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Abstract: Neurodegenerative disorders including Parkinson’s disease (PD), Huntington’s disease
(HD) and the most frequent, Alzheimer’s disease (AD), represent one of the most urgent medical
needs worldwide. Despite a significantly developed understanding of disease development and
pathology, treatments that stop AD progression are not yet available. The recent approval of sodium
oligomannate (GV-971) for AD treatment in China emphasized the potential value of natural prod-
ucts for the treatment of neurodegenerative disorders. Many current clinical studies include the
administration of a natural compound as a single and combination treatment. The most prominent
mechanisms of action are anti-inflammatory and anti-oxidative activities, thus preserving cellular
survival. Here, we review current natural products that are either approved or are in testing for a
treatment of neurodegeneration in AD. In addition to the most important compounds of plant origin,
we also put special emphasis on compounds from algae, given their neuroprotective activity and
their underlying mechanisms of neuroprotection.
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1. Introduction

Neurodegenerative diseases are a group of disorders in which neuronal function and
survival are seriously affected. Many of these diseases, including Parkinson’s, Huntington’s
and Alzheimer’s Disease (AD), are caused by structural changes and the deposition of
proteins; therefore, they are also assigned to the group of protein misfolding diseases
or amyloidoses [1–3]. AD is by far the most common cause of neurodegeneration and
dementia. It is estimated that AD currently affects 55 million people worldwide (World-
Alzheimer-Report-2021. Available online: https://www.alzint.org/u/World-Alzheimer-
Report-2021.pdf, accessed on 4 February 2022). Characteristic symptoms of the disease are
progressive memory loss, impaired cognitive function and paranoia. The histopathological
hallmarks of AD, extracellular amyloid deposits (“amyloid plaques”), which mainly consist
of the peptide Aβ, and intraneuronal neurofibrillary tangles of the hyperphosphorylated
protein tau, mainly affect the cerebral cortex and the hippocampus [4,5]. Numerous studies
suggest that the disease is initiated by the deposition of Aβ, which starts presumably years
or decades before the first symptomatic changes [6]. The slow Aβ deposition triggers a
downstream cascade (the amyloid cascade), which involves pathologic tau formation and
hyperphosphorylation, widespread neuroinflammation and, finally, neuronal death [7,8].
Although the intense research during the last decades enabled a much better understanding
of the crucial events in AD pathogenesis, a curative therapy that halts the progression of
the disease is not yet available. Most of the so-called disease-modifying experimental drugs
are targeting events of the amyloid cascade such as the generation and aggregation of Aβ
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and the phosphorylation of tau or the cellular metabolism and energy homeostasis [9]. The
drug development in AD is faced with several challenges which has resulted in numerous
setbacks in recent years [10]. For instance, the enzymes responsible for Aβ formation also
have physiological substrates and functions. This complicates the suppression of amyloid
peptide formation without interfering with other proteolytical degradation processes.
Prominent examples are the γ-secretase complex and the β-secretase BACE1, which play a
role in the formation of Aβ peptides [11–13]. Moreover, several reports suggest that Aβ1–
40/42 and tau also have physiological functions, which leads one to question whether these
represent druggable targets [14–17]. Also, many of the amyloidogenic proteins are localized
in the cell nucleus or cytosol, which makes an effective suppression of the aggregation or
the breakdown of the conglomerates, e.g., by antibodies, even more difficult [18]. Third,
the efficient passage of the blood-brain barrier is needed and thus the pharmaceuticals
are required to meet various physicochemical parameters [19,20]. Hence, methods are
currently being examined (e.g., focused ultrasound) to make the blood-brain barrier more
permeable [21].

Finally, major factors hampering the development and testing of new drugs are
based on the clinical presentation of dementia and the currently available diagnostic
biomarkers. AD patients frequently also show the presence of Lewy bodies and thus,
significant pathological overlap with patients with dementia with Lewy bodies (DLB).
As a result, the clinical testing of new active ingredients does not take place in “pure”
Alzheimer’s patient populations. Accordingly, attempts are being made (using imaging
methods and genetic analyses, among others) to conduct clinical studies in narrowly
defined patient populations at an early stage of the disease [22–24]. Previously, numerous
approaches were therefore undertaken in patients with a possibly too advanced a disease
stage [23,25]. In addition, the available diagnostic biomarkers often do not specifically
reflect the neurodegenerative disease or provide enough correlation with the clinical status
of the patients. These imponderables could be responsible for the failure of different
therapeutic approaches in the clinical phase. As mentioned above, alterations in biomarkers
precede the symptoms of the disease [6,26], i.e., the measured value of a biomarker cannot
be directly correlated with an effect on cognition. An example of this is the antibody
bapineuzumab, which caused a significant change in phospho-tau in CSF in phase 2, but
missed clinical endpoints [27].

