact or anaesthetic administration. RR

time was calculated from the discontinuation of isoflurane inhalation to the first sign of

righting.

Neurological impairment

Neurological impairment of mTBI mice compared with controls was assessed via neurological

severity score (NSS), which is a composite measure of motor function, alertness and behaviour

in rodent models of TBI [20]. NSS consists of a series of ten tests that are undertaken on a

pass/fail basis and is a reliable predictor of outcomes [21]. One point is scored for inability to

complete each of these actions, with a maximal score of ten indicating a failure of all tasks and

severe neurological dysfunction. NSS was assessed at post-injury day 1 (PID 1) for the acute

Fig 2. Schedule of involvement in treatment and behavioural assessment. (a) All mice were involved in either sham

anaesthesia or impact conditions on 15 out of 23 days. ‘A’ = anaesthetic only; ‘I’ = impact. (b) Behavioural testing

involved MWM trial 1 + 2 and NSS on PID 1 for acute groups and PID 89 for chronic groups, followed by MWM trial

3 + 4 and sample collection on PID 2 for acute groups and PID 90 for chronic groups.

https://doi.org/10.1371/journal.pone.0251315.g002
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mTBI groups, and at PID 89 for the chronic groups (n = 4 per group). The researcher assessing

NSS was blinded to the condition of the animal.

Morris water maze

Control and mTBI groups were tested in the Morris water maze (MWM), which provides a

measure of hippocampal-dependent spatial learning and memory [22]. The test was conducted

in a circular tank with diameter of 110cm, with highly visual cues fixed at locations around the

pool. The pool was filled with water (temperature 27 +/- 1˚C) made opaque with nontoxic,

water-soluble Tempera paint (Fine Art Supplies, Auckland, NZ). A round platform with a

diameter of 10cm was hidden 1cm below the surface of the water in the northern quadrant. A

total of four trials were administered across two consecutive days, with a 6-hour interval was

provided between trials on the same day, as described previously [23]. Each trial consisted of 3

attempts to reach the hidden platform, with a start position from each of the quadrants that

did not contain the platform (south, east and west). For each trial, a random order of start

positions was selected, and this was held consistent for each animal across the trial. The trials

occurred on PID 1 and 2 for the acute groups, and PID 89 and 90 for chronic animals (n = 4

per group). For each attempt, mice were given a maximum test duration of 60 sec to find and

remain on the hidden platform. Mice that did not locate the platform within the allocated time

were guided to the platform and allowed to rest for 10 sec. On PID 2 and 90, all animals also

underwent a probe trial, which involved the hidden platform being removed from the pool.

Mice were placed in the pool opposite the target quadrant (quadrant where the platform had

been) and had a time limit of 30 sec to search for the platform. Time spent in the target quad-

rant was assessed, as described previously [22]. The researcher assessing MWM was blinded to

the condition of the animal. Animals were assessed for motor function deficits using Kinovea

0.8.15 software to track swim speed, and time spent in the goal quadrant during the probe

trial.

Sample collection

On PID 2 and 90, euthanasia was administered via inhalation of isoflurane between 4 to 6 min-

utes, with death confirmed by cessation of breathing. Blood samples were collected via the

inferior vena cava and allowed to clot before being centrifuged at 5000 rpm for 15 minutes.

Sera was aliquoted and stored at -80˚C. The brain was removed and weighed, then washed in

ice cold oxygenated (95% O2, 5% CO2) artificial cerebrospinal fluid (CSF) containing 118.0

mM NaCl, 3.5 mM KCl, 1.3 mM MgCl2, 26.2 mM NaHCO3, 1.0 mM NaH2PO4, 2.5 mM

CaCl2, 11.0 mM glucose, before being rapidly dissected on a frozen dissection platform for hip-

pocampus and cerebral cortex sections. Sections were frozen at -80˚C for genetic and bio-

chemical analysis. To enable blinding conditions, collection tubes were coded so that group

names were not accessible to the investigators undertaking sample analysis. Coding informa-

tion was secured on the lead investigators computer, and the codes were only accessed after

the samples were analysed.

Quantitative real-time reverse transcriptase PCR

mRNA was extracted from tissue homogenates of the hippocampus and cerebral cortex of

mTBI and sham-injured mice (n = 4 per group) using the phenol-chloroform method [24].

