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Abstract: The rapid increase in pathogenic microorganisms with antimicrobial resistant profiles
has become a significant public health problem globally. The management of this issue using
conventional antimicrobial preparations frequently results in an increase in pathogen resistance and
a shortage of effective antimicrobials for future use against the same pathogens. In this review, we
discuss the emergence of AMR and argue for the importance of addressing this issue by discovering
novel synthetic or naturally occurring antibacterial compounds and providing insights into the
application of various drug delivery approaches, delivered through numerous routes, in comparison
with conventional delivery systems. In addition, we discuss the effectiveness of these delivery
systems in different types of infectious diseases associated with antimicrobial resistance. Finally,
future considerations in the development of highly effective antimicrobial delivery systems to combat
antimicrobial resistance are presented.
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1. Introduction

The rise of antimicrobial resistance (AMR) has become a significant threat to the
global community over recent decades. Generally, AMR is defined as a condition in
which microorganisms (bacteria, fungi, viruses, and parasites) can live and grow in the
presence of antimicrobial agents that were previously reported to be effective against these
microorganisms. In more specific terms, there are several patterns of AMR that have
been documented: multidrug-resistant (MDR), extensively drug-resistant (XDR), and pan
drug-resistant (PDR). MDR is defined as the acquired resistance of microbe(s) to at least
one agent in three or more antimicrobial groups and XDR is defined as microbial resistance
to at least one agent in all but two or fewer antimicrobial categories. Lastly, once microbial
resistance is developed to agents in all antimicrobial groups, the term PDR is used [1].

MDR-bacteria kill around 700,000 people globally in a year, while 230,000 deaths
per year are caused by MDR tuberculosis [2]. In its 2020 Global Report on Tuberculosis,
the World Health Organization (WHO) reported that approximately 10.0 million people
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contracted TB in 2019, and most cases were recorded in South East Asia, accounting for 44%
of total global cases. In 2019, about 12,000 XDR-TB cases were reported [3], around 1.5 times
higher than XDR-TB cases in 2015, which accounted for approximately 8000 cases [4]. PDR
cases in Gram-negative bacteria were reported to show a high mortality rate (21–70%) out
of a total of 81 reported cases; around 47 data were documented from the last five years [5].
However, it was suggested that PDR infection can still be controlled at this time [5].

In addition to the existing resistance cases, emerging AMR in microorganisms previ-
ously not a concern is also a severe problem. MDR-Candida auris was once not included
in the threat level in the 2013 Centers for Disease Control and Prevention (CDC) report.
Six years later, this fungus was reported as one of the urgent MDR microbials in the 2019
CDC report. Candida auris will be the severe next-level threat for AMR in the clinic since it
remains unnoticed in microbiology laboratories and is often misidentified by conventional
biochemical diagnostic tests [6]. This pathogen has a high resistance rate towards antifun-
gals used in clinics—including azoles, echinocandins, and polyenes—making this fungus a
potential pan-resistant strain [7]. The exact same change in threat level status also occurred
in Acinetobacter, which was previously classified as urgent but became severe in the 2019
CDC report [8]. Such changes in the AMR category are driven by the ease of spread, the
danger posed by the microorganism, the lack of available antibiotics, and the development
of antibiotics to deal with this infection [8].

The declining availability of antibiotic therapy and the relatively slow development of
antibiotic discovery are becoming significant challenges in tackling this AMR. The discovery of
antibiotics reached its peak in the 1950s and 1960s, the golden age of antibiotics. Unfortunately,
only a small number of antibiotics have been introduced into the market since the late of
1980s, indicating the quiescence era of antibiotic discovery [9]. Based on the WHO’s 2020
Annual Review, a total of 43 antimicrobial agents are in the clinical trial phase, while more
than 150 antimicrobial agents are still in the preclinical stage [10]. Drug-repurposing, use
of clinically approved drugs with different indications to create new indications, might
address this antibiotics deficiency. For example, N-acetylcysteine, known as a mucolytic,
yields antimicrobial activity against several pathogens when administered alone [11] or with
colistin [12,13]. In addition, we also need to think about the impact of COVID-19 on the
AMR situation. Antibiotic misuse in COVID-19 patients will ruin antibiotic stewardship and
management of AMR in clinics, leading to more AMR cases [14,15]. Even worse, COVID-
19 patients living in areas with a high prevalence of AMR have to deal with both of these
problems [15]. Rapid identification of this co-infection and priority setting in antibiotic
prescription will preserve the lives and availability of current antimicrobial therapy. Although
all those strategies might be beneficial in facing the current AMR situation, without the
development of new antibiotics, one day, the choice of drugs for AMR therapy will also run
out. Thus, the discovery of new antimicrobial compounds from various sources is an essential
strategy to counteract AMR. This review summarizes the discovery of novel and prospective
antimicrobial candidates, and also discusses pharmaceutical drug delivery approaches that
can be used to prevent and/or to mitigate AMR. The latter is essential to prevent further
development of AMR and at the same time can support the rational use of antimicrobials.

2. Antimicrobial Resistance: Current Problems and Its Mechanism

The emergence of antimicrobial resistance has been seen as one of fatal yet unresolved
major medical problems, causing a heavy blow to healthcare systems worldwide. Factors
driving the emergence of AMR are: (1) antibiotic misuse due to lack of compliance in patients
or prescription error, (2) overuse of antibiotics due to overprescribing by physicians and
high demands from patients, and (3) extensive agricultural use either as a food additive,
prevention, or therapy, which leads to inappropriate disposal into the environment [16–18].
In addition, traveling also has a significant role in disseminating AMR throughout the world
through skin contact or insect or animal bites during travel [19–21]. The most obvious example
of the spread of infectious diseases through travel can be seen in the era of the COVID-19
pandemic [22,23].
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The Interagency Coordinating Group on Antimicrobial Resistance implied in their
2019 report that around 10 million deaths each year will occur by 2050 if we cannot
handle this AMR situation [2]. In addition to endangering lives, AMR can also impact
the economy—especially in the health sector, due to the increased length of hospital
stay, elevated treatment costs, failure of therapy, and the development and production of
secondary therapy line drugs [24]. CDC estimates that about 55 billion is lost due to AMR
in hospitals and lost productivity [8]. As a result, it is estimated that there poverty will be
forced on about 24 million people by 2030 [2].

Like other organisms, bacteria have certain mechanistic systems for survival. The
occurrence of resistance to antimicrobials itself is an evolutionary event [25]. However,
inappropriate use of antibiotics worsens the condition, making antimicrobial resistance
difficult to control [26]. The emergence of resistance in bacteria can occur from within the
bacterial species itself, which is known as intrinsic resistance. Intrinsic resistance occurs
naturally and is independent of previous exposure to antimicrobial compounds. Resistance
can also occur due to externally acquired causes, called extrinsic resistance. Under certain
conditions, bacterial cells can undergo horizontal gene transfer from the environment. This
transfer of resistant genes can occur permanently or temporarily [27–29].

There are four main mechanisms for the occurrence of antimicrobial resistance in
bacterial cells, including: (1) drug enzymatic inactivation; (2) drug uptake inhibition;
(3) drug target modification; and (4) drug removal by active efflux. Intrinsic resistance uses
uptake inhibition, inactivation, and efflux mechanisms. Meanwhile, extrinsic resistance
can occur in the form of target modification, inactivation, and efflux [28–30].

Enzymatic inactivation of antimicrobial compounds can be achieved in two ways,
including drug degradation or chemical group transfer. Enzymes that play a role in
antimicrobial modification are divided into three main groups based on the type of re-
action, namely hydrolases, transferases, and redox enzymes [31]. The β-lactamases are
the best-known example of hydrolase enzymes. The substrates include the four classes
of antibiotics that have a β-lactam ring, namely penicillin, cephalosporins, carbapenems,
and monobactams [31]. These classes of antibiotics are also the most widely prescribed,
so the rate of resistance is also increasing rapidly. In general, β-lactamase works by de-
stroying the β-lactam ring, a vital structure required in the inhibition of bacterial cell wall
synthesis. β-lactamases are classified into four classes: A, B, C, and D. Class A, C, and D
are serine β-lactamases, while class B belongs to the metallo-β-lactamase group [32,33]. In
addition to the β-lactam group, degradation of antibiotics due to enzymes also occurs in
the tetracycline group. The term tetX refers to the gene encoding a tetracycline-degrading
enzyme which was first identified in E. coli. This enzyme is a type of NADPH-dependent
oxidoreductase [34].

The occurrence of bacterial resistance to antibiotics can also be achieved through
the inhibition of drug uptake into bacterial cells. Gram-negative bacteria have a thicker
lipopolysaccharide layer than their Gram-positive counterparts. This makes Gram-negative
bacteria develop resistance more easily, especially to hydrophilic compounds [35]. How-
ever, this does not mean that drug uptake-related resistance is not found in Gram-positive
bacteria. Vancomycin-resistant S. aureus exhibits thickening of the cell wall by an unknown
mechanism, thus inhibiting drug entry [36]. Another interesting mechanism responsible for
drug uptake inhibition is through biofilm formation. Biofilms are colonies of bacterial cells
amassed in one place, forming an extracellular matrix (EMC). These EMCs are composed
of a variety of bacterial secretions, including proteins, polysaccharides, and extracellular
DNA [37,38]. The most common example is the biofilm of P. aeruginosa in the lung in cystic
fibrosis [39]. The formation of a biofilm will strengthen the bacterial defenses, slowing the
penetration of antibiotics into bacterial cells [38].