All of these factors finally led to the numerous failures of disease-modifying drugs
in AD clinical trials. The very recent accelerated approval of Aducanumab to treat AD
may thus represent a first sign of success. However, the complexity also triggered the
intense investigations of other fields, such as drugs from natural sources and nutraceuticals
(Table 1). One potential reason is that food supplements may have the status as being
generally regarded as safe (GRAS) and thus can be quickly applied in clinical testing,
and eventually in combination with experimental drugs. Most of these substances are
addressing protective mechanisms to cells by, e.g., anti-oxidative effects. However, there
are also compounds in testing which are dedicated to disease-modification by, for example,
their influence on immune cells. A prominent example is represented by oligomannate
from red algae, which obtained approval for AD therapy in China and is currently being
tested in additional clinical trials. Due to the emerging role in clinical testing, this review
focuses on the current treatment strategies which are based on natural products. We will
review drugs which are currently approved but will put a special emphasis on natural
products from algae.

This review is based on the personal databases and knowledge of the authors. The
work was completed by a substantial amount of literature search using the databases
PubMed, Google scholar and SciFinder. The database search was performed until end of
February 2022. Only articles in which an active compound was isolated were considered.
The date of publication was not an exclusion criterion.
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Table 1. Natural agents in Clinical trials of Alzheimer’s disease drug development (US National Library of Medicine. Available online: https://clinicaltrials.gov,
accessed from September 2021 to November 2021.

Agent Mechanism of Action Therapeutic Purpose Trial Identifier and Status Phase

Huperzine A AChE inhibitor, inhibition of Aβ improve memory Not yet recruiting
NCT02931136 IV

Sodium oligomannate
(GV-971)

neuroinflammation modulators, microbiome modulators,
amyloid beta-protein inhibitors;

reconditioning the dysbiosis of gut microbiota, preventing
peripheral immune cells from invading the brain,
inhibiting the inflammatory response in the brain
targeting protein folding errors in the brain tissue

improve the cognitive function of patients
with mild to moderate AD

Recruiting
NCT05058040 IV

Sodium oligomannte capsules
(GV-971)

neuroinflammation modulators, microbiome modulators,
amyloid beta-protein inhibitors;

reconditioning the dysbiosis of gut microbiota, preventing
peripheral immune cells from invading the brain,
inhibiting the inflammatory response in the brain
targeting protein folding errors in the brain tissue

improve the cognitive function of patients
with mild to moderate AD

Recruiting
NCT05181475 IV

Ginkgo biloba metabolism and bioenergetics; plant extract with
antioxidant properties

Improve brain blood flow and
mitochondrial function (cognitive

enhancer)

Recruiting
NCT03090516 III

Sodium oligomannate
(GV-971)

reconditioning the dysbiosis of gut microbiota, preventing
peripheral immune cells from invading the brain,
inhibiting the inflammatory response in the brain
targeting protein folding errors in the brain tissue

improve the cognitive function of patients
with mild to moderate AD; evaluate safety,

tolerability and efficacy of GV-971

Recruiting
NCT04520412 III

Curcumin + aerobic yoga herb with antioxidant and anti-inflammatory properties decrease inflammation and oxidation
related neurotoxicity

active, not recruiting
NCT01811381 II

Elderberry Juice rich in anthocyanins, has anti-inflammatory and
antioxidant activity improve mitochondrial function completed

NCT02414607 II

Grape powder antioxidant, anti-inflammatory and anticarcinogenic
improves cognitive performance

preservation of metabolism in brain regions
important to cognitive function

recruiting
NCT03361410 II

Icosapent ethyl (IPE) synaptic plasticity, neuroprotection; purified from of the
omega-3 fatty acid EPA

improve synaptic function; reduce
inflammation

recruiting
NCT02719327 II

https://clinicaltrials.gov
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Table 1. Cont.