Sample concentration and purity were evaluated using a spectrophotometer (NanoDrop

2000c, Thermo Fisher Scientific, Wilmington, DE, USA) (mean ± SD 260/230 spectral ratio:

1.92 ± 0.22; mean ± SD 260/280 spectral ratio: 2.00 ± 0.05). Complementary DNA was synthe-

sised using Superscript III First-Strand Synthesis System for reverse transcriptase-PCR
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according to the manufacturer’s instructions (Applied Biosystems, Foster City, CA, USA) and

run in a thermal cycler (T100 Thermal Cycler, Bio-Rad, Gladesville, NSW, Australia). Five

genes commonly used as indicators of the presence and severity of head trauma were analysed

from the cortex and hippocampus tissue; MAPT, GFAP, AIF1, TNF, and NEFL. In addition to

these, three genes rarely investigated in mTBI conditions were compared across injury groups;

GRIA1 CCL11, and TARDBP. Samples and negative controls were prepared in duplicate using

Taqman universal PCR master mix and run using a thermal cycler (Rotor-Gene Q, Qiagen,

Venlo, Netherlands). The following Taqman gene expression assays were used (Applied Bio-

systems catalogue numbers): mouse MAPT (Mm00521990_m1), GFAP (Mm01253030_m1),

AIF1 (Mm00479862_g1), GRIA1 (Mm00433753_m1), CCL11 (Mm00441238_m1), TARDBP

(Mm01257504_g1), TNF (Mm00443258_m1), NEFL (Mm01315666_m1), and gene products

were normalized to endogenous mouse GAPDH (Mm99999915_g1). Relative expression for

Taqman-analysed transcripts was calculated using the delta-delta Ct method [25].

Biochemical assessment via Enzyme-Linked Immunosorbent Assay

(ELISA)

Serum tau phosphorylated at threonine 231 (p-tau 231) and GFAP protein levels were quali-

fied by ELISA kits (p-tau MBS9356404, GFAP MBS2089651) following the manufacturer’s

instructions (MyBiosource, San Diego, CA, USA). All standards, positive and negative con-

trols, and samples were run in duplicate. 96-well immunoplates (Corning Costar, Corning,

NY, USA) were coated with 100 μl of capture antibody and incubated overnight at 4˚C. Non-

specific binding was blocked with blocking buffer. 100 μl of samples and standards were then

added to the coated wells for 1 hr at room temperature. After incubation, 100 μl of the working

biotinylated detection antibody was added to each well and incubated for a further 1 hr. 100 μl

of streptavidin-HRP was added to each well and incubated for 30 mins at room temperature.

3,30,5,50-tetramethylbenzidine was added to start the colour reaction. The reaction was stopped

after 10 min with 1 M HCl solution, and the absorbency was immediately measured at 450 nm

(iMark plate reader, Bio-Rad, Gladesville, NSW, Australia). All samples fell within normal

range of the standard curve, which was 6.25pg/ml to 200pg/ml for p-tau and 62.5 to 4000 pg/

ml for GFAP.

Statistical analysis

Group numbers for behavioural and laboratory tests were calculated via an a priori power

analysis using α of 0.05, power of 0.8, and means and SD from previously laboratory pilot data.

Statistical analysis were performed using IBM SPSS Statistics for Windows Version 25.0 (IBM

Corp, Armonk, NY). Data were evaluated for normality (Shapiro-Wilks test or Kolomogov-

Smirnov test) prior to statistical testing. As all data was parametric, 1-way ANOVA, or

repeated-measures 2-way ANOVA, with Tukey post-hoc tests (alpha <0.05) was used to assess

for statistically significant differences. All data are presented as means with standard

deviations.

Results

Mice subjected to mTBIs in the 1-IMP, 5-IMP and 15-IMP groups showed no signs of convul-

sions or physical stress following impacts, indicating that our model sufficiently mimicked the

mild impact forces typically seen in sub-concussive injury. Due to the asymptomatic nature of

the injuries, no mice were withdrawn from the study on ethical grounds.
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Righting reflex

Impact caused a significant increase in the time required to regain consciousness (Fig 3). Com-

pared with controls, all impact groups took significantly longer to recover the righting reflex

after one impact (p<0.05). RR latency in the 5-IMP group was significantly increased com-

pared to control throughout the entire impact schedule (p<0.05). The increased latency to

recover the righting reflex persisted in the 15-IMP group for impacts 1–6, compared to control

(p<0.05). For impacts 7 through 15, recovery times were not significantly different in the

15-IMP group from controls (p<0.05). The 15-IMP group RR time was significantly greater

than 5-IMP group following impacts 2 through 4, but not for impacts 1 and 5 (p<0.05). The

1-IMP RR time was not significantly different to control.