There are various types of antibiotics based on their mechanism and target of action.
Therefore, there are also various problems related to resistance when it comes to where
the antibiotics act. Another type of resistance mechanism is via drug target modification.
One example of such resistance mechanism has been documented in the cases of penicillin



Antibiotics 2021, 10, 981 4 of 33

and other β-lactams, particularly in a form of structural change of the Penicillin-binding
protein (PBP). PBP plays a role in the synthesis of peptidoglycan in Gram-positive bacterial
cells. Changes in the structure and expression of this protein on the cell surface will
affect the effectiveness of -lactam antibiotics [40,41]. Meanwhile, for antibiotics that target
ribosomes, mutations and other changes in the ribosomal subunit will affect drug binding.
For example, the erm gene codes for the enzyme responsible for the methylation of the
ribosomal subunit, making bacteria resistant to aminoglycosides and macrolides [42,43].
Resistance can also occur to fluoroquinolones due to changes in the DNA-gyrase and
topoisomerase IV enzymes that play a role in DNA synthesis [44]. Changes in enzymes that
play a role in folate biosynthesis will also cause resistance to sulfonamide and trimethoprim
groups [45].

Another thing to consider is the presence of efflux pumps as a form of bacterial
defense against environmental stressors [46]. There are five classes of efflux pumps that
are important in the development of bacterial resistance. Three of them are H+-dependent
pumps, namely resistance-nodulation-cell division (RND), major facilitator superfamily
(MFS), and small multidrug resistance (SMR) [46,47]. RND is only found in Gram-negative
bacteria and is a multi-component pump. In addition, RND acts on many substrates, and
can be active against multiple drugs [48]. MFS is involved in the mechanism of resistance
to macrolides and tetracyclines [49]. SMR, which is hydrophobic and has few substrates,
plays a role in the efflux of β-lactams and some aminoglycosides [50]. There is also a
multidrug and toxic compound extrusion (MATE) family that uses Na+ as an energy source.
MATE is involved in the mechanism of resistance to many fluoroquinolones and several
aminoglycosides [51]. Lastly, the ATP-binding cassette transporter (ABC transporter)
family is associated with resistance to tetracyclines and fluoroquinolones that can occur in
V. cholerae [52].

3. Current State of Antimicrobial Drug Discovery

The discovery of new antibiotic compounds and resistance modifying agents (RMA)
has a high urgency in mitigating antimicrobial resistance. Research aimed at this is being
carried out extensively all over the world. However, a long process is required before
new compounds are given marketing authorization and can be commercialized. Based
on data received by the WHO, there are 11 new antibiotics that have been approved
for market in the period 2017–2020. Most of these compounds are derivatives of a class
of antibiotics with a well-known mechanism of action, including the fluoroquinolones
and tetracyclines [10]. Nevertheless, it is important to note that two of the compounds,
vaborbactam and lefamulin (Figure 1), are listed as new types of antibiotics.
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Vaborbactam, a beta-lactamase inhibitor, has been used clinically for the treatment of
complicated urinary tract infections (cUTI) in combination with meropenem. Vaborbactam
has good inhibitory activity against serine beta-lactamases, including Klebsiella pneumoniae
carbapenemase (KPC). Currently, therapy using meropenem-vaborbactam is only given
parenterally at a 1:1 ratio. Reported clinical data so far indicate this drug combination
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is well tolerated and effective against resistant bacteria [53]. Meanwhile, another drug
known as lefamulin, is a new class of pleuromutilin antibiotics. Its mechanism of action
is achieved through the alteration of protein synthesis on the ribosomes of bacterial cells.
Clinical data show comparable effectiveness with fluoroquinolones in the treatment of
community acquired pneumonia (CAP) [54,55]. The complete list of the eleven drugs that
have been commercialized and have received U.S Food and Drug Administration (US FDA)
and European Medicines Agency (EMA) approval since 2017 can be seen in Table 1.

Table 1. Newly developed antimicrobials since 2017.

Drug Name Trade Name Antibiotic Class Administration
Route Indication(s) Ref(s)

Cefiderocol Fetroja (Shionogi) Siderophore
cephalosporin iv cUTI [56]

Delafloxacin Baxdela (Melinta) Fluoroquinolone iv; oral ABSSSI; CAP [57,58]

Eravacycline Xerava
(Tetraphase) Tetracycline iv cIAI [59]

Lascufloxacin Lasvic (Kyorin
Pharmaceutical) Fluoroquinolone iv; oral CAP; otorhino-

laryingological [60,61]

Lefamulin Xenleta (Nabriva) Pleuromutilin iv; oral CAP [62]

Levonadifloxacin
Alalevonadi-floxacin

Emrok/Emrok O
(Wockhardt) Fluoroquinolone iv; oral ABSSSI [63]

Omadacycline Nuzyra (Paratek) Tetracycline iv; oral CAP (iv); ABSSSI
(iv;oral) [64,65]

Plazomicin Zemdri
(Achaogen) Aminoglycoside iv cUTI [66]

Pretomanid PA-824 (TB
Alliance) Nitroimidazole oral XDR- and MDR-TB [67]

Relebactam +
imipenem/cilastatin Recarbrio (MSD)

BLI + car-
bapenem/degradation

inhibitor
iv cUTI; cIAI;

HAP/VAP [68,69]

Vaborbactam +
meropenem

Vabomere
(Melinta) BLI + carbapenem iv cUTI [70]

ABSSSI: acute bacterial skin and skin structure infections; CAP: community-associated pneumonia; cIAI: complicated intra-abdominal
infection; cUTI: complicated urinary tract infection; HAP: hospital-associated pneumonia; iv: intravenous; MDR: multi-drug resistant; VAP:
ventilator-associated pneumonia; XDR: extensively drug-resistant.

Due to the prediction that problems related to AMR will continue to increase from
year to year, the search for new antimicrobials continues. Scientists from all parts of
the world are working hard on the discovery of compounds to overcome AMR. The
WHO has listed several types of microorganisms as priority targets and special attention
has been given to them. In the latest WHO report on antibacterial agents in clinical
and preclinical development, the discovery of new antibiotic compounds under clinical
testing is categorized into two groups, namely traditional antibiotics and non-traditional
antibiotics. The clinical trial is a crucial stage to ensure the efficacy and safety of new drug
compounds before they are marketed. Clinical studies on a substance consists of four
phases, of which three phases must be completed before the agent can be commercialized.
A summary of the phases of clinical trial according to the WHO can be seen in Figure 2.
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The term traditional antibiotics refers to classes of antibiotics that are commonly used
and whose mechanism of action is well known. There are 26 new traditional antibiotic
compounds under clinical development that are reported to have activity against WHO
priority pathogens. The WHO priority pathogen list is further divided into three categories,
namely critical, high, and medium (Table 2). WHO has also set four criteria for innovation
in new drug discovery, including: (1) no cross-resistance with other antibiotics, (2) new
chemical class(es), (3) new target(s), and (4) new mechanism of action(s). Of the 26 com-
pounds, only seven of them fulfill at least one of these criteria. Below, we will discuss
antibiotics currently in clinical testing by their classes.

Table 2. The WHO priority pathogen list [10].

Critical Priority High Priority Medium Priority

Carbapenem-resistant Acinetobacter
baumannii (CRAB) Vancomycin-resistant Enterococcus faecium Penicillin-non-susceptible Streptococcus

pneumoniae

Carbapenem-resistant Pseudomonas
aeruginosa (CRPA)

Clarithromycin-resistant Helicobacter
pylori

Ampicillin-resistant Haemophilus
influenzae

Carbapenem- and 3rd gen.
cephalosporin-resistant

Enterobacteriaceae

Fluoroquinolone-resistant Salmonella
species Fluoroquinolone-resistant Shigella species

Vancomycin- and methicillin-resistant
Staphylococcus aureus

Fluoroquinolone-resistant Campylobacter
species

3rd gen. cephalosporin- and
fluoroquinolone-resistant Neisseria

gonorrhoeae

3.1. Beta-Lactams

Beta-lactams, or β-lactams, are the largest and most widely prescribed class of an-
tibiotics, consisting of penicillin, cephalosporin, carbapenem, and monobactam deriva-
tives [71]. As previously explained, the mechanism of resistance to this class of drugs is the
production of the enzyme beta-lactamase by microorganisms. This enzyme can hydrolyze
the beta-lactam ring, rendering the drug inactive [32,71]. One strategy to overcome AMR
in beta-lactam drugs is a combination with beta-lactamase inhibitor (BLI) compounds.
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Currently, several drugs belonging to the beta-lactam/beta-lactamase inhibitor class are
under clinical testing [32,72].

Two of them are single beta-lactams, namely sulopenem and benapenem. Sulopenem,
a thiopenem derivative, is a drug that has been described since 1989, but development
was discontinued in the 1990s. Due to the urgent need for drugs capable of inhibiting
Gram-negative bacteria, studies regarding these drugs have been reopened. Sulopenem
is currently in phase 3 clinical trials for its intravenous preparation and oral prodrug
form, sulopenem-etzadroxil. This drug is reported to have good activity against extended-
spectrum beta-lactamases (ESBL)-producing bacteria [73,74]. Benapenem is a carbapenem
derivative that has only been clinically developed in China. This drug has now completed
phase 2 clinical trials. Cross-resistance with other carbapenem drugs is reported [75].

