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Background: Power spectral density (PSD) analysis of the heartbeat intervals in the
three main frequency bands [very low frequency (VLF), low frequency (LF), and high
frequency (HF)] provides a quantitative non-invasive tool for assessing the function of the
cardiovascular control system. In humans, these frequency bands were standardized
following years of empirical evidence. However, no quantitative approach has justified
the frequency cutoffs of these bands and how they might be adapted to other mammals.
Defining mammal-specific frequency bands is necessary if the PSD analysis of the HR
is to be used as a proxy for measuring the autonomic nervous system activity in animal
models.

Methods: We first describe the distribution of prominent frequency peaks found in the
normalized PSD of mammalian data using a Gaussian mixture model while assuming
three components corresponding to the traditional VLF, LF and HF bands. We trained
the algorithm on a database of human electrocardiogram recordings (n = 18) and
validated it on databases of dogs (n = 17) and mice (n = 8). Finally, we tested it to
predict the bands for rabbits (n = 4) for the first time.

Results: Double-logarithmic analysis demonstrates a scaling law between the GMM-
identified cutoff frequencies and the typical heart rate (HRm): fVLF−LF = 0.0037 ·
HR0.58

m , fLF−HF = 0.0017 · HR1.01
m and fHFup = 0.0128 · HR0.86

m . We found that the band
cutoff frequencies and Gaussian mean scale with a power law of 1/4 or 1/8 of the typical
body mass (BMm), thus revealing allometric power laws.

Conclusion: Our automated data-driven approach allowed us to define the frequency
bands in PSD analysis of beat-to-beat time series from different mammals. The scaling
law between the band frequency cutoffs and the HRm can be used to approximate the
PSD bands in other mammals.

Keywords: heart rate variability, animal models, mammals, power spectral analysis, power allometric law

Abbreviations: BM, body mass; BMm, typical body mass of a given mammal; BRPM, breaths per minute; ECG,
electrocardiogram; GMM, Gaussian mixture model; HF, high frequency band of the power spectral density; HR, heart rate;
HRm, typical heart rate of a given mammal; HRV, heart rate variability; LF, low frequency band of the power spectral density;
NN, filtered RR interval; NSR, normal sinus rhythm; PSD, power spectral density; RR, beat to beat interval derived from the
ECG signal; ULF, ultra-low frequency; VLF, very low frequency band of the power spectral density.
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INTRODUCTION

The HR is controlled by dynamic and chaotic processes, and
it oscillates at different periods over continuously shifting time
scales (Goldberger et al., 1990). Therefore, even under resting
conditions, mammalian electrocardiographic (ECG) recordings
exhibit complex beat-to-beat variations (Billman et al., 2015b).
Analysis of the beat-to-beat variation of the HR, a field of
research known as HRV analysis, can reveal information about
the underlying physiological processes that control its dynamics.
For example, a loss of complexity in HRV has been documented
in several cardiovascular diseases and has been correlated with
an increase in morbidity and mortality (Hillebrand et al.,
2013), while abnormal beating patterns can be characteristic of
arrhythmias such as atrial fibrillation (Behar J.A. et al., 2013).

Power spectral density (PSD) analysis of the HR fluctuation
provides a quantitative non-invasive means for HRV and for
assessing the function of the cardiovascular control system
(Akselrod et al., 1981). In healthy humans, the frequency of
the PSD performed on a 5-min long recording is traditionally
divided into three main bands (Malik et al., 1996): the high
frequency (HF) band, 0.15–0.4 Hz, where the dominant HF peak
can typically be found around 0.25–0.3 Hz; the low frequency
(LF) band, 0.04–0.15 Hz, where the dominant peak can typically
be found around 0.1 Hz; and the very low frequency (VLF)
band, 0.0033–0.04 Hz. The HF band corresponds to rhythms with
periods between 2.5 and 7 s (McCraty et al., 2001) and is known
to reflect parasympathetic (vagal) activity and respiratory sinus
arrhythmia (Akselrod et al., 1981). The LF band corresponds
to rhythm modulations with periods between 7 and 25 s and
is believed to mainly reflect baroreflex activity while at rest
(Malliani, 1995). The LF was also often assumed to have a
dominant sympathetic component, but this assumption has been
strongly challenged (Billman, 2013b). The VLF corresponds to
rhythms with periods between 25 and 300 s. VLF power has
been strongly associated with all-cause mortality in cohorts
with cardiac failure or multiple organ dysfunction syndrome
(Tsuji et al., 1996; Hadase et al., 2004; Schmidt et al., 2005).
The energy contained in this band has been suggested to be
intrinsically generated by the heart (Kember et al., 2000, 2001).
These frequency bands for humans were standardized by the Task
Force of the European Society of Cardiology (Malik et al., 1996)
based on the review of years of empirical evidence from various
studies (Akselrod et al., 1981; Malik et al., 1996), which applied
frequency analysis of the HRV and observed regions of interest
within the PSD.