Spatial learning and memory

Hippocampus-dependent spatial learning and memory was assessed at acute (Fig 4A) and

chronic (Fig 4B) time points using the MWM. There were no differences in swim speed

Fig 3. Repetitive mTBI results in transient delay in recovery of righting reflex. Time to regain righting reflex

(seconds) following impact or sham control anaesthesia. Values reported as mean (± SD). � p< 0.05 difference

compared with sham control; ‡ p< 0.05 difference with 1-IMP; # p< 0.05 difference compared with 5-IMP. N = 8 per

group.

https://doi.org/10.1371/journal.pone.0251315.g003

Fig 4. Repetitive mTBI impairs performance in the Morris water maze. (A) Time to find the hidden platform

(seconds) in the MWM at acute testing. (B) Time to find the hidden platform in the MWM at chronic testing. (C)

Time spent in the goal quadrant of the Probe Test at acute testing. (D) Time spent in the goal quadrant of the Probe

Test at chronic testing. Values reported as mean (± SD). � p< 0.05 difference compared with sham control; ‡ p< 0.05

difference with 1-IMP; # p< 0.05 difference compared with 5-IMP. N = 4 per group.

https://doi.org/10.1371/journal.pone.0251315.g004
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between injured and control mice (0.26 +/- 0.01m/s for 1-IMP; 0.26 +/- 0.01m/s for 5-IMP;

0.28 +/- 0.01m/s for 15-IMP; 0.28 +/- 0.01m/s for CON, p = 0.2), and none of the mice were

excluded from MWM testing based on lack of motor function. Mice from the control and

impact groups showed progressive improvement in the ability to locate the hidden platform

with each subsequent test. For acutely tested mice, mTBI groups displayed latency in this abil-

ity, and post-hoc analyses found that the 15-IMP group was statistically different to control at

trial 2, 3, and 4 (p<0.05). There was no significant difference between 15-IMP and control at

trial 1, and no differences between 15-IMP and other impact groups at any trial. No differences

were seen from control with the 1-IMP and 5-IMP groups at any trial. At the chronic testing

time-point, again only the 15-IMP group displayed significantly impaired ability to find the

platform at trial 4 (p<0.05). There were no differences with the 15-IMP group compared to

control at trial 1 through 3, and no differences between 15-IMP and the other impact groups.

The 1-IMP and 5-IMP group times to find the platform were not different from control at any

trial.

For the probe trial testing, analyses comparing the mTBI and control groups found no sig-

nificant differences in the time that mice spent searching from the platform in the goal quad-

rants at the acute testing time point (Fig 4C). In contrast, three months following final impact

the 15-IMP group showed learning impairment as evidenced by reduced preference for the

target quadrant compared to control (p<0.05) and compared to 1-IMP (p<0.05) (Fig 4D).

Behaviour and motor function

In NSS (Fig 5A and 5B) testing at PID 1, the 15-IMP group score was significantly higher than

control and both other impact groups (p<0.05). For chronic testing at PID 89, all mTBI

groups revealed no significant differences in score for any group compared to sham control (p
>0.05).

Animal and brain weights

There were no significant differences in bodyweight between impacted and non-impacted

groups at all time-points. Bodyweight (mean ± SD) at the time of the euthanasia for acute mice

was 23.26 ± 1.28 g, and 28.67 ± 2.09 g for chronic mice. The average brain weight was

0.43 ± 0.02 g, and there were no significant differences between any of the groups for brain

weight (p>0.05).

Quantitative reverse transcription polymerase chain reaction analysis

Due to the large amount of data generated from the molecular analysis, involving four groups,

eight genes, two tissue types, and two time points, results information has been condensed

Fig 5. Repetitive mTBI impairs acute but not chronic neurological severity score. (A) NSS score at acute testing. (B)

NSS score at chronic testing. Values reported as mean (± SD). � p< 0.05 difference compared with sham control; ‡

p< 0.05 difference with 1-IMP; # p< 0.05 difference compared with 5-IMP. N = 4 per group.

https://doi.org/10.1371/journal.pone.0251315.g005
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into tables that contain all F and p values for the ANOVAs with corresponding post-hoc test-

ing where required (Tables 1 and 2). Genes were differentially expressed in cortex and hippo-

campus and displayed unique expression at acute time-points compared with chronic animals.