Beta-lactamase inhibitors (BLIs), currently in clinical trials, are divided into sev-
eral classes, including boron-based BLI; diazabicyclooctanes; and penicillin-based sul-
fones [76]. Most of these compounds are only active against serine β-lactamases (class A,
C, and D), but only a few have activity against metallo β-lactamases (class B). Almost all
diazabicylooctanes-derived BLIs have intrinsic antimicrobial activity due to their ability
to inhibit PBP2 [72]. A sulbactam–durloactam combination is currently in phase 3 clinical
trials for infections caused by carbapenem-resistant Acinetobacter baumannii (CRAB). Sulbac-
tam is known to have intrinsic activity against A. baumannii. However, due to the variety
of beta-lactamase enzymes produced by this resistant species, its antibacterial potential is
limited. Durloactam is a BLI with a broad spectrum of beta-lactamase classes A, C, and D,
so it can support the activity of sulbactam. In vitro studies showed much lower resistance
of A. baumannii to this combination when compared to amikacin, ampicillin–sulbactam,
meropenem, and cefoperazone–sulbactam [77,78]. Three BLIs are being clinically devel-
oped in combination with cefepime, namely taniborbactam and enmetazobactam (phase 3),
and zidebactam (phase 1). Cefepime-taniborbactam and cefepime-enmetazobactam were
studied for the treatment of cUTI. Meanwhile, zidebactam has activity against A. bau-
mannii, P. aeruginosa, and several Enterobacterales. Other BLIs include nacubactam (with
meropenem), ETX0282 (with cefpodoxime), VNRX-7145 (with ceftibuten), ARX-1796, and
QPX7728 (with an undisclosed β-lactam QPX2014) (Figure 3).

3.2. Tetracyclines

Tetracyclines are broad-spectrum antibiotics that work by inhibiting bacterial protein
synthesis. The mechanism of resistance to tetracycline can be achieved through three main
mechanisms, namely ribosomal protection, drug efflux, and enzymatic inactivation [79].
The discovery of synthetic and semisynthetic tetracycline derivatives by chemical mod-
ification in the last few decades demonstrates the potential of this class to be explored
as a treatment for AMR. Tigecycline, approved for clinical use since 2005, is a parenteral
semisynthetic glycycline that has been reported to have good activity against several re-
sistant microorganisms. Two other tetracycline derivatives have also recently received
approval, namely eravacycline and omadacycline for oral and intravenous use. Meanwhile,
three tetracycline derivatives were recorded in phase 1 of clinical trials, namely KBP-7072,
TP-271, and TP-6076. TP-271 and TP-6076 are synthesized by Tetraphase Pharmaceuticals.
TP-271 is reported to be susceptible to tet (A) and tet (X), tetracycline-inactivating enzymes.
TP-6076 has a slightly different chemical structure from other tetracycline derivatives and
has activity against carbapenem-resistant Enterobacteriaceae (CRE) and CRAB [80].



Antibiotics 2021, 10, 981 8 of 33
Antibiotics 2021, 10, 981 8 of 34 
 

 
Figure 3. Chemical structures of (A) ETX0282, (B) VNRX-7145, (C) ARX-1796, and (D) QPX7728. 

3.2. Tetracyclines 
Tetracyclines are broad-spectrum antibiotics that work by inhibiting bacterial protein 

synthesis. The mechanism of resistance to tetracycline can be achieved through three main 
mechanisms, namely ribosomal protection, drug efflux, and enzymatic inactivation [79]. 
The discovery of synthetic and semisynthetic tetracycline derivatives by chemical modi-
fication in the last few decades demonstrates the potential of this class to be explored as a 
treatment for AMR. Tigecycline, approved for clinical use since 2005, is a parenteral sem-
isynthetic glycycline that has been reported to have good activity against several resistant 
microorganisms. Two other tetracycline derivatives have also recently received approval, 
namely eravacycline and omadacycline for oral and intravenous use. Meanwhile, three 
tetracycline derivatives were recorded in phase 1 of clinical trials, namely KBP-7072, TP-
271, and TP-6076. TP-271 and TP-6076 are synthesized by Tetraphase Pharmaceuticals. TP-
271 is reported to be susceptible to tet (A) and tet (X), tetracycline-inactivating enzymes. TP-
6076 has a slightly different chemical structure from other tetracycline derivatives and has 
activity against carbapenem-resistant Enterobacteriaceae (CRE) and CRAB [80]. 

3.3. Aminoglycosides 
Just like tetracycline, aminoglycoside antibiotics also work by inhibiting protein syn-

thesis in bacterial cells. However, over time, resistance also occurs to this class of antibi-
otics. Resistance to aminoglycosides is caused by the production of aminoglycoside-mod-
ifying enzymes (AMEs) and bacterial ribosome-modifying enzymes (16S rRNA methyl-
ase). Plazomicin (Figure 4), a newly approved drug, is stable in the presence of many types 
of AME, but is susceptible to 16S rRNA methylase [81]. In addition, the classic problems 
associated with the use of aminoglycosides, such as nephrotoxicity and ototoxicity, are 
still encountered with these drugs [79]. EBL-10031 (apramycin), an aminoglycoside previ-
ously used only for veterinary purposes, is currently in phase 1 clinical trials. Due to its 
unique chemical structure, it is resistant to a variety of clinically relevant AMEs, even to 
RNA methyltransferase, reducing its resistance [82]. In addition, this drug is also reported 
to have lower toxicity than other aminoglycosides [83]. 

Figure 3. Chemical structures of (A) ETX0282, (B) VNRX-7145, (C) ARX-1796, and (D) QPX7728.

3.3. Aminoglycosides

Just like tetracycline, aminoglycoside antibiotics also work by inhibiting protein syn-
thesis in bacterial cells. However, over time, resistance also occurs to this class of antibiotics.
Resistance to aminoglycosides is caused by the production of aminoglycoside-modifying
enzymes (AMEs) and bacterial ribosome-modifying enzymes (16S rRNA methylase). Pla-
zomicin (Figure 4), a newly approved drug, is stable in the presence of many types of
AME, but is susceptible to 16S rRNA methylase [81]. In addition, the classic problems
associated with the use of aminoglycosides, such as nephrotoxicity and ototoxicity, are still
encountered with these drugs [79]. EBL-10031 (apramycin), an aminoglycoside previously
used only for veterinary purposes, is currently in phase 1 clinical trials. Due to its unique
chemical structure, it is resistant to a variety of clinically relevant AMEs, even to RNA
methyltransferase, reducing its resistance [82]. In addition, this drug is also reported to
have lower toxicity than other aminoglycosides [83].
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in macrolides is RNA methylation reaction that changes the structure of the drug bind-
ing site on the ribosome [84]. A fourth-generation macrolide, solithromycin, has good
activity against resistant microbes, especially when compared to the previous generation
macrolides. Two phase III clinical trials for CAP and one for gonorrhea have been com-
pleted for this drug [85,86]. However, this drug did not get approval from the US FDA
because of its worrisome side effects on the liver [87]. Nafithromycin, a ketolide derivative,
has shown good susceptibility to CABP-causing bacteria, and is now entering phase 3
clinical trials [88].

3.5. Topoisomerase Inhibitors

Fluoroquinolones are part of this class of antibiotics that are widely used. However,
two new topoisomerase II inhibitor compounds have been developed which have distinct
structures to that of fluoroquinolones. Additionally, they act on different drug binding sites
so that resistance-related issues can be overcome. Zoliflodacin is currently in a phase 3
clinical trial for uncomplicated gonorrhea [89]. Meanwhile, gepotidacin is being developed
for uncomplicated UTI and uncomplicated gonorrhea [90].

3.6. Other Newly Developed Antimicrobial Classes

The development of antimicrobial compounds with new mechanisms of action is
considered important in overcoming AMR. Some of these classes include bacterial enoyl-
ACP reductase (FabI) inhibitors and the filamenting temperature-sensitive mutant Z (FtsZ)
inhibitors. FabI is an enzyme that plays an important role in the final stages of fatty acid
biosynthesis in bacteria cells. Afabicin, administered intravenously (i.v.) and orally, is
a FabI inhibitor currently under phase 2 clinical trials for acute bacterial skin and skin
structure infections (ABSSSI) and bone and joint infections. This drug acts specifically on
Staphylococci and has no activity against other microorganisms [91]. Meanwhile, FtsZ
inhibitors offer a new mechanism of action especially in overcoming AMR because of
their ability to target FtsZ proteins that are vital in bacterial cell division. A prodrug
of TXA-707, TXA-709, is currently in clinical trials. This drug has good activity against
methicillin-resistant S. aureus (MRSA) [92].

4. Newly Prospective Pharmaceutical Candidates to Mitigate Antimicrobial Resistance

The following section will discuss the development of several novel AMR agents and
the demonstration of their effectiveness, at least in vitro. This section will be divided into
two topics: natural antimicrobial agents and synthetic antimicrobial agents.

4.1. Antimicrobial Candidates Sourced from Natural Products

The history of antibiotic discovery began from nature. In fact, the first antibiotic agent
was discovered from a living organism. After that, the golden age of antibiotic discovery
lasted 20 years, with most of the compounds being derived from natural resources [16].
Even now, natural antimicrobials still attract attention, either as an antibiotic candidates or
template molecules for synthetic antimicrobials. This section will discuss the development
of natural antimicrobial agents over the last few years.