Mammals are commonly used for cardiovascular research.
Dogs, rabbits and mice have been of particular interest: dogs are
physiologically close to humans and thus a reliable experimental
model to study cardiac diseases (Hasenfuss, 1998). The rabbit is
the smallest mammal with Ca2+ dynamics similar to humans
(Bers, 2002; Terentyev et al., 2014; Morrissey et al., 2017). With
the recent advances in genome manipulation technologies, there
has been increased interest in using animals with mutations
designed to overexpress or knock out genes implicated in
human cardiovascular diseases (Thireau et al., 2008). Mice have
been of particular interest in that regard (Tzimas et al., 2017;

Hook et al., 2018). Because of the physiological differences across
mammals, a quantitative approach is necessary for adapting the
frequency bands to different mammalian electrophysiological
data. Defining mammal-specific frequency bands is necessary if
the PSD analysis of the HR time series is to be used as a proxy
for measuring the autonomic nervous system (ANS) activity in
animal models.

One parameter that can be used to adapt frequency band
cutoffs to different mammals is the HR, and one possible
mathematical formulation of such scaling law is the power law.
The existence of such a law has not been studied in the context of
adapting PSD parameters in HRV analysis, specifically between
PSD band cutoff frequencies from different mammals and their
respective HRm. Identifying such a power law would enable
approximating the PSD frequency bands to mammals other than
the ones analyzed in this work.

It has been shown that an allometric law exists between the
body mass (BMm) and various biological processes, such as
metabolic rate, life span, HRm, and the ECG PR interval (West
et al., 1997, 1999; Noujaim et al., 2004). This scaling is described
by the equation Y = Y0 · BMb, where Y is the biological process
and b is the scaling exponent. Whether an allometric scaling law
exists between the PSD band cutoff frequencies and the BMm has
not been reported. A secondary aim of this research is to explore
whether such an allometric law exists.

This work aims to: (1) create an automated data-driven
approach to identify appropriate frequency bands for power
spectral analysis of the beat-to-beat time series obtained from
different mammalian ECG data; (2) use the estimated bands
to research a universal power law between PSD band cutoff
frequencies and the typical heart rate (HRm) of different
mammals. This power law could be used to approximate the
frequency bands for any other mammal; (3) explore whether
a power allometric law exists between the BMm and the
characteristic PSD bands.

MATERIALS AND METHODS

Mammal Databases and Ethical Approval
We used ECG recordings from healthy humans (n = 18)
(Goldberger et al., 2000), heartworm-free mixed-breed dogs
(n = 17) (Billman et al., 2015a), C57BL/6 male mice (n = 8) (Yaniv
et al., 2016), and New Zealand white rabbits (n = 4) (Brunner
et al., 2008; Odening et al., 2012).

The public access MIT-BIH Normal Sinus Rhythm
(MIT-NSR) database was used for human data (Goldberger
et al., 2000). This database was chosen because it contains long
ECG recordings of humans having no known cardiovascular
condition. Thus, it can be used to define the baseline bands
for human HRV analysis. The dog experiments (Billman et al.,
2015a) were approved by the Ohio State University Institutional
Animal Care and Use Committee and conformed to the Guide
for the Care and Use of Laboratory Animals (revised 1996)
published by the National Academies Press (Washington, DC,
United States). The mouse data (Yaniv et al., 2016) were obtained
in accordance with the Guide for the Care and Use of Laboratory
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Animals published by the National Institutes of Health (NIH
Publication no. 85-23, revised 1996). Experimental protocols
were approved by the Animal Care and Use Committee of
the National Institutes of Health (protocol #441LCS2013).
The rabbit data (Brunner et al., 2008; Odening et al., 2012)
were recorded in accordance with the local guidelines of the
institutions and only after approval by the Institutional Animal
Care and Use Committee of Pennsylvania State University
College of Medicine and the Milton S. Hershey Medical Center,
Hershey, PA, United States, and the Institutional Animal Care
and Use Committee of Rhode Island Hospital, Providence, RI,
United States, in accordance with the NIH Guide for the Care
and Use of Laboratory Animals (NIH Publication no. 85-23,
revised 1996). All animal data were obtained from healthy,
free-moving animals.