For genes with altered expression following injury there appeared a dose-dependent relation-

ship with number of impacts. In the acute cortex the 15-IMP group showed increased expres-

sion of MAPT, GFAP, and TNF genes relative to control (p> 0.05). In the chronic cortex

AIF1, CCL11 and TARDBP levels in the 15-IMP group were elevated relative to control

(p> 0.05). In the hippocampus, acute measurement saw the increase of GRIA1, CCL11, and

NEFL in the 15-IMP group (p> 0.05), while chronic measurement resulted in elevated GFAP

levels in the 15-IMP group and elevated AIF1 in all impact groups relative to control

(p> 0.05). Results pertaining to cortex and hippocampal mRNA expression change for acute

and chronic mice can be seen in Fig 6A–6D.

Serum biochemical markers

For groups measured at both 48 hours and 90 days after final mTBI there were no differences

between any group in serum p-tau (Fig 7A and 7B) or GFAP levels (Fig 7C and 7D, p>0.05).

Discussion

This study used a mouse model of mTBI that closely mimics the acceleration forces, impact

speeds, and biomechanical properties of head impacts in humans. The impacts were delivered

to the surgically unaltered head, and the parameters chosen were at the lowest impact weight

reported [14]. The impacts resulted in no cases of skull fracture, macroscopic brain damage,

Table 1. Statistical results obtained from the one-way ANOVAs for changes in expression of the eight genes of interest for the two brain regions at acute sacrifice

(48-hour post-mTBI).

Cortex

POST-HOC

F P SHAM:1-IMP SHAM:5-IMP SHAM:15-IMP 1-IMP:5-IMP 1-IMP:15-IMP 5-IMP:15-IMP

MAPT 6.40 .01 .25 .93 < .01 .92 .14 .35

GFAP 4.88 .02 1 .92 .03 .89 .03 .09

AIF1 3.22 .06 - - - - - -

GRIA1 2.40 .12 - - - - - -

CCL11 1.39 .29 - - - - - -

TARDBP 0.72 .56 - - - - - -

TNF 12.22 < .01 .09 .98 < .01 .05 .11 < .01

NEFL 3.37 .06 - - - - - -

Hippocampus

POST-HOC

MAPT 4.60 .02 .02 .08 .14 .82 .63 .99

GFAP 1.11 .38 - - - - - -

AIF1 1.57 .25 - - - - - -

GRIA1 21.68 < .01 .88 .31 < .01 .70 < .01 < .01

CCL11 8.94 < .01 .99 .23 < .01 .57 < .01 .07

TARDBP 1.70 .22 - - - - - -

TNF 0.89 .48 - - - - - -

NEFL 5.96 .01 .83 .93 .01 .99 .04 .03

Significant differences p < .05 are in bold.

https://doi.org/10.1371/journal.pone.0251315.t001
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subdural haematoma, or death, in keeping with human mTBI pathology. The loss of con-

sciousness times in the impact groups were typical of those reported in other mTBI rodent

studies [26]. Time under anaesthesia was minimised to reduce the effect on cognition and

Table 2. Statistical results obtained from the one-way ANOVAs for changes in expression of the eight genes of interest for the two brain regions at chronic sacrifice

(3 months post-mTBI).

Cortex

POST-HOC

F P SHAM:1-IMP SHAM:5-IMP SHAM:15-IMP 1-IMP:5-IMP 1-IMP:15-IMP 5-IMP:15-IMP

MAPT 3.51 .05 .49 .86 .41 .90 .04 .13

GFAP 1.33 .31 - - - - - -

AIF1 6.44 < .01 .03 .18 < .01 .69 .83 .26

GRIA1 6.85 < .01 .08 .48 .36 < .01 .76 .03

CCL11 4.50 .03 .10 .46 .02 .74 .78 .25

TARDBP 10.66 < .01 .12 .67 < .01 .57 .06 < .01

TNF 1.26 .33 - - - - - -

NEFL 0.76 .54 - - - - - -

Hippocampus

POST-HOC

MAPT 2.94 .08 - - - - - -

GFAP 6.40 < .01 .98 .66 .02 .47 .01 .19

AIF1 12.87 < .01 .03 .02 < .01 .96 .07 .22

GRIA1 0.46 .72 - - - - - -

CCL11 1.08 .40 - - - - - -

TARDBP 2.65 .10 - - - - - -

TNF 2.96 .08 - - - - - -

NEFL 1.71 .22 - - - - - -

Significant differences p < .05 are in bold.