4.1.1. Antimicrobial Peptides (AMPs)

Antimicrobial peptides, small proteins with diverse biological activities, are consid-
ered one of the most dominant antimicrobial candidates in this current pipeline. Around
4500 sequences of AMPs are stored in the Data Repository of Antimicrobial Peptides
(DRAMP) [93]. Although most antimicrobial peptides are currently obtained through
synthesis, antimicrobial peptides can also be isolated from microorganisms, animals, and
plants [94]. Bacteriocin—ribosomal AMPs synthesized by bacteria—is one of the most
well-known AMPs and is widely used as a food preservative for a long time [95]. A recent
discussion by Soltani et al. (2021) presented the potential of bacteriocin not only in food
applications but also in the medical field; however, the safety and toxicity of bacteriocin
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became the highlight of the discussion [96]. Insufficient data regarding the safety and toxic-
ity of bacteriocin will limit its broad use in industrial settings; therefore, further research
about these matters is suggested [96]. Another example of natural AMPs is TPDSEAL,
plant AMPs isolated from Porphyra yezoensis seaweed, showing bactericidal activity against
S. aureus [97]. In addition to more AMPs sources, insects can be utilized to source novel
AMPs with antibacterial and antifungal effects [98]. Lubelicin isolated from bovine rumen
could kill MRSA strains after 30 min of exposure and had low cytotoxicity [99]. Several
problems like stability, degradation by oxidation or proteolytic enzymes, relatively low
half-life, toxicity, and hemolytic activity compared to antibiotics become significant ob-
stacles in translating natural-derived AMPs to industrial settings [95,100]. However, the
utilization of bioengineering techniques to produce more stable AMP-like compounds (e.g.,
peptidomimetics, which will be discussed later in this review) might offer an alternative
solution to this problem.

4.1.2. Antimicrobial Agents Sourced from Microorganism

Since the finding of the first antibiotics by Fleming in 1928, microorganisms have
become one of the most exploited sources in the discovery of new antimicrobial compounds.
Taking one example of natural antibiotics, polymyxin E, also known as colistin, is still
favorable as an antimicrobial therapy for drug-resistant microorganisms in the clinic [101].
Though there are plenty of resources being funneled into finding new antimicrobial agents,
filamentous saprophytic microbes living in diverse environments, famously known as
Actinomycetes, are still popular, even nowadays. An example of recent findings of a
novel antimicrobial compound from Actinomycetes is RSP 01, a lactone-based compound
isolated from Streptomyces sp. RAB12 demonstrates a minimum inhibitory concentration
(MIC) value ten times more potent than actinomycin-D against C. albicans, in addition to its
antibacterial activity [102].

Although the main focus of antibiotic discovery in this current pipeline is still of non-
extreme habitats of rare Actinomycetes, some researchers believe extreme conditions will
be favorable to find more diversity in Actinomycetes and its unique metabolites. Several
antimicrobial agents and other biologically active compounds sought from Actinomycetes
have been discussed in many papers over the recent decades [103–107]. Those findings
still consider Actinomycetes to be one of the largest producers of antimicrobial compounds.
Currently, there is a shift of interest to rare Actinomycetes, especially the ones sought from
various extreme environments like marine [108,109], thermophilic areas [110], desert [111,112],
extreme cold habitats [113], and other harsh conditions [114] to expand the diversity of
the unique metabolites obtained. Taking one example, Anthracimycin—a novel compound
sought from marine Actinomycetes—showed potent bactericidal action against MRSA and
B. anthracis as well as protective effects in animal models infected with MRSA [115,116].
Actinomycetes may remain a source of novel antimicrobial compounds in the coming years.

4.1.3. Antimicrobial Agents Sourced from Plants

In recent years, searching for new antimicrobial compounds from medicinal plants
has remained a trend among researchers due to the diversity of secondary metabolites.
Medicinal plants can be utilized as herbs, extracts, or plant-derived compounds. For
example, a research report on plant extracts of Moringa oleifera and Matricaria recutita
implied their potential to prevent the growth of clinical isolates of MDR, XDR, and PDR-
bacteria with MIC value range of around 7.8–62.5 mg/mL [117]. Another plant-based
compound that is studied the most is curcumin. This phenolic compound exhibits a
broad biological spectrum and various pharmacological effects such as anti-infective agent.
In fact, curcumin exhibits activity against numerous bacteria, fungi, and viruses [118].
Recent reports on the activity of curcumin have shown that this compound displays a
selective activity; its sensitivity was observed to be greater against Gram-positive than
Gram-negative bacteria [119]. The same study reported the activity of curcumin against
AMR bacteria and fungi; even though the results was not so promising [119]. Synergistic
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interaction of extract or plant-based compounds and antibiotics to repurpose resistant
antimicrobial drugs has also become a huge trend; several compounds were reported
to have synergistic action when combined with antibiotics [120–123]. As discussed by
Cheesman et al. (2017), this approach might be an excellent strategy to tackle AMR, mainly
since the product development and testing of plant-based agents (specifically plant extracts)
does not require a large amount of money, meaning that its delivery to the market can be
accelerated [124].

4.1.4. Bacteriophages

Bacteriophages (BPs) are DNA/RNA viruses with capsid-enveloped structures capa-
ble of infecting and killing bacteria [125]. Bacteriophages can be used as carriers in the
treatment of AMR because of their ability to kill bacteria precisely without killing com-
mensal bacteria in the body, as well as carriers for agents that can target the regulation of
genes that play a role in the growth and/or survival of the target bacteria [126]. In addition,
BPs are inexpensive, have higher safety and tolerability, and are easy to administer with
effects limited to the infected area [125,127]. The efficacy of BPs as antimicrobial agents
has been demonstrated in various studies. Alemayehu et al. (2012) reported that two
BPs (ϕMR299-2 and ϕNH-4) isolated from wastewater treatment were able to kill clinical
isolates of P. aeruginosa, including in its biofilm form in lung cell lines [128]. Drilling et al.
(2014) reported similar results on the use of BPs in reducing biofilms of clinical isolates
of S. aureus in rhinosinusitis patients [129]. In addition to single use, the combination
of BPs and antibiotics has also been reported to show increased activity in several stud-
ies [128,130,131] where the efficacy is highly dependent on the type of antibiotic given,
the administration order, and the target bacteria. The relationship between effectiveness
and BPs is one of the exciting things to note, as exemplified in the study conducted by
Dickey and Perrot [130], where the use of BPs before antibiotics affects the pathogen but is
otherwise ineffective.

Challenges in developing BPs as antimicrobial therapy are also covered in various stud-
ies, ranging from the host range to the clearance of BPs by the immune system. Although it
is one of the advantages of BPs, the specificity of action of BPs also limits their use in clinical
practice [125]; the type of bacteria that infects the host must be known before administering
BPs [126]. These challenges can be overcome by providing cocktails containing various BPs
or using phage engineering to expand the host range of BPs [126]. Phage engineering using
clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated
protein (Cas) can also maximize efficacy by targeting the pathogen’s resistant genes or
virulent genes and reducing the immune response against bacteriophages [126]. Another
problem is the contribution of bacteriophages in spreading antimicrobial resistance genes
(ARGs), which has been proven by the discovery of resistant genes in BPs in several stud-
ies [125,132,133]. However, the prevalence of ARG transduction is relatively low, and there
are indications of an overestimation of ARG abundance [125]. Another issue of BP utiliza-
tion is the possibility of developing resistance to BP target bacteria; however, replacing BPs
with other types can be a solution to this problem [134].

4.2. Synthetic Antimicrobial Compounds

Chemical synthesis plays an essential role in the early stages of antibiotic develop-
ment; sulfonamides are one of the most widely used examples of synthetic antibacterials in
clinical practice. Over time, the synthesis of antimicrobial agents has progressed. Chemical
synthesis is not only used to produce antimicrobial agents from scratch (fully synthetic
antimicrobial agents) but also to improve the chemical characteristics of antimicrobial
agents obtained from natural materials (semi-synthetic antimicrobial agents) [135]. Syn-
thetic biology using genetic engineering techniques gives enormous benefits in developing
novel antimicrobial compounds, resulting in the rapid growth of this research field [95].
This section will discuss the development of synthetic antimicrobial agents over the last
few years.
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4.2.1. Chemically Synthetic Antimicrobial Compounds

Several novel potential fully synthetic antimicrobial compounds have been reported
over recent decades. Salina et al. (2014) synthesized novel 2-thiopyridines compounds,
which were effective against both active and in vitro dormant models of M. tuberculosis
(MTB) cells [136]. The results showed that all compounds were active against the tested
cells—the most significant activity was observed in compound 11026115, which killed
dormant MTB H37Rv in three different in vitro models with MIC 0.250 mc/mL [136].
Recently, Seethaler et al. (2019) reported their successful attempt to generate two novel
thienocarbazole compounds with antimicrobial activity towards S. aureus and Enterococcus
species [137]. The lowest MICs were 2 mcg/mL against S. aureus and 8 mg/mL against
Enterococcus in vitro. Both compounds also demonstrated their effectiveness in reducing
the survival rate of S. aureus and Enterococci species upon in vivo testing using the Galleria
mellonella infection model [137].

Other chemical compounds, novel urea derivatives, were created using one-step amine
reactions using thiocyanates in toluene [138]. The compounds were tested on Enterococcus
faecium, S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, and Enterobacter species
(ESKAPE bacteria) and two fungi (C. albicans and C. neoformans). Several compounds
showed moderate to excellent activities against A. baumannii, K. pneumonia, S. aureus, and
fungi C. neoformans, while moderate to poor activities were found in E. coli, P. aeruginosa, and
C. albicans, indicating their prospective use as new antibiotic candidates, especially towards
A. baumannii with the highest inhibition percentage of 94.5% [138]. The mechanisms of
these compounds were yet to be determined.

Babii et al. (2018) successfully created CICI-flav—a novel tricyclic flavonoid
compound—through a two-step-reaction using 5-bromo-2-hydroxphenacyl-N-N-
diethyldithiocarbamate as the starting molecule [139]. This compound exhibits
bactericidal activity against both Gram-positive and Gram-negative bacteria, as well
as antibiofilm activity [139]. Its mechanism of action is related to the disruption of
cell membrane integrity. A toxicity assay on Vero cells showed no or very low toxicity
at effective concentrations [139].