Human data were recorded at 128 Hz, dog data at 500 Hz, and
rabbit and mouse data at 1 kHz. All the mammals were conscious,
had no known cardiac condition, and no drugs were administered
previous to the ECG recordings. For the animal databases, we
performed peak detection (Behar et al., 2014) to identify the
R-peak locations and we computed the RR interval (defined as
the time variation between consecutive R-peaks) time series. We
excluded from the dataset large segments of noise. We defined
noise segments as the inability of a human annotator to clearly
identify R-peaks on the raw ECG trace (Behar J. et al., 2013). Only
transient sections of noise were left in the database. In addition,
the R-peaks were manually corrected when necessary in order to
ensure the reliability of the RR time series. Table 1 summarizes
the mammalian databases used in this study. Supplementary
Tables S1–S3 provide more details on the individual recordings
for each mammal.

Processing the RR Intervals
Before performing PSD analysis, the RR intervals must be
preprocessed to ensure that only beats from normal sinus node
depolarizations are used. In order to filter out non-sinus beats,
we used a moving average filter. We chose the window size to
be identical to the values used by the PhysioNet HRV toolkit
(Mietus and Goldberger, 2017): a moving average filter with a
window size of 21 samples and RR intervals exceeding 20% (for
humans, rabbits and mice) or 30% (for dogs) of the window’s
average were removed. The 20–30% thresholds were empirically

TABLE 1 | Mammalian electrophysiological database.

Human Dog Rabbit Mouse

Number of records 18 17 20 8

Number of mammals 18 17 4 8

Total recordings length
(hr:min:sec)

437:29:36 01:33:55 03:31:13 03:28:07

Median RR interval
(msec)

766 484 239 109

95% RR interval (msec) 359 – 1117 360 – 896 210 – 301 87 – 156

Data from humans (Goldberger et al., 2000), dogs (Billman, 2013a), rabbits
(Brunner et al., 2008; Odening et al., 2012), and mice (Yaniv et al., 2016) were
used.

chosen. In humans, a threshold of 20% is usually used (Mietus
and Goldberger, 2017) and it was suitable for the rabbit and
mouse data. However, with the dog dataset the 20% threshold
was too stringent and removed a high number of normal sinus
beats. Thus we decided to select a threshold of 30%, which was
more suitable for this dataset. The NN time series is defined as
the preprocessed RR time series using the moving average filter.

Power Spectral Density Analysis
The upper bound of the HF band (fHFup ) defines the minimal
resampling frequency of the NN time series (i.e., fs ≥ 2 · fHFup,
following Shannon’s criterion). In the literature, fHFup was set
to 0.4 Hz in humans (Malik et al., 1996), but there is no clear
rationale for this cutoff. To look for this cutoff we computed
the PSD up to the maximal frequency meaningful to resolve
(fmax), which was set as the frequency corresponding to the
‘characteristic shortest RR interval’ found in normal sinus rhythm
ECG recordings. We defined the ‘characteristic shortest RR
interval’ as the lower bound of the interval containing 95% of
the RR intervals from a large population. We used the histograms
of the RR intervals computed on our databases to obtain these
values. Given fmax, we estimated the PSD on the interval [0-fmax]

Hz using the Welch periodogram (Welch, 1967). Because Welch
PSD estimation requires uniformly sample data, the RR interval
time series was resampled at 2.2 times fmax. The resampling
frequency was chosen such that it satisfies Shannon’s criterion.