https://doi.org/10.1371/journal.pone.0251315.t002

Fig 6. Repetitive mTBI induces upregulation of neurodegenerative genes. (A) mRNA expression fold change

relative to sham control of eight genes in the cortex at acute testing. (B) mRNA expression fold change relative to sham

control of eight genes in the hippocampus at acute testing. (C) mRNA expression fold change relative to sham control

of eight genes in the cortex at chronic testing. (D) mRNA expression fold change relative to sham control of eight

genes in the hippocampus at chronic testing. Normalised to Gapdh (± SD). � p< 0.05 difference compared with sham

control; ‡ p< 0.05 difference with 1-IMP; # p< 0.05 difference compared with 5-IMP. N = 4 per group.

https://doi.org/10.1371/journal.pone.0251315.g006
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pathology, and sham controls received the same anaesthesia protocol. With these factors, and

due to the mild deficits resulting from impact, it could be argued that this model provides

impacts equivalent to human sub-concussive mTBI [27]. Repetitive sub-concussive impact in

humans has been linked with chronic neurodegeneration [28], while single events may be

innocuous [2]. In keeping with this concept, this study found that differing numbers of mTBI

resulted in a dose-dependent response in behavioural measures and molecular signalling,

whereby the 15-impact model produced the most pronounced changes in the acute phase, and

resulted in CTE-like pathology when assessed chronically.

Neurological restoration, as measured by restoration of RR, was initially impaired in the

15-IMP group, as effects appeared to accumulate for the first 4 impacts. Interestingly, a sharp

improvement was seen for impact 5, which persisted throughout the remainder of the impacts

and resulted in neurological restoration times not different from the control group. This was

despite consistent force of impact and did not coincide with the two-day ‘rest period’ of the

impact schedule. It is unlikely that anaesthesia tolerance is a factor in this response, as the

sham control receiving only anaesthesia did not exhibit a similar reduction in RR time. This

phenomenon has been observed in previous studies, and these authors have hypothesised that

a decrease in RR time may be as a result of CNS adaptation and initiation of neuroprotective

pathways in response to repeated mTBI [29]. The exact mechanism of improvement is unable

to be speculated upon in this study, as analysis was only undertaken after the full complement

of 15 impacts. While the 5-IMP group had RR times significantly higher than control, this

group did not see the same peak as the 15-IMP group, suggesting that having impact free days

after two impacts rather than after the three impacts of the 15-IMP group served as an oppor-

tunity for healing such that accumulated detriment was not seen. At impact 5, the 5-IMP and

15-IMP groups were not significantly different, and it would be interesting to see if the 5-IMP

group observed the same improvement in RR with additional impacts. The 1-IMP group dis-

played no significant increase in RR compared with controls, suggesting unremarkable change

resulting from a single impact.

Findings from the behavioural data include differences in NSS in the acute phase of recov-

ery 24 hours after final injury, but no differences between groups in the NSS at three months.

Previous studies using a similar acceleration mTBI mechanism have shown NSS detriment at 1

Fig 7. Repetitive mTBI does not affect p-tau or GFAP protein expression in our model. (A) P-tau serum protein

expression at acute testing. (B) P-tau serum protein expression at chronic testing. (C) GFAP serum protein expression

at acute testing. (D) GFAP serum protein expression at chronic testing. No significant differences were seen between

any groups. N = 4 per group.

https://doi.org/10.1371/journal.pone.0251315.g007
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hour through 7 days [30], and 24 hours [31], although others have also found no detriment

[32]. The data shown here suggests that even though mild impacts in our model were adminis-

tered below the threshold seen previously in similar studies, there was still measurable neuro-

logical disturbance manifested in behavioural testing. This is key when translating to human

research, where an emerging concept is in the repetitive subclinical injuries that are sustained

in environments such as on a football practice field. While repeated mild blows to the head

may not result in measurable changes in field-side tests such as the SCAT5, pathological dis-

turbances leading to long term clinical symptoms might still be present [33].

Repetitive mTBI groups displayed spatial learning and memory deficits in acute MWM and

probe trials that persisted in chronic testing. Differences between groups became more pro-

nounced throughout the trial schedule, with the control group achieving maximum speed in

finding the platform at trial 3, and the IMP-5 and IMP-15 groups displaying ongoing learning

deficits until the final trial attempt. In the probe trial, the groups that received repetitive

mTBIs spent significantly less time in the target quadrant searching for the platform. This is in

line with previous studies [34, 35] that have reported persistent memory impairment following

repetitive mTBI, with comprehensive investigations giving insight into poor outcomes 12

months post-injury when there are short inter-injury intervals [36]. The differences are also in

line with emerging clinical data which suggests that repetitive impacts to the head are impli-

cated in subacute and chronic neurological deficits. Cognitive disruption has shown a higher

prevalence in retired profession football players compared with matched healthy controls [37],

and in former athletes who sustained a sports concussion more than 30 years before testing

[38].