Capracazamycins (CPZs) A–G are an example of incorporating semi-synthetic tech-
niques to improve the physical characteristics of an antimicrobial agent. Caprazamycin B
(CPZ-B) is a potent anti-tuberculosis drug. However, its poor solubility and the difficulty
in separating the compound from a complex mixture become considerable obstacles in
its development [140]. Takahashi et al. (2013) modified the caprazene (CPZEN) obtained
from the CPZs fermentation media through acid treatment to produce novel CPZs com-
pounds. These compounds reported good solubility in water and better activity against M.
tuberculosis than the original CPZ-B [140].

4.2.2. Peptidomimetics

Among all synthetic agents, major compounds studied are peptidomimetics—small
molecules designed to mimic the biological activity or characteristics of a peptide. Pep-
tidomimetics often possess improved bioavailability and metabolic stability while retaining
activity and selectivity profiles resembling AMPs [93,141]. The most fundamental differ-
ence from peptidomimetics is the lack of an α-amino acid from its backbone structure [141].
One of the most studied peptidomimetics is ceragenins—a group of peptidomimetics
derived from bile acid and cholic acid. Ceragenins has protease-resistant properties since
it is not protein-based and selectively targets the bacterial cytoplasmic membrane. The
main advantages of ceragenins are their activity against microorganisms resistant to high
levels of antibiotics and their ease of preparation for large-scale production [142]. The
most-reported first-generation ceragenin was CSA-13. Several studies demonstrated that
this compound had no or low toxicity; therefore, it was deemed suitable as a new antibiotic
candidate for humans [142]. In the study conducted by Bozkurt-Guzel et al. (2014), CSA-13
showed synergistic interaction against clinical isolates of CRAB with colistin, tobramycin,
and ciprofloxacin with the highest synergistic effect shown when combined with colistin
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(55% of tested strain, n = 20) [143]. A comparative study about the antimicrobial activity
of first-generation ceragenins and second-generation ceragenins (CSA-142 and CSA-192)
showed CSA-13 was still more potent than the second-generation MIC90. However, second-
generation ceragenins showed better results in the time-killing assay as they showed earlier
time points than the first-generation ceragenins [144]. Even though CSA-13 shows better
activity than CSA-142 and CSA-192, second-generation ceragenins might be more beneficial
than the first-generation due to better stability, environmentally friendly, and easier prepa-
ration [144]. Another second-generation ceragenins—CSA-131—exhibited bactericidal and
excellent antibiofilm properties against P. aeruginosa [145] and S. maltophilia [146] as well as
a synergistic activity when combined with colistin against CRAB [147].

4.2.3. Endolysins

Endolysins (lytic endopeptidases) are bacteriophage-derived hydrolases that caused
the osmolysis of Gram-positive bacteria by degrading the peptidoglycan of bacterial cell
walls [148,149]. During the lysogenic cycle, the virus will inject its genome into the bacterial
genome as a prophage. Under stress conditions, this gene will enter the replication state
to start the lysis cycle [149]. This compound was reported for the first time by Freder-
ick Tworth in 1915; several endolysins have entered the clinical trial phase over the last
decade [149–152]. Endolysin has become an attractive alternative for antimicrobial agents
because its activity remains when administered exogenously. Most endolysins are active
against Gram-positive bacteria and can cause rapid cell lysis and death because these bacte-
ria lack outer membrane protection [148,149]. Endolysins targeting Gram-positive bacteria
tend to have a narrow spectrum, while endolysins targeting Gram-negative bacteria tend
to have a broad spectrum. The main advantage of endolysin is that it is a safer molecule
because it does not interact with the host, unlike bacteriophages which may mutate or be
annihilated by the host’s immune system [149]. Recombinant endolysin can be synthesized
by cloning prophage DNA that encodes the production of endolysin in bacteria.

LysBC17, a recombinant endolysin prophage derived from the genome of B. cereus
strain Bc17, was reported to have narrow-spectrum lytic activity against several Bacillus
strains [153]. Swift et al. reported similar activity in PlyCP10 and PlyCP41 endolysins ob-
tained from the genome of Bacillus bacteria [154]. LysPA26 and LysAB54—Gram-negative
endolysins—demonstrate good antibacterial activity against Gram-negative superbugs
such as MDR P. aeruginosa, A. baumannii, and E. coli [155,156]. Moreover, endolysin
LysPA26 was reported to kill P. aeruginosa even in the form of a biofilm. Another en-
dolysin, LysSAP26, exhibits broad-spectrum activity against resistant ESKAPE bacteria
with MIC ranging from 5–80 mcg/mL [155]. Drug delivery becomes a drawback in the use
of endolysin in therapy. As reviewed by Murray et al. (2021), endolysin modification using
molecular biology techniques (e.g., chimeric lysin, artilysin, virion-associated lysin, etc.)
combined with optimization of delivery systems may solve this problem in the future [149].

4.2.4. Nanoparticles

Nanoparticles (NPs) are tiny, nano-sized particles with various biological, including
antimicrobial, activities. Although their exact mechanisms are not exactly understood, NPs
and NP-based materials still invite interest to be developed as antimicrobial agents [157].
Advantages such as simple preparation, excellent and varied antimicrobial activities, and
its ability to be used as a carrier for antibiotic delivery are the reasons for the popularity
of this material [157,158]. Nanoparticles, in particular, metal nanoparticles, can be pre-
pared by using conventional chemical techniques or green synthesis techniques with the
help of bacteria, fungi, and plants. The green synthesis of nanoparticles has attracted
vast attention due to its ease of preparation, environmentally friendly nature, and cost-
effectiveness [159]. Several antimicrobial actions of metal-based nanoparticles have been
documented over the past few years, ranging from their ability to inhibit the growth of
resistant bacteria, antibiofilm activity, inhibit quorum sensing activity, to act synergistically
with antibiotics [157,158,160]. Among the metal nanoparticles developed, silver nanoparti-
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cles (AgNPs) are the most potent metal-based nanoparticles [160]. One example of AgNPs
activity—antibacterial and quorum QQ activity against K. pneumoniae—was demonstrated
by Indian researchers [161]. AgNPs also displayed antifungal activity against several fungi
such as C. albicans [162], Malassezia furfur [163], and several fungal pathogens [164–166].
When combined with visible blue light therapy, the antimicrobial activity of AgNPs therapy
increased at sub-mic concentrations and the best activity was shown when these agents
were combined with antibiotics [167].

Although NPs and NP-based materials show promising characteristics and activities
as antimicrobial candidates, several challenges need to be addressed upon introducing
these agents in the clinic. Cytotoxicity occurs as a problem in therapy with AgNPs; local
administration of NPs can overcome this problem [168]. Before utilizing NPs in treatment,
host-NPs interaction, optimal dose, and administration routes must be assessed [160].
Another arising problem is the growing prevalence of bacterial resistance towards NPs,
including A. baumannii, one of the most concerning AMR bacteria in the clinic [169].
New strategies are urgently required to preserve the efficacy of NP-based materials as
antimicrobial agents, including proper use and disposal of such preparations and a better
understanding of the mechanism of microbial resistance against NP-based pharmaceuticals.

5. Drug Delivery Approaches via Different Routes to Overcome
Antimicrobial Resistance

The fast occurrence of antimicrobial resistance in pathogenic microorganisms has
become an impending worldwide public health problem. Management with conventional
antimicrobial agents frequently results in resistance increase because most of these an-
timicrobial agents work on intracellular targets. Moreover, the application of these agents
does not keep their bacterial morphology intact. Consequently, they are extremely prone
to advance resistance throughout mutation. Bacterial resistance problems have occurred
in different parts of the body. Accordingly, several drug delivery systems have been dis-
covered with various routes to deliver antimicrobial agents to overcome this resistance
issue [170–178].

5.1. Oral Route

Oral administration has been known as the safest and most convenient route for
any medication, especially for antimicrobials. The oral route is preferable for antibiotic
treatment over the intravenous route due to several advantages, such as being cheap,
easy to administer, and not requiring any healthcare professional intervention due to the
absence of a needle during the treatment [179,180]. Oral antibiotics can be considered the
first option to treat any non-emergency condition over other routes if the bioavailability is
over 90% compared to the intravenous route [180]. Therefore, bioavailability becomes a
significant concern for the scientist in designing and developing antibiotic formulations
for oral administration. Poor bioavailability may result in resistance development when
the antibiotics fail to achieve the adequate serum concentration required to kill the bac-
teria [181]. Low aqueous solubility and limited permeability are reported to become the
main factors associated with poor bioavailability [181,182].

In order to enhance the low solubility of amoxicillin and levofloxacin, Ojha and Das
developed a drug-loaded microbial biopolymeric nanocarrier. This system was developed
using a microbial polyester, poly (3-hydroxybutyrat-co-3-hydroxyvalerate), to improve the
curative antimicrobial bioavailability of both amoxicillin and levofloxacin. In this study, the
formulations were prepared by utilizing a triple emulsion technique. The size of particles
was found to be in a range of 5–100 nm, and a biocompatibility study showed that these
nanoparticles are biocompatible and safe from cytotoxic effects. Based on the antibacterial
activity against E. coli and S. aureus, an increment of nanoparticle concentration results in
an increase in the inhibition zone as well as a significant decrease in the bacterial survival
ratio [182].