To perform PSD analysis, a window (i.e., sub-segment) of the
NN time series must be selected. This window must be long
enough to resolve the VLF band and short enough to assume
data stationarity (Malik et al., 1996). The traditional window
for humans is 5 min long (Malik et al., 1996). Because no
alternative window length has been standardized for dogs and
rabbits, we used the same window size as for humans (i.e., 5 min).
We used a 3 min window for mice, as suggested in Thireau
et al. (2008). We denote as ‘VLF’ the frequency band starting
from 0.0033 Hz for humans, dogs and rabbits [corresponding
to the lowest frequency we can resolve using a 5 min window
size 1/(60∗5)], and 0.0056 Hz for mice [corresponding to the
lowest frequency we can resolve using a 3 min window size
1/(60∗3)], up to the upper bound of the VLF band. In summary,
non-overlapping 5 min windows were used for human, dog
and rabbit data and non-overlapping 3 min windows were
used for the mouse data. PSD was computed for each non-
overlapping window. In the instances where the recording was
less than the window size length, the PSD was computed on
the total recording length available. This happened in particular
for the dog data, where a number of recordings were 4–5 min
long.

For each non-overlapping window, we normalized the PSD
by the total power in order to allow cross-comparison of
mammal types. For each normalized PSD, we detected prominent
frequency peaks. Given the location of the detected peaks for
each window size, we created a histogram of the prominent peak
locations for each mammal type (see example in Supplementary
Figure S1). We assumed that the histograms were generated
from a mixture of Gaussian distributions; thus, we used a
GMM (Reynolds, 2015) to estimate the Gaussian parameters that
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FIGURE 1 | Block diagram of the algorithm for identifying the frequency bands from a database of mammalian NN intervals. PSD, power spectral density; GMM,
Gaussian mixture model; VLF, very low frequency; LF, low frequency; HF, high frequency.

best describe the underlying distribution. Because of the three
traditional power spectral bands (VLF, LF and HF), we used
three Gaussians for the GMM (thus assuming three modes).
We estimated the GMM and defined the intersection between
consecutive Gaussians as the band cutoff frequencies. To set
the minimal peak height threshold (defined as the minimal
amplitude a peak must have in the normalized PSD to be
considered as ‘prominent’), we used the human data. Given
the selected minimal peak height threshold for humans, we
applied the same algorithm to the dog, rabbit and mouse
data. We defined the upper bound of the HF (fHFup ) band as
three standard deviations away from the mean of the Gaussian
describing the HF band. Note that fmax defined the upper
frequency bound up to which we compute the PSD, whereas
fHFup corresponds to the final upper cutoff frequency of the
HF band as estimated from the GMM approach. A block
diagram summarizing the main steps to identify the frequency
bands is shown in Figure 1. We trained the algorithm on a
database of human ECG recordings (n = 18) and validated it
on databases of dogs (n = 17) and mice (n = 8). Finally, we
tested it to predict the bands for rabbits (n = 4) for the first
time.

Power-Law
Given the bands identified by the GMM for humans, dogs,
rabbits, and mice, we looked for a power-law relationship
between the band cutoff frequencies or mean of each Gaussian
and HRm. HRm was defined as the median HR evaluated on
our database for a given mammal. To search for power laws
between band cutoff frequencies and HRm, we used a double-
logarithmic analysis of the band cutoffs for each mammal type
against HRm. To search for a power law between the dominant
peak in each of the GMM- identified band and HRm, we used

a double-logarithmic analysis of the dominant peak location for
each 5- or 3-min segment against the mean HR of the segment.
We used linear regression to explore whether a linear relationship
existed between the variables in the double-logarithmic plot.

Power Allometric Law
To explore this, we used a double-logarithmic analysis of the band
cutoffs for each mammal type against the typical BMm of the
mammals included in our database. The typical BMm values for
the different mammals were taken from Noujaim et al. (2004).
We used linear regression to explore whether a linear relationship
existed between the variables in the double-logarithmic plot.

RESULTS

Power Spectral Band Definition
We used the human ECG data to train our GMM. The median
RR interval for humans was 766 ms and the lower bound of
the RR distribution (thus describing the ‘fastest’ heart rate) was
359 ms (see Table 1). Therefore, fmax was set to 2.8 Hz. Based on
GMM fitting, the VLF band was identified to be between 0.0033
and 0.046 Hz, the LF band between 0.046 and 0.158 Hz, and
the HF band between 0.158 and 0.588 Hz. Figure 2A shows the
GMM estimated by overlaying the estimated Gaussians onto the
histogram of the prominent peak locations.