The purpose of this paper was not to identify a predictive and reliable biomarker of mTBI,

but to provide additional details regarding the signalling processes within the brain following

varying levels of injury. This study had two key goals: (1) to ensure that the subtle level of

repetitive impact in our model was enough to induce mRNA expression changes in genes that

have been associated with brain injury, and (2) that it allowed the investigation of novel genes

that allow further understanding of pathways of pathology. Although there are numerous

genes we could have analysed, we selected specific genes for investigation based upon the role

they may play in the excitotoxicity, inflammation, and neurodegeneration in the context of

mTBI. GRIA1 was assessed as a measure of excitotoxicity, which is a trigger of neurodegenera-

tive cascades and is implicated in the disruption of spatial working memory in the hippocam-

pus. To examine axonal neurodegeneration, MAPT and NEFL were selected, as they are

indicators of structural damage and are involved in chronic neurofibrillary tangle formation

and neurofilament breakdown, respectively. TARDBP was selected for its implication in these

neurodegenerative processes and role in protein signalling and organelle transport within the

neuron. GFAP and AIF1 were used as a measure of activated astrocytes and microglia, respec-

tively. Glial cells are activated in response to injury where they promote neuroinflammation

that is aimed at neurological recovery and repair. Finally, TNF and CCL11 were used as mea-

sures of inflammation, with TNF a classic pro-inflammatory cytokine that has been measured

in TBI conditions, and increased CCL11 production found in brain aging and disease. As

expected, the brain structure and the timing of analysis did influence the expression of the

eight genes examined. Typically, for genes that were responsive to injury, a dose-dependent

relationship was seen, whereby the highest increase in gene expression was seen in the 15-IMP

group and the lowest increase in the single impact group.

Excitotoxicity is an immediate consequence of mTBI, and involves the rapid synaptic influx

and inhibited reuptake of neurotransmitters and amino acids which can result from mTBI

[39]. Glutamate is the primary excitatory neurotransmitter involved in this process [40, 41],

and injury leads to unregulated accumulation of glutamate [42]. This over-activates
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downstream signalling pathways leading to an uncontrolled surge in intracellular calcium con-

centration, which is an underlying mechanism of neuronal death [43, 44]. In response to the

increase in glutamate in the synaptic cleft, excessive activation of N-methyl-D-aspartic acid

(NMDA) receptor GluA1 (coded by the GRIA1 gene) attempts to clear these metabolites [45].

The resulting neurotoxicity involves the breakdown and loss of postsynaptic dendrites and cell

bodies [8], which compromises synaptic plasticity and learning [46]. The hippocampus is

more susceptible to excitotoxic injury than other parts of the brain [47], and this explains the

significant increase in GRIA1 mRNA expression in the hippocampus at the acute timepoint in

our study. At chronic measurement, GRIA1 was not increased in any of the impact groups

compared with control, which is fitting with the acute mechanism of this response.

Microtubule associated protein-tau (MAPT) is specific to the axonal region of the neuron

and is required in the organisation and construction of microtubule bundles [48]. Under con-

ditions of neurochemical or physical trauma, MAPT is disrupted, leading to compromised

transport of proteins and organelles in the axon, which ultimately leads to the formation of dis-

ruptive neurofibrillary tangles and neuronal death [49]. This study found that MAPT was ele-

vated in the cortex in the days following injury, and this increase persisted at three months.

This is highly relevant in validating this as a model representative of human mTBI, as persis-

tent and progressive tau pathology is a defining feature of the neurodegeneration seen in

chronic traumatic encephalopathy (CTE) [50]. In contrast, in the hippocampus there was an

acute increase in MAPT expression that was not persistent at late chronic sampling. This is in

line with the pathology seen in human CTE data, where abnormal tau aggregation and neuro-

fibrillary tangles are seen in the sulci of the cortex but less commonly in the hippocampus [50].