An alternative way to increase the solubility of antibiotics is to form an inclusion
complex with cyclodextrin. In a recent study, various antibiotics, such as kanamycin,
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chloramphenicol, gentamicin, and ampicillin, were individually formulated into nanofibers
for oral delivery systems by utilizing the electrospinning technique [183]. The diameter of
antibacterial nanofibers obtained was found to be in the range of 340 to 550 nm. All the solid-
state characterization confirmed the inclusion complex formation between cyclodextrin
and antibiotics (kanamycin, chloramphenicol, gentamicin, and ampicillin). Notably, the
inclusion complexes of antibiotics in nanofiber particles demonstrated a rapid dissolution
and release in water and artificial saliva. The antibacterial activity of cyclodextrin-antibiotic
nanofiber was explored for 24 h using a zone-of-inhibition study performed on agar plates.
The results showed that the inclusion complex nanofiber exhibited high bacterial activity
against E. coli, whilst no inhibition zones were observed from each antibiotic’s control [183].
The scanning electron microscope (SEM) images of cyclodextrin-antibiotic nanofibers
obtained by Topuz et al. (2021) is presented in Figure 5A.
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In order to improve drug permeability, a self-emulsifying drug delivery system
(SEDDS) has been documented by Arshad et al. (2021). This system has been investigated
to enhance muco-penetration of ciprofloxacin. As a cell-penetrating peptide, poly-L-lysine
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was incorporated into the SEDDS of ciprofloxacin to enhance the system selectivity of
the intracellular target of the Salmonella enterica serovar Typhi infection reservoir. This
study showed that the SEDDS formulation was able to release 85% of ciprofloxacin in 72 h.
An antimicrobial study showed that ciprofloxacin loaded in a SEDDS of poly-L-lysine,
mannose, preactivated hyaluronic acid, and Pluronic F127 could minimize the survival rate
of S. Typhi strains as well as show high killing activity compared to pure ciprofloxacin sus-
pension. Moreover, the cellular uptake capability within the intracellular compartment of
the macrophage has been confirmed by fluorescence imaging of the formulation. Therefore,
this system could be a promising approach for eradicating S. Typhi intracellularly [184].
Microscopic images of tissue histology and results of treatment with SEDDS in the intestine
can be seen in Figure 5B.

Nowadays, mitigation of antimicrobial resistance is not only focused on innovation of
drug formulation. As a biological material, the enteric-targeted microbiome is difficult to
formulate into an oral delivery formulation due to its high sensitivity to acid exposure. In
order to overcome this issue, a study from Richards and Malik has successfully encapsu-
lated an E. coli phage T3 in three different pH-responsive formulations for targeting the
infectious bacterial cells. The encapsulated phages (Figure 5C) achieved a complete release
within 30–45 min following exposure to different pH of simulated intestinal fluid (pH 5.5,
pH 6, and pH 7). Moreover, in an acidic environment the encapsulate phages were stable,
and the T3 phage can survive at low acidic pH. The stability study findings showed a 1 log
decrease of phage viability in four weeks in refrigerator storage [185].

5.2. Parenteral Route

Parenteral administration of antimicrobial agents is recommended for patients who
have severe and emergency conditions. Although the parenteral route is associated with
needle-caused pain during administration, this route is still preferred due to manageable
dosage, better bioavailability, and absence of first-pass metabolism [186]. Additionally, a
previous study reported that the development of antibiotic resistance might be minimized
by administrating the drug via parenteral injection [187]. Through this route, antibiotics can
directly reach the systemic circulation and prevent the unnecessary exposure of antibiotics
to the gut microbiota, resulting in a delay in antibiotic resistance [187].

In order to deliver an antibiotic through intravenous administration, Alcantara et al.
developed nanostructured lipid carriers (NLCs) of mupirocin. This approach was able to
produce particle in the size range of 99.8 to 235 nm. In this work, the NLCs exhibited the
bacterial inhibition of S. pyogenes and S. aureus at 1.56 µg/mL and 0.78 µg/mL, respectively.
These results were lower than free mupirocin, whose inhibition activity was 6.25 µg/mL
and 1.56 µg/mL against S. pyogenes and S. aureus, respectively. An in vivo pharmacokinetic
study in rabbits showed that plasma concentration and drug clearance were enhanced
in NLCs formulations compared to free mupirocin. Therefore, this study provides a
potentiality of mupirocin as a new parenteral antibiotic that was highly promising to be an
alternative option for resistant bacterial infections [188].

A recent study has investigated the formation of inclusion complexes of doxycycline
and HP-β-CD in order to develop a reconstitution formulation utilizing both freeze-drying
and electrospinning techniques [186]. The results showed that the complex powder of
doxycycline-HP-β-CD was fully dissolved in 1.5 mL water with the final concentration
of 66.7 mg/mL. This concentration is seven times higher than similar marketed products.
With regard to the manufacturing technique, electrospinning could produce more recon-
stitution powder in a day than freeze drying technology. Therefore, this approach could
be a promising application in life-threatening conditions that require the rapid onset of
doxycycline action [186].

Another problem pertaining to antimicrobial resistance is antibiotic overuse for in-
tracellular infection treatment such as nontyphoidal Salmonella [189]. The inability of
antimicrobial agents to access and enter the macrophages, where the pathogens reside,
presents difficulties in overcoming this type of infection. Elnaggar et al. offer an alternative
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by developing nanotruffle formulations loaded with pexiganan and silver nanoparticles.
This approach allows us to produce the particle with a specific size, 500–1000 nm, which
is small enough for intravenous injection yet large enough to be selectively taken only
by infected macrophages. In order to evaluate the antimicrobial activity of this approach,
the nanotruffle formulations were evaluated using macrophages infected with different
bacteria, namely Shigella flexneri, S. Typhimurium, Listeria monocytogenes, and MRSA. The
results showed that the combination of silver and pexiganan in nanotruffle formulations
against intracellular pathogens was significantly better than silver nanoparticles alone [190].
Through the rapid accumulation of nanotruffle formulations in the reticuloendothelial
system following the intravenous administration, this study provides preliminary evidence
and a high degree of promise that nanotruffle formulation has a viable application in the
treatment of intracellular bacterial infection.

5.3. Inhalation Route

The inhalation route becomes a preferred route, especially for delivering several
antibiotics targeted for any bacteria residing in the respiratory tract and organ. Indeed,
pulmonary delivery enables us to deposit high concentrations in the lung, as a target
site, while at the same time reducing systemic exposure [191]. However, the drug dose
attained in the lungs can also be absorbed and reach systemic circulation via the pulmonary
vasculature [192].

Devices are required to be incorporated with antibiotic formulations to facilitate drug
delivery into the lungs. Generally, the devices are categorized into three: nebulizers, pres-
sured metered-dose inhalers (PMDIs), and dry powder inhalers (DPIs). Firstly, nebulizers
are developed for the drug in an aqueous solution or suspension form. This device is
linked to a compressor as an external nebulization source for atomizing the solution or
suspension into fine droplets. Secondly, PMDIs is combined with a propellant under
pressure to generate an aerosol from suspension or solution. This device can produce a
more uniform spray than is achieved with nebulizers [193]. Lastly, DPIs are developed
for dispersing dry particles as an aerosol. The exact dose of drug administered using this
device is controlled by the patient’s inspiratory airflow, duration, and inhaled volume [194].
To date, several approaches in dry inhaler powder have been proposed to be combined
with DPIs for antibiotic administration in pulmonary-targeted therapy.

Tuberculosis is still a primary health concern, especially in developing countries. This
disease can be cured by an antibiotic regimen that needs to be taken daily for up to six
months [3]. However, failure in tuberculosis therapy and drug-resistant cases further
complicates the treatment due to poor patient compliance for taking many pills daily.
Consequently, several studies have been developed to improve tuberculosis treatment
through pulmonary delivery to date. Chogale et al. reported that three main tuberculosis
drugs, namely isoniazid, pyrazinamide, and rifampicin, were successfully formulated
into dry powders incorporated with DPIs for direct pulmonary delivery. Initially, the
three drugs were prepared into nanocrystals with a particle size in the range of 565 to
762 nm. The triple combination of dry powder inhaler was then developed by involving the
nanocrystals and lactose into the formulations. The results confirmed that the dry powder
formulation exhibited excellent flow properties and a fine particle fraction of 45%. In vivo
lung deposition study showed that up to 80% of the doses were successfully administered
to the lung, and approximately 20% of dose was retained over 24 h [195].

Using other approaches for improved tuberculosis treatment, Berkenfeld et al. have
recently demonstrated the potential of the spray drying technique to produce rifampicin
in a stable dry powder formulation for direct pulmonary delivery. In this work, the
authors investigated the stability of rifampicin spray dried from different solvents (ethanol,
methanol, and water). The sample spray dried from ethanol was found to be stable in
the storage condition over six months; on the contrary, samples from methanol and water
exhibited a significant degradation and aggregation (Figure 6A) [196].
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In order to combat another bacterial infection, meropenem (Figure 6B) was formulated
into dry inhaler powder to achieve a better therapeutical effect due to stability issues in
solution form as well as a short plasma half-life following intravenous administration [197].
The particle size was found to be in the range of 0.2–2 µm by utilizing a conventional
micronization technique using mortar and pestle. The result of in vitro aerosol perfor-
mance shows that the combination of L-leucine, lactose, and magnesium stearate could
significantly improve the aerosol performance of meropenem up to 37.5%. Considering the
desired therapeutic concentration in plasma is 25 µg/mL via injections, 200 mg of this dry
powder inhalation formulation (containing 2.5% of meropenem) could be extrapolated to
achieve a similar therapeutic result to an injection containing 500 mg meropenem [197]. Al-
though this study offers a simple manufacturing process that is promising and industrially
scalable, no antimicrobial or animal study supports the susceptibility and effectiveness of
this approach against bacterial infection.