We next validated our results on data from dogs and mice.
Using the GMM model trained on the human data, the bands
were estimated for the dog data; the VLF band was found to
be between 0.0033 and 0.067 Hz, the LF band between 0.067
and 0.235 Hz, and the HF band between 0.235 and 0.877 Hz.
Figure 2B shows the GMM estimated by overlaying the estimated
Gaussians onto the histogram of the prominent peak locations.
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FIGURE 2 | Gaussian Mixture Model and frequency band clustering. Cutoff
frequency identification for the VLF, LF, and HF regimes for (A) humans, (B)
dogs, (C) mice, and (D) rabbits. The vertical dotted line corresponds to values
used in the literature: human (Malik et al., 1996), dog (Billman, 2013a; Billman
et al., 2015b), and mouse (Thireau et al., 2008). For dogs, no VLF-LF cutoff
could be found in the literature, so only the LF-HF and fHFup vertical lines from
the literature are shown. The intersection between two consecutive Gaussians
defines the band cutoffs.

TABLE 2 | Gaussian mean (µ) and standard deviations (σ).

Human (µ ± σ) Dog (µ ± σ) Rabbit (µ ± σ) Mouse (µ ± σ)

GVLF 0.026 ± 0.015 0.035 ± 0.020 0.049 ± 0.030 0.074 ± 0.046

GLF 0.095 ± 0.042 0.154 ± 0.068 0.165 ± 0.077 0.339 ± 0.198

GHF 0.246 ± 0.114 0.397 ± 0.160 0.564 ± 0.197 2.505 ± 0.322

Numbers are rounded to the third decimal place. GVLF, the Gaussian describing
the VLF band, GLF the Gaussian describing the LF band, and GHF the Gaussian
describing the HF band.

Using the GMM model trained on the human data, the bands
were estimated for the mice data; the VLF band was identified
to be between 0.0056 and 0.152 Hz, the LF band between 0.152
and 1.240 Hz, and the HF band between 1.240 and 3.471 Hz.
Figure 2C shows the GMM estimated by overlaying the estimated
Gaussians onto the histogram of the prominent peak locations.

Using the GMM approach trained on the human data, the
bands were estimated for the rabbit data; the VLF band was
identified to be between 0.0033 and 0.088 Hz, the LF band
between 0.088 and 0.341 Hz, and the HF band between 0.341 and
1.155 Hz. Figure 2D shows the GMM estimated by overlaying the
estimated Gaussians onto the histogram of the prominent peak
locations.

In addition to the frequency band cutoffs, we also report the
Gaussian means and standard deviations for each band of each
mammal (Table 2). Finally, we computed the power ratio: the
relative power of each band over the total power for each mammal
(Table 3). Our data show that the HF power is relatively higher in
larger mammals (humans and dogs) than in smaller mammals
(rabbits and mice).

TABLE 3 | Power ratio (of relative power over total power, %) for the different
bands.

Human Dog Rabbit Mouse

VLF (%) 55.5 40.0 71.5 63.8

LF (%) 28.0 20.6 19.4 25.8

HF (%) 19.0 40.7 10.4 11.0

Power Law and Allometric Power Law
First, we used our GMM approach for defining the frequency
bands to determine whether a universal scaling relation exists
between HRm and the PSD band cutoff frequencies between
VLF and LF (fVLF−LF ) or LF and HF fLF−HF or the upper
bound frequency of the HF band (fHFup ). By examining the
median HRm for humans and mice in our database, we obtained
a median HRm that ranges from 78 to 550 bpm. Similarly,
fVLF−LF ranges from 0.046 to 0.152 Hz, fLF−HF ranges from 0.158
to 1.240 Hz and fHFup from 0.588 to 3.471 Hz. In Figure 3A,
we plotted ln(fVLF−HF ) against ln(HRm).The cutoff frequency
scales with the HRm following the power law: fVLF−LF = 0.0037 ·
HR0.58