Neurofilament light (NF-L) is a structural protein of myelinated axon cytoskeleton within

white matter regions [51]. Neurotrauma initiates breakdown and release of neurofilament

chains, which can be measured in tissue, CSF, and serum [52]. At acute measurement, NEFL

mRNA expression (indicating NF-L upregulation) was significantly elevated in the hippocam-

pus region, and while levels were increased in the cortex, this trend did not reach statistical sig-

nificance. At 3 months there was no difference from controls in either the cortex or the

hippocampus. In human studies, CSF and blood measures of NF-L have been shown to pro-

vide a sensitive measure of trauma at both acute and chronic time points. In American football

players, impact within an hour of contact showed correlation with the number and magnitude

of head impacts sustained [53], although acute measures have not always been elevated in clini-

cal settings [54]. When monitoring long term recovery, CSF and serum levels have been corre-

lated with outcomes 6 and 12 months after injury [51]. NF-L has also been implicated in

chronic pathology and progressive neurodegeneration, where post-mortem plasma levels were

correlated with cognitive impairment and severity of NFT pathology [55].

TDP-43 is involved in maintaining the expression of correct isoform ratios within the neu-

ronal cytoskeleton [56]. It is upregulated as a result of the elongation and stretching of axons

during acceleration induced brain deformation, in order to undertake repair and reorganiza-

tion of cytoskeleton microtubules and neurofilaments [57]. However, in conditions of repeated

trauma TDP-43 demonstrates increased dysregulation and aggregation, leading to disruption

of neural signalling and tau NFT pathology [58, 59]. Indeed, in progressive cases of CTE,

abnormal TDP-43 expression in the cortex has been found to increase at the same rate and

clinical stages as the accumulation of phosphorylated tau [60]. In the present study, TDP-43

was assessed by TARDBP gene expression, and was significantly elevated in the cortex of the

15-IMP group at the chronic measurement. There was no evidence of early brain accumula-

tion at the acute time-point, which follows the development seen in human cases [61]. This

provides evidence of progressive pathology in this model indicative of the clinical pathology

that has been described in cases of CTE.
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Glial fibrillary acidic protein (GFAP) is a structural protein expressed by astrocytes [62],

and is used as a reliable clinical tool in differentiating mTBI patients from controls [63]. This

study identified elevated GFAP mRNA levels in the PFC at 48 hours, with levels in the hippo-

campus not significantly different from control. Conversely, levels at three months were ele-

vated in the hippocampus but not the PFC. This differential mRNA expression is indicative of

the high level of GFAP specificity in brain tissue following injury [64], and it is likely that the

two brain regions undergo different rates of healing and recovery that reflect this difference. In

human studies GFAP has been used to measure neurological damage and degeneration in the

hours [65, 66] and months [67] following injury, with long term elevation correlated with

impaired recovery from mTBI [68]. The present study showed a similar relationship, with the

3-month hippocampus expression of GFAP correlated with performance in the MWM, a mea-

sure of hippocampus dependent spatial learning and memory. GFAP mRNA expression was

not different from control in the 1-IMP and 5-IMP groups, and likewise these groups had no

impairment in the MWM and probe trial. However, mRNA expression was elevated in the

15-IMP group, which displayed corresponding performance deficits in the MWM and probe

trial. This finding lends support for the role of repetitive injury in driving neurodegeneration,

and in the value of GFAP as a tool in monitoring mTBI injury and recovery.

Microglia are the primary cells involved in regulating brain development and maintaining

homeostasis through immune defence [69]. In these roles, microglia are involved in myelina-

tion, synaptic formation, neurogenesis of developing cells, and phagocytosis of apoptotic cells

[70]. In response to brain trauma, microglia undergo morphological change and mount a

potent inflammatory response designed to protect and repair the damaged cells [71]. However,

if damage is too severe or the insult is ongoing, microglia will remain in a state of sustained

defence which results in persistent inflammation and has been shown to result in neurodegen-

eration and functional deficits in preclinical [72] and clinical studies [73, 74]. In assessing

mRNA AIF1 expression, the present study found evidence of this persistent microglial activa-

tion in the cortex and the hippocampus at three months following injury, which provides evi-

dence of the neurodegenerative changes occurring in the model resulting from the inability to

repair the damage from impact. There were also elevated AIF1 levels in the cortex of the

15-IMP group that was approaching statistical significance (p = 0.056) in the acute timepoint,

and the amplification of AIF1 may have been affected by the timing of sampling, as it has been

hypothesised that microglial signalling is secondary to astrocyte activation [75].

TNF is a cytokine that that has both pro and anti-inflammatory signalling properties, and is

released from neurons, astrocytes and microglia after CNS insult [76, 77]. TNF is commonly

assessed in TBI, and has been shown to be elevated in animal models and clinical studies [78].