Poly(lactic-co-glycolic acid) (PLGA) microspheres containing levofloxacin for dry
inhaler powder was developed by Gaspar et al. (Figure 6C). The microsphere formulations
were evaluated for drug release and cytotoxicity. The selected microspheres formulation
had controlled release properties and were well-tolerated by Calu-3 cells. Considering
60–70% of the levofloxacin is released from the PLGA-microsphere over 24 h, this means
the formulation can be highly concentrated in the lung for a prolonged time. This approach
could be beneficial for patients since the dosing frequency can be reduced and treatment
efficiency can be improved [198].

5.4. Topical Route

Li et al. developed hydrogel formulations containing a combination of physically
crosslinked antimicrobial agents possessing broad spectrum activities prepared from the
complex reaction between two biodegradable polymers, namely PLLA-PEG-PLLA (PLLA =
poly(l-lactide) and polycationic PDLA-CPC-PDLA (PDLA = poly(d-lactide, CPC = cationic
polycarbonate) [199]. The synthesis process of PLLA-PEG-PLLA and PDLA-CPC-PDLA
precursor triblock copolymers was carried out through organo-catalyzed ROP. As the
macroinitiators, the authors used PEG and polycarbonate in the synthesis reactions. Via
this reaction, the desired characteristic of polymer, namely well-controlled sequence sizes
with the optimum degree of polymerization, was achieved. Afterwards, the precursors
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were reacted with trimethylamine through quaternization in order to attain the cationic
polycarbonates. Importantly, due to the efficient combination of PLLA-PEG-PLLA and
PDLA-CPC-PDLA precursor triblock copolymers, the authors were able to produce a
succession of supramolecular hydrogel assemblies with lower critical solution temperature
performance, shear-thinning performance, and abilities to disrupt biofilm at 37 ◦C [199]. In
this study, the antimicrobial activity of the formulation was investigated against various
types of pathogenic microorganisms, namely S. aureus, E. coli, and C. albicans. Additionally,
several clinically isolated microorganisms were also used, namely methicillin-resistant
S. aureus, vancomycin-resistant enterococci, P. aeruginosa, A. baumannii (resistant to most
antibiotics), K. pneumonia (resistant to carbapenem), and C. neoformans. The results showed
that the hydrogels were found to entirely eradicate growth and display complete killing
effectiveness on all the microorganisms examined even though the cationic PDLA-CPC-
PDLA polymers in solution exhibited poor antimicrobial performance [199]. Specifically,
following the investigation of the mechanism of the antimicrobial activity, the disruption of
membrane or cell wall of microorganisms was found to be the possible mechanism after the
observation of morphology of microorganisms using scanning electron microscopy. Essen-
tially, the optimum formulation of hydrogel developed in this study exhibited insignificant
toxicity both in in vitro and in vivo evaluations.

Numerous polysaccharide derivates have been extensively applied as the main vehi-
cles for the delivery of antimicrobial agents because of their biocompatibility and biodegrad-
ability [200]. For instance, Zumbuehl et al. developed hydrogels containing the broad-
spectrum antifungal drug, amphotericin B, with dextran as the hydrogel vehicle. The
dextran-based hydrogel laded with amphotericin B was able to kill C. albicans effectively
within two hours. Importantly, the application of this formulation did not result in any
hemolysis [201]. Using a similar approach, Glisoni el al. developed hydrogels contain-
ing thiosemicarbazones formulated from β-cyclodextrin for ocular delivery [202]. The
antimicrobial activity evaluations showed that hydrogels laded with Thiosemicarbazone
successfully eradicated P. aeruginosa and S. aureus, two bacterial strains that generally cause
ocular infections [202].

In addition to the polysaccharide derivates, in the topical hydrogel formulation,
poly(acrylate)s have also been applied as a vehicle. These polymers are well-known for
their ability to specifically deliver antibiotics to the desired site, although these compounds
have shown poor biodegradable characteristics. In this application, Jones et al. explored
different types of hydrogels formulated via the copolymerization of methacrylic acid and
N-isopropylacrylamide. In their study, various types of hydroxy methacrylates were used
and chlorohexidine diacetate was used as the active ingredient [203]. The results showed
that the optimum formulation was obtained by copolymerizing N-isopropylacrylamide
with 2-hydroxyethyl methacrylate at a ratio of 1:1. The rapid and controlled release of
chlorohexidine diacetate was attained specifically at 37 ◦C. Importantly, the formulation
successfully inhibited the growth of S. epidermis.

Cheng et al. developed a combination of antimicrobial and antifouling agents in-
corporated into hydrogel formulations. This combination was established with the aims
of avoiding the development of planktonic bacterial cells whilst maintaining clean sur-
faces [174]. In their study, salicylate as a mild antimicrobial compound was used as the
active ingredient and formulated into a hydrogel prepared from the crosslinking reaction
of a poly(carboxybetaine) (pCB)-containing methacrylate-base as its anion. The results
showed that the hydrogel formulation was able to stop the proliferation of two bacteria
strains, namely S. epidermidis and E. coli with 99.9% killing efficiency. Accordingly, this ap-
proach was found to have a potential application in wound dressings and surface coatings
for biomedical apparatus. Remarkably, without the incorporation of salicylate, pCB-based
hydrogel was only able to reduce the attachment of the bacteria without killing efficiency.
In a follow-up examination, the authors continued using this approach and performed
modifications of their study. They changed the use of the methacrylate-based chemically
crosslinked hydrogel with a thermosensitive hydrogel. To achieve this purpose, they used
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thermosensitive polymer, poly(N-isopropylacrylamide) (PNIPAM) in the antimicrobial
wound dressing formulation [204]. The results revealed that the addition of NIPAM into
the formulation was able to produce a thermo-responsive hydrogel possessing in situ
gelation abilities at body temperature. This could potentially result in suitable and desired
properties for wound dressing purposes. In the microbial activity evaluation, the hydrogel
formulation was found to completely eliminate the growth of E. coli. Importantly, the
formulation did not show any cytotoxicity on mammalian fibroblast cell line COS-7 [204].

Yabanoglu et al. examined the antibacterial activities of various topical antimicrobial
dressings, namely 1% silver sulfadiazine (SSD), 0.5% chlorhexidine acetate, 3% citric
acid, and silver-coated dressing on a multi-drug resistant P. aeruginosa. The study was
carried out in vivo in an infected full thickness burn wound model in rats. After a seven-
day application period, 1% SSD and silver-coated dressing were found to be effective
at reducing the viability of P. aeruginosa colonies in the infected rats. Therefore, these
preparations could be considered effective agents in the treatment of burn wound infections.
Importantly, in this study, there was no mortality found in any of the groups [170].

As an emerging approach, the formulation of antimicrobial agents into nanoparti-
cles has been found to deliver higher amounts of these agents to the infected skin sites.
Therefore, this could potentially overcome resistance possibility with low side effects.
The incorporation of antimicrobial agents into nanoparticle formulations circumvent the
microorganism resistance by avoiding the declined uptake and improved efflux of drug
from the cells of the microorganisms, intracellular bacteria, and formation of biofilm [175].

Friedman et al. formulated nitric oxide loaded nanoparticles for prospective applica-
tion in antimicrobial treatment against MRSA and MSSA (Figure 7A) [178]. Following the
determination of the MICs values, nanoparticles laden with nitrite oxide showed MIC val-
ues between 312 and 2500µg/mL against MRSA and between 312 and 1250µg/mL against
methicillin-sensitive S. aureus (MSSA) strains. Importantly, the nanoparticles were found
to be non-toxic in human fibroblasts (Figure 7B). In an in vivo study, an MRSA-infected
wound was developed in murine model. The results showed that infected mice receiving
nanoparticles containing nitric oxide exhibited drastically lower bacterial bioburden when
compared to untreated mice or mice receiving nanoparticles. It has been hypothesized that
nanoparticles laden with nitric oxide enhanced the wound healing properties by triggering
minimum degradation of collagen. The results obtained here supported the notion that
nanoparticles containing nitric oxide could potentially be utilized as an innovative topical
antimicrobial dosage form for the effective management of skin and cutaneous infected
wounds [205].

In another work related to nitric oxide, Choi et al. developed S-nitrosoglutathione
(GSNO) into chitosan film for the treatment of bacterial biofilm infection caused by MRSA
(Figure 7C–E). In this study, chitosan was selected due to its antimicrobial and anti-biofilm
properties [206]. As an active ingredient, S-nitrosoglutathione has been recognized as
an excellent nitric oxide (NO) donor to eliminate pathogenic biofilms and to improve
wound healing behaviors. The results showed that the incorporated GSNO into chitosan
films was able to control the release of NO for three days in simulated wound fluid. The
film formulation containing GSNO-loaded films could result in more than three logs
reduction in MRSA viability. Furthermore, this approach showed three-times greater
anti-biofilm properties in comparison with the control formulation. In vivo study was
carried out in MRSA biofilm-infected wounds in non-diabetic and STZ-induced diabetic
mice. Importantly, in in vivo study, the film containing GSNO exhibited rapid biofilm
removal and a decrease in wound size, collagen deposition, and rates of epithelialization
when compared to the untreated and film without GSNO cohorts (Figure 7F) [206]. This
study suggested that GSNO incorporated into films could be a favorable system for the
management of infection associated with MRSA biofilms.
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To date, microneedle delivery systems have been widely used to topically deliver
antimicrobial agents into an infection area [176,207–211]. Permana et al. developed dissolv-
ing microneedles containing doxycycline nanoparticles. The nanoparticles were prepared
using responsive polymers, namely poly(lactic-co-glycolic acid) and poly (E-caprolactone)
coated with chitosan [173]. The incorporation of doxycycline into these polymers was able
to specifically control the release of the drug in the presence of bacterial cultures. In an ex
vivo biofilm model using MRSA and a resistant strain of P. aeruginosa, this approach was
able to eradicate up to 99.99% of bacterial bioburden after 48 h of application. Similarly, the
authors incorporated silver nanoparticles into bacterially sensitive microparticles prepared
from poly (E-caprolactone). The microparticles were further formulated into dissolving
microneedles. In comparison with dissolving microneedles containing silver nanoparticles
without microparticle formulations and conventional cream formulations, around 100% of
bioburdens of MRSA and resistance strain of P. aeruginosa were eliminated in an ex vivo
biofilm model in rat skin after 60 h of the application of this system [207].