m . In Figure 3B, we plotted ln(fLF−HF ) versus ln(HRm).
Thus, fLF−HF scales with HRm as fLF−HF = 0.0017 ·HR1.01

m . In
Figure 3C, we plotted ln(fHFup ) versus ln(HRm). Thus, fHFup
scales with HRm following the power law: fHFup = 0.0128 ·
HR0.86

m .
Second, we used our GMM approach to determine whether

a universal scaling relation exists between HRm and the mean
of the Gaussian describing each band (Table 2). From the
linear fit (Figures 3D–F), the following power-law relationships
were found: GVLF = 0.0027 ·HR0.53

m , GLF = 0.0077 ·HR0.59
m and

GHF = 0.0016 ·HR113
m .

Third, we tried to determine whether a universal scaling
relation exists between the HR and the dominant PSD peak
in each of the frequency bands. In Supplementary Figure S2
we plotted ln(peakband) for each frequency band (VLF, LF and
HF) versus ln(HR). Our data indicate that only the peakHF is
correlated with the HR. The dominant peak in the HF band scales
with HR as peakHF = 0.0019 ·HR1.09.

Fourth, we tried to determine whether a universal law for
allometric scaling in biology also exists between BMm and the
band cutoff frequencies identified by the GMM. We first checked
that we could retrieve with our data the known -1/4 allometric
law between HRm and BMm as reported in West et al. (1997).
Supplementary Figure S3 illustrates the result of the line fit
for this analysis. The scaling power found on our data was
−0.24, which is very close to −1/4, as expected. From the linear
fit (Figures 4A–C) the following power-law relationships were
found: fVLF−LF = 0.0944 · BM−0.14

m , fLF−HF = 0.4771 · BM−0.26
m

and fHFup = 0.644 · BM−0.22
m .

Finally, we tried to determine whether a universal law for
allometric scaling in biology also exists between BMm and the
mean of the Gaussians describing each band (Table 2). In
Figure 4D, we plotted GVLF against ln(BMm) and an allometric
law of GVLF = 0.0493 · BM−0.13

m was found. In Figure 4E we
plotted ln(GLF) against ln(BMm) and an allometric law of
ln(GLF) = 0.1999 · BM−0.14

m was found. In Figure 4F we plotted
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FIGURE 3 | Double-logarithmic plot of PSD band cutoff frequency and Gaussian means versus median HRm for (A) fVLF−LF the cutoff frequency between the VLF
and LF bands versus the HRm; (B) fLF−HF, the cutoff frequency between the LF and HF bands versus the HRm; (C) fHFup, the upper bound of the HF band versus
the HRm; (D) GVLF, the mean of the Gaussian describing the VLF band; (E) GLF, the mean of the Gaussian describing the LF band, and (F) GHF, the mean of the
Gaussian describing the HF band.

ln(GHF) against ln(BMm) and an allometric law of ln(GHF) =
0.8521 · BM−0.29

m was found.

DISCUSSION

Our first major contribution is the introduction of a new data-
driven approach to identify the frequency bands in PSD analysis
of heartbeat interval time series from different mammals. To the
best of our knowledge, this is the first attempt to provide an
automated and data-driven approach for defining the frequency
bands in PSD analysis of mammalian HRV. For the human data,
our algorithm identified the bands as: VLF [0.0033 – 0.046] Hz,
LF [0.046 – 0.158] Hz and HF [0.158 – 0.588] Hz. These results
are comparable to the recommended bands (Malik et al., 1996)
(VLF [0.0033 – 0.04] Hz, LF [0.04 – 0.15] Hz and HF [0.15 – 0.4]
Hz), thus validating our approach.

Our second major contribution is the application of the
method to dog, rabbit and mouse ECG data. Using ECG data
from healthy and awake animals (Figure 2), we showed that the
frequency cutoffs between the VLF-LF and LF-HF bands could
be defined. We validated our model by comparing its results to
bands experimentally identified in the literature for dogs and
mice: the cutoff between LF and HF in dogs data is similar to the
one used in the work of Billman (2013a). Similar cutoffs to ours
are also documented for mice: the cutoff between VLF and LF and
between LF and HF is similar to other works (Ishii et al., 1996;
Just et al., 2000; Joaquim, 2004; Tankersley et al., 2004; Campen,