At 48 hours post injury, mRNA expression was elevated in the PFC, however in the hippocam-

pus no change was seen compared with controls. Neither site displayed differences at 3

months. This limited response could be due to sampling time and marker kinetics, as previous

studies have seen robust increase in the first 24 hours following injury and a decreased to base-

line by 48 hours [79]. An additional limiting factor may be the lack of severity of impact in our

model, as the majority of brain injury literature examining TNF has done so in moderate or

severe injuries using rodent brain or human CSF [80, 81].

CCL11 is a chemokine that is released by microglia and astrocytes as part of the inflamma-

tory response following TBI [82]. Like other CNS inflammation mechanisms, CCL11 release is

designed to assist with protection and repair, however increased levels of CCL11 is a driver of

oxidative stress and excitotoxic pathways that precipitate synaptic dysfunction and neuronal

death [83]. In previous mouse studies, increased CCL11 has been correlated with symptoms

such as impaired cognition and memory [84], but to our knowledge this is the first study to

assess CCL11 in a model of head acceleration mTBI. This is warranted as elevated levels of
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CCL11 have been found in cortex of former American football players with CTE, with a corre-

lation between CCL11 and tau pathology, and a significant association with the number of

years playing football [85]. In a similar way, the present study found elevated CCL11 mRNA

expression in the cortex at the chronic measurement time-point in mice that received 15

impacts, but not in the 1-IMP and 5-IMP groups. Expression was also significantly higher at

48 hours in the hippocampus, with level correlated with the number of head impacts received.

Considering the information provided by the mRNA expression in the brain, we sought to

examine if serum protein could be detected that demonstrated similar damage signalling. In

human blood biomarker mTBI research, the most promising measure of neurological damage

is tau, and astrocyte activation is GFAP [86]. We measured the tau epitope phosphorylated at

threonine 231, as this provides the most clinically relevant marker of human injury, which has

been shown in animal models to be correlated with pathological symptoms and injury severity

[87]. We failed to find a difference in p-tau between groups, and it may be that the injury

severity in our model was insufficient to elicit change. It may also have been more appropriate

to measure total tau in plasma, as this has been most commonly done in human studies [88–

91]. This study also did not find a difference between groups in serum GFAP. There are chal-

lenges in the detection of CNS proteins in the blood related to low concentrations due to lim-

ited blood brain permeability, metabolic degradation and clearance, and contamination

during sample preparation [92], and out findings were likely limited by these factors.

A limitation of this work is that protein levels of the genes of interest were not evaluated for

the cortex and hippocampus. As the purpose of this study was to evaluate novel genes involved

in known neurodegenerative pathways, protein-based pathology investigation was outside the

scope of this work. As such, the preliminary findings described in this investigation should be

expanded upon in further studies. Similarly, further details of the exact gene expression signal-

ling mechanisms of inflammation and excitotoxicity (such as genes GRIA1 and CCL11) which

are induced following repeated mTBI will need to be determined. It has been reported that the

model used in this study is subject to greater variability in impact site than models using a ste-

reotaxic device to secure the head [93]. This may result in variability in outcomes, however

this compromise allows freedom of head movement that more closely reflects most human

mTBI, and therefore gives more clinically relevant outcomes, and full discussion of this princi-

ple has been described [14]. Another limitation of the study is that only male mice were used,

and that sex differences were not examined. NIH policy describes the importance of including

both male and female animals in preclinical studies [94]. Previous animal model studies of

mTBI have demonstrated diversity between sexes in outcomes including gene expression,

development of pathological proteins, and behaviour [95]. The decision to include only males

was dictated by economics in order to simplify the study design by reducing group numbers.

We recognise that human mTBI is not male-centric, with studies showing the high rates of

concussion sustained by female athletes [96], and that this was a missed opportunity to study

sex-specific vulnerabilities.

In conclusion, this study provides further evidence in the role of repetitive subconcussive

impacts in the vulnerability of the brain to injury and chronic neurodegeneration. This study

used impact thresholds lower than previously reported in literature and confirmed behavioural

detriment at acute testing that persisted to chronic impairment. Commonly assessed genetic

markers were confirmed in this model, and inflammation and excitotoxic genes were impli-

cated in the pathological cascade. In both behavioural and genetic data, there was evidence of a

dose-dependent response where single impact had minimal effect, and the highest number of

impacts resulted in neurological damage and decline. Nonetheless, there was no evidence of

upregulation of serum proteins of disease at acute or chronic timepoints. Further
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investigations are needed to examine systemic protein circulation, and the presence of histo-

logical evidence of disease.
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