Agent Mechanism of Action Therapeutic Purpose Trial Identifier and Status Phase

Meganatrual-Az Grapeseed
Extract polyphenolic extract with antioxidant properties anti-oligomerization agent; prevents

aggregation of amyloid and tau
recruiting

NCT02033941 II

Omega-3 PUFA fish oil concentrate standardized to long chain in n-3 PUFA
content

reduces inflammation and glial activation;
enhances amyloid removal; protect small

blood vessels

active, not recruiting
NCT01953705 II

Rapamycin anti-inflammatory, antineoplastic; macrolide compound
from Streptomyces hygroscopicus

selectively blocks the transcriptional
activation of cytokines

recruiting
NCT04629495 II

Rifaximin inflammation, infection and immunity; antibiotic reduce proinflammatory cytokines secreted
by harmful gut bacteria

completed
NCT03856359 II

Tacrolimus tau proteins; macrolide from culture broth of a strain of
Streptomyces tsukubaensis reduce pathological changes of tau proteins withdrawn

NCT04263519 II

THC-free CBD Oil anti-oxidant and anti-inflammatory; cannabinoids
behavioural and psychological symptoms
of dementia (BPSD) decrease with use of

cannabinoids

recruiting
NCT04436081 II

VGH-AD1 undisclosed; traditional Chinese herbal medicine undisclosed (cognitive enhancer) not yet recruiting
NCT04249869 II

Yangxue Qingnao pills

blood circulation; traditional Chinese medicine, composed
of Angelicae Sinensis Radix, Chuanxiong Rhizoma,

Paeoniae Radix Alba, Rhemannia glutinosa, Uncaria
macrophylla Wall, Caulis spatholobi, Spica Prunellae,

Catsia tora Linn, Mater Margarita, Corydalis ambigua and
Asarum sieboldii

improve cerebral blood flow and brain
nourishment

not yet recruiting
NCT04780399 II

BDPP (bioactive dietary
polyphenol preparation)

metabolism and bioenergetics, amyloid; combination of
grape seed polyphenolic extract and resveratrol prevents amyloid and tau aggregation recruiting

NCT02502253 I

Pomace olive oil prevent inflammation; lipophilic minor components
consumption of olive oil reduces activation

of microglia by TRL (triglyceride-rich
lipoproteins)

completed
NCT04559828 not applicable

Extra virgin olive oil “Coratina” anti-amyloid; biophenol improve cerebral performance not yet recruiting
NCT04229186 not applicable
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2. Natural Products from Non-Algal Sources
2.1. Esterase Inhibitors

Galantamine. The advanced stage of AD is characterized by a widespread loss of cholin-
ergic basal forebrain neurons [28]. The inhibition of the cholinesterases acetylcholinesterase
(AChE) and butyrylcholinesterase (BChE) leads to an increased acetylcholine level in the
brain [29,30].

Galantamine [(4aS,6R,8aS)-5,6,9,10,11,12-Hexahydro-3-methoxy-11-methyl-4aH-[1]
benzofuro [3a,3,2-ef] [2]benzazepine-6-ol] (Table 2) was first isolated in 1947 from the com-
mon snowdrop Galanthus nivalis [31,32]. Later, it was also isolated from Galanthus woronowii
and the red spider lily, Lycoris radiata [32–34]. In 1960, it was found that galantamine is
an inhibitor of cholinesterase [35]. Due to its activity toward muscle AChE, it was used
to treat myopathies, post polio paralytic conditions and neuromuscular blockades after
anesthesia [36,37]. In 1977 it was reported that galantamine can reverse the acute anti-
cholinergic syndrome induced by scopolamine [38]. The chemical synthesis of galantamine
was upscaled and optimized so that quantities of up to 100 kg could be produced under
GMP-conditions in the 1990s [39]. Since 2000, Galantamine has been approved in the USA
and Europe for the treatment of the symptoms of AD (for example as Reminyl®). It is a
reversible, competitive AChE inhibitor and an allosteric modulator of the nicotinic acetyl-
choline receptors (nAChRs) [40] modulating the α4β2 and α7 nicotinic receptors [41–43]. In
Phase III studies, it showed side effects like nausea or vomiting with mild severity, mostly
during the dose-escalation phase [44].