2005; Fazan, 2005; Adachi et al., 2006; Farah et al., 2006; Baudrie
et al., 2007; Thireau et al., 2008). Finally, we tested our model on
the rabbit dataset. One study (Goldstein et al., 1995) has looked
into defining frequency bands in rabbits. However, this study was
performed on anesthetized rabbits, which may require different
band definitions than the ones for conscious rabbits, particularly
because of the changes in HR that can be caused by the different
agents used and the depth of anesthesia (Picker et al., 2001;
Mazzeo et al., 2011). Thus, we defined for the first time the HRV
frequency bands for this mammal. The prominent peak found in
the HF band is characteristic of the respiratory rate (respiratory
sinus arrhythmia) (Akselrod et al., 1981). Therefore, we expect
the mean of the Gaussian describing the HF band to fall within
the respiratory range of the corresponding mammal. The values
identified by the GMM (0.397, 0.564, and 2.505 Hz for dogs,
rabbits and mice, respectively) fall within the respiratory rate
range for these three mammals: 20–40 breaths per minute (brpm)
for dogs [0.33–0.67] Hz, 30-60 brpm for rabbits [0.5–1] Hz,
and 60–220 brpm for mice [1–3.67] Hz (University Wisconsin-
Madison, 2018). Thus the GMM approach successfully retrieved
the vagal activity enabled by respiratory effort and which is
known to manifest in the HF band.

Our third major contribution is the definition of the upper
bound of the HF bands. The cutoff values found in the literature
are based on empirical observations. We defined the upper bound
of the HF band as being three standard deviations away from
the mean of the Gaussian representing the HF band. The upper
boundary of the HF band for humans was 0.588 Hz. This is higher
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FIGURE 4 | Double-logarithmic plot of PSD band cutoff frequencies and Gaussian means versus BMm for (A) VLF to LF cutoff versus BMm, (B) LF to HF cutoff
versus BMm, (C) upper bound of HF versus BMm. Center of the Gaussian describing (D) the VLF band versus BMm, (E) the LF band versus BMm and (F) the HF
band versus BMm.

than the recommended one (0.4 Hz) (Malik et al., 1996). This
higher-than-recommended boundary is likely due to our use of
the entire 24 Holter ECG in the MIT NSR database. Indeed, the
24 Holter ECG might include periods of exercise in which the
breathing rate might be higher than 24 brpm, i.e., 0.4 Hz. It
thus seems reasonable to allow a higher HF upper bound than
the standard recommended cutoff for humans. Using the same
method, the cutoff frequencies defined for the other mammals
were 0.877, 1.155, and 3.471 Hz for dogs, rabbits, and mice,
respectively.

Interestingly, our results show that the mouse may serve
as a better mammalian model than do the dog or rabbit for
studying the effects of drugs, mutations, or cardiac diseases
on vagal activity as reflected in the HF band. Indeed, the
Gaussian fittings for mice show minimal overlap between the
LF and HF bands (Figure 2) compared to other mammals.
This means that the vagal activity in mice can be studied
without interference from the physiological processes echoed
in the low frequency band. However, this is moderated by
the larger HF power ratio for humans and dogs (19 and
40.7% respectively) versus rabbits and mice (10.4 and 11%
respectively, Table 3). This means that rabbits and mice display
relatively less vagal activity than humans and dogs. The effect
of respiration is dominant in the HF band. However, during
periods of slow respiration, the resulting vagal activity will
modulate the HR at frequencies which will cross over into the
LF band (Ahmed et al., 1982; Tiller et al., 1996). Thus, for
a breathing rate lower than 9.6 brpm, the characteristic vagal
frequency peak will fall in the LF band in humans. We interpret

this observation as being due to the higher breathing rates of
smaller mammals, which leads to a better separation between
the respiratory sinus arrhythmia modulation of the heart rate
[reflected mainly in the HF band (Supplementary Figure S4)] and
other autonomic nervous system effects, partly reflected in the LF
bands.