5.5. Transdermal Route

Transdermal delivery systems have been developed to deliver antibiotics to the sys-
temic circulation in order to overcome the antimicrobial resistance issue. Rastoge et al.
designed an innovative microemulsion formulation to deliver bacteriophage (T4), specifi-
cally lysing E. coli via the transdermal route [212]. This study was designed to overcome the
resistance issue in treatment associated E. coli. In this study, the microemulsion formulation
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was done using pseudoternary phase diagrams. The compositions of the microemulsions
were the combination of ethyl oleate, Tween 80: Span 20 and water as oil phase, and
stabilizers as aqueous phase, respectively. The results showed that the microemulsion
droplets were approximately 200 nm in size with a narrow size distribution. Importantly,
the formulations possessed acceptable viscosity and surface tension. The transdermal
ability evaluated by ex vivo permeation showed that up to 6.7 × 106 PFU/mL of T4 were
able to permeate across the skin from the microemulsion formulation. In vivo permeation
study was performed in the E. coli challenged rats and 5.49 × 105 PFU/mL of T4 was
found in the blood of the rats. Furthermore, at the end of the study 2.48 × 105 PFU/mL
of T4 was found in germ free rats. Importantly, in the cohort where the rats infected with
E. coli received microemulsion of T4, no mortality was found. On the other hand, when
the infected rats did not receive the developed formulation, noteworthy mortality was
found. Moreover, analyzed using histological and IL-6 immunofluorescence evaluation, the
administration of microemulsion containing T4 exhibited a safety effect on the treatment.
Therefore, this approach could potentially be utilized as an alternative treatment for the
infections caused by antibiotic-resistant bacteria [213].

As a solution for infection in the neonatal, gentamicin was formulated into a micronee-
dle approach delivered transdermally [214]. The dissolving microneedles were prepared
using two water soluble polymers, namely sodium hyaluronate and poly(vinylpyrrolidone).
The microneedles were found to have adequate mechanical and penetration properties.
In vitro transdermal delivery showed that microneedles were able to deliver around 4.45
mg of gentamicin after 6 h. In an in vivo study using rats, it was found that dissolving
microneedles could deliver gentamicin transdermally at therapeutic levels. Furthermore,
Rodgers et al. evaluated the in vivo efficacy of gentamicin loaded dissolving microneedles
in a murine model of K. pneumoniae bacterial infection [172]. The microneedles were applied
to murine ears. The results showed that the bacterial bioburden in the nasal-associated lym-
phoid tissue and lungs in the infected mice administered gentamicin loaded microneedles
decreased significantly in comparison with the untreated cohorts.

In order to increase the efficacy of vancomycin hydrochloride for MRSA treatment,
Magdy et al. developed an ethosomes approach combined with iontophoresis to trans-
dermally deliver vancomycin [215]. Ethosomes were prepared by a cold method using
soy phospholipids, ethanol, and propylene glycol. Vancomycin loaded ethosomes exhib-
ited excellent electrochemical stability. Furthermore, cathodal iontophoresis of negatively
charged vesicles displayed the highest transdermal flux with a value of 550 µg/cm2/h
in comparison with free drug solution. In this study, a Sprague Dawley rats infection
model was prepared by producing mediastinitis using MRSA. The transdermal delivery
developed in this study was compared to intramuscular administration and an untreated
group. The in vivo efficacy study showed that the bacterial bioburden of the infected
groups receiving intramuscular administration and transdermal administration were not
significantly different and significantly higher compared to untreated group. Accord-
ingly, the combination of ethosomes and iontophoresis were successfully able to deliver
vancomycin transdermally [215].

Recently, with similar purpose, Ramadon et al. further developed two types of mi-
croneedles, namely dissolving and hydrogel-forming, to also deliver vancomycin transder-
mally [216]. All formulations were characterized, and it was found that the microneedles
prepared possessed sufficient mechanical characteristics. Furthermore, in an ex vivo
transdermal delivery study across the neonatal porcine skin, both types of microneedles
successfully delivered vancomycin with the percentage of drug around 46.39 ± 8.04% and
7.99 ± 0.98% for dissolving and hydrogel-forming microneedles, respectively. In in vivo
studies in a rat model, the administration of dissolving and hydrogel-forming microneedles
resulted in the area under the plasma concentration time curve from time zero to infinity
(AUC0–∞) values of 162.04 ± 61.84 and 61.01 ± 28.50 µg.h/mL, respectively. On the
other hand, these values were significantly higher than that of the oral administration of
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vancomycin [216]. Therefore, transdermal delivery of vancomycin could be an alternative
treatment for infectious diseases caused by MRSA.

5.6. Vaginal Delivery System

In order to assist in the delivery of clotrimazole for vaginal delivery, de Lima et al. devel-
oped nanocapsule formulations incorporated into hydrogel dosage forms (Figure 8A) [171].
In this study, Pemulen® TR1 and Pullulan were used as mucoadhesive polymers. The mu-
coadhesive hydrogels obtained were found to have pH values close to vagina pH, indicating
that the application of these gels would not cause any irritation to the vaginal mucosa. In
spreadability evaluations, the clotrimazole-loaded nanocapsules in hydrogel formulations
showed similar properties compared to free clotrimazole loaded hydrogel formulations. The
mucoadhesive evaluations showed that pullulan with concentration of 3% showed an ade-
quate mucoadhesive in cow vaginal mucosa. Importantly, this innovative approach could
retain clotrimazole in the vaginal surface (Figure 8B). Accordingly, the hydrogel formulations
containing clotrimazole nanocapsules and pullulan could potentially be used as an alternative
treatment of vulvovaginal candidiasis.
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In another study, Argenta et al. formulated thermosensitive-bioadhesive vaginal gel
containing secnidazole [217]. This drug has been considered an alternative antimicrobial
agent for infection caused by Trichomonas vaginalis. Additionally, this drug is also used
to solve antimicrobial resistance issues of conventional therapy. In this study, the gel
contained poloxamer 407 and poloxamer 188 as thermosensitive polymers and chitosan
as mucoadhesive agents. The formulations showed desired mucoadhesive properties and
sol–gel transition temperature with a rapid gelation time. Importantly, the thermosensitive-
bioadhesive vaginal gel was able to reduce the permeability and increase the retention of
secnidazole in comparison with control formulation (Figure 8C,D). With these results, this
approach could be beneficial in the treatment of trichomoniasis.



Antibiotics 2021, 10, 981 24 of 33

Recently, to improve the solubility of itraconazole in vaginal delivery, this drug was
formulated into solid dispersion loaded into gel flakes [177]. This approach was further
incorporated into thermosensitive and bioadhesive vaginal gel. The formulation of itra-
conazole in solid dispersion was able to improve the solubility of the drug. Additionally,
being formulated into gel flakes, the itraconazole was encapsulated with desirable entrap-
ment efficiency and drug-loading capacity. The hydrogel formulation contained pluronic
as a thermosensitive agent and HPMC as the mucoadhesive polymer. The results showed
that the incorporation of solid dispersion-gel flakes of intraconazole into thermosensitive
and bioadhesive hydrogel improved the localization of the drug in the vaginal tissue in an
ex vivo study. Importantly, the formulation was found to have adequate mucoadhesive
and thermosensitive properties. In an in vivo study using a vaginal candidiasis model of
C. albicans-infected Wistar rats, this combination approach improved the antifungal activity
of itraconazole in comparison with other treated groups [177].

6. Concluding Remarks and Future Perspectives

Escalation of infectious cases caused by antimicrobial resistant pathogenic microor-
ganisms has become a significant threat worldwide. Currently available antimicrobial
preparations, unfortunately, have not been properly utilized to address this issue. Given
the rise of pathogen resistance and the inadequate supply of effective antimicrobials, we
sought to discuss the importance of discovering novel synthetic or naturally occurring
antibacterial compounds to manage antimicrobial resistance. Evidently, this issue is vital
for humans’ wellbeing, thus innovative and meticulous actions on the application of vari-
ous drug delivery approaches to deliver those novel antimicrobial compounds through
numerous routes shall provide advantageous approaches to the management of infectious
diseases. Nevertheless, there is a need to precisely design the delivery systems for different
types of infectious diseases to prevent the emergence of antimicrobial-resistant pathogens
towards the newly developed antimicrobial agents. In the end, careful considerations in
the development of cost-effective novel antimicrobials and highly effective drug delivery
systems shall offer substantial benefits for all parties, including research institutes, pharma-
ceutical industries, health providers, and public communities. Such cooperation will also
provide a great scientific opportunity to connect basic findings (bench) to clinical implica-
tions (bedside) in the continuous effort to tackle the emergence of antimicrobial-resistant
pathogenic microbes.
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