Huperzine A. Huperzine A, which is isolated from the Chinese club moss Huperzia
serrata, is a specific and reversible AChE inhibitor [45]. It binds more tightly and specifically
to AChE compared to other inhibitors such as physostigmine, galantamine, donepezil
and tacrine [46–48]. The dissociation rate from the enzyme is very low [49,50]. The (+)-
huperzine A enantiomer and the (−)-huperzine A enantiomer have similar neuroprotective
properties, but the (+)-huperzine A enantiomer is 50-fold less potent in inhibiting AChE
in an amyloid-β peptide model of toxicity [51]. In another study, the (+)-huperzine A and
(−)-huperzine A showed similar results in protecting cells against Aβ toxicity [52]. The
neuroprotective effects of huperzine A are created by its potential to protect cells against
hydrogen peroxide, β-amyloid toxicity, glutamate, ischemia and staurosporine-induced
cytotoxicity and apoptosis [46–48,52]. Toxicological studies in different animal species
and clinical trials in China have shown that huperzine A has less cholinergic side effects
than other AChE inhibitors [47,53–56]. The most common side effect of huperzine A is
nausea [56]. Also, huperzine A improved the memory of aged subjects and patients with
AD [54,56]. It is available as a dietary supplement.

Physostigmine. Physostigmine [(3aR,8aS)-1,3a,8-trimethyl-1H,2H,3H,3aH,8H,8aH-pyrrolo
[2,3-b]indol-5-ylN-methylcarbamate] is an alkaloid extracted from Physostigma venenosum
or Streptomyces pseudogriseolus [57]. It is the oldest known AChE inhibitor. Physostigmine
acts as a pesudosubstrate for BChE and AChE, and the inhibition is the result of a transfer
of a carbamate residue onto the active site, which is prone to spontaneous hydrolysis
and the recovery of the active enzyme. The inhibition of AChE results in an increased
acetylcholine level which leads to stimulation of muscarinic and nicotinic receptors [58,59].
Physostigmine can be used as antidote for the anticholinergic toxicity of antihistamines,
atropine, tricyclic antidepressants and phenothiazine [60].

Physostigmine is absorbed in the gastrointestinal tract. The bioavailability ranges be-
tween 1–8% [61]. It has a short half-life with a peak plasma concentration after 30 min after
oral administration of 2 mg [61,62]. To increase the half-life, the slow release physostigmine
salicylate was developed [63,64]. Physostigmine can cause several side effects through indi-
rectly influencing muscarinic receptors which could lead, for example, to nausea, vomiting,
diarrhea and abdominal pain and nicotinic receptors which could cause paralysis, muscle
twitching and the stimulation of cholinergic receptors in the CNS which could lead to CNS
depression [65]. Physostigmine derivatives such as tolserine, eseroline and phenserine
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were synthesized to improve the short half-life and to prevent side effects. Only phenserine
was tested in clinical studies [66].

Table 2. Chemical structures and characteristics of esterase inhibitors.

Name Structure Source Characteristics Ref.

galantamine

Biomolecules 2022, 12, x FOR PEER REVIEW 6 of 27 
 

and phenserine were synthesized to improve the short half-life and to prevent side effects. 

Only phenserine was tested in clinical studies [66]. 

Table 2. Chemical structures and characteristics of esterase inhibitors. 

Name Structure Source Characteristics Ref. 

galantamine 

 

Galanthus nivalis 

reversible, competitive AChE in-

hibitor, allosteric modulator of 

nicotinic acetylcholine receptors, 

modulates α4β2 and α7 nicotinic 

receptors 

[40–43] 

huperzine A 

 

Huperzia serrata 

specific and reversible AChE in-

hibitor, protects cells against hy-

drogen peroxide, β-amyloid tox-

icity, glutamate, ischemia and 

staurosporine-induced cytotoxi-

city and apoptosis 

[45–48,51] 

physostigmine 

 

Physostigma vene-

nosum, Streptomyces 

pseudogriseolus 

AChE inhibitor [57] 

tolserine 

 

Physostigmine deriv-

ative 
AChE inhibitor  [66] 

eseroline 

 

Physostigmine deriv-

ative 
AChE inhibitor [66] 

phenserine 

 

Physostigmine deriv-

ative 
AChE inhibitor [66] 

2.2. Plant Natural Products with Antioxidant and Anti-Inflammatory