Our fourth major and most important contribution is our
discovery of a power-law relationship between band cutoff
frequencies, dominant PSD peak, and HRm. Thus, a relationship
exists between our GMM-identified cutoff frequencies and HRm.
This scaling law can be used to approximate the PSD bands for
other mammals not included in our study. In order to define the
bands for non-human mammals, other works (Yaniv et al., 2014)
scale the frequency bands used in humans linearly with the ratio
of human HRm and HRm of another mammal. Figure 3 shows
that this approach is incorrect because the relationship between
the frequency cutoffs and the HRm is not linear with respect to
the ratio of the mean heart rates, as the equations for the log-log
subplots highlight. Interestingly, a scaling relation could only be
found between the dominant HF peak and HR (Supplementary
Figure S2). Because the HF peak represents vagal activity and
because the scale power was 1, our results suggest that vagal
activity in different mammals is linearly associated with HR. The
prominent peak found in the HF band shifts with changes in the
respiratory rate (Akselrod et al., 1981), and thus a scaling law
was shown between the respiratory rate and the typical HR across
mammals. We tested whether the power law that we found can be
used to approximate the HRV band cutoff frequencies from other
species than the ones included in this work. Aubert et al. (1999)
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have investigated frequency bands in experimental rat models
using direct manipulation of autonomic parameters through
pharmacological intervention. They identified the LF and HF
bands as: LF [0.19 – 0.74] Hz and HF [0.78 – 2.5] Hz. The
mean HR of the rat population used by Aubert et al. (1999) was
345 bpm. Using this typical HR value and the power law we
established between HRm and the PSD cut-off frequencies, we
predicted the bands as: VLF [0.0033 – 0.110] Hz, LF [0.110 –
0.622] Hz and HF [0.622 – 1.949] Hz, which is close to the
experimental findings of Aubert et al. (1999).

Our fifth major contribution is our discovery that the band
cutoff frequencies in mammals, fLF−HF and fHFup, follow an
allometric law that scales as the ∼ −1/4 power of the body
mass and that GVLF and GLF scale as the ∼ −1/8 power of the
body mass. Interestingly, the 1/4 scaling power has been shown
to be an essential component in biological scaling (West et al.,
1997). In the model of West et al. (1999), processes that rely
on hierarchical networks for resource distribution are identified
to scale with BMn/4

m (with n ε ). In practice, many variables
in mammalian physiology have been shown to scale with BMm
following such a quarter-power law. These include metabolic rate,
circulation time, HR, aortic diameter, and respiratory rate (West
et al., 1997; Noujaim et al., 2004). Because the frequency bands
correspond to the regulation of specific physiological processes
(such as baroreflex or vagal activity) on the HR dynamic, it was
interesting to find that the band cutoff frequencies (fLF−HF, fHFup)
and the BMm also followed this universal quarter allometric
scaling to ensure optimal autonomic activity in regulating the HR
dynamics.

Limitations
Although the total length of the recordings was acceptable for the
different mammals (Table 1), the sample size (i.e., the number
of animals) was limited for mice and rabbits. Moreover, the data
were obtained here for specific species of mammals and breeds;
however, the scaling laws found can be used to approximate the
bands given the typical HRm of another species. For a more
precise estimation of the bands in other species/breeds, the same
GMM approach can be repeated. In addition, we used data from
healthy, free-moving animals. Thus, it might be necessary to
adapt the parameters of this analysis for animals during exercise,
after drug injection, anesthesia, if genetically modified, or during
sleep. Because, the GMM approach is generic, the bands can be
easily redefined for other mammalian species or breeds by using

the same approach on a representative dataset of animals in these
conditions. The ULF band (below 0.003 Hz for humans) has been
studied for long term ECG recordings. However, in this work we
only consider short segments of no longer than 5 min. As a result,
we cannot resolve frequencies below 0.0033 Hz [=1/(60∗5)]. For
that reason, we defined the VLF band as starting at 0.0033 Hz for
humans, dogs, and rabbits, and 0.0056 Hz [=1/(60∗3)] for mice.
Finally, a better-adapted window size could improve the accuracy
of the bands when using the GMM approach, particularly in
the case of dogs and rabbits, where this problem has not been
studied. However, when the GMM approach was tested with a
3 min or 5 min window on the mouse data, the cutoff frequencies
between the bands were in the same range: fVLF−LF = 0.18 and
fLF−HF = 1.33 with a 5 min window versus fVLF−LF = 0.15 and
fLF−HF = 1.24 with a 3 min window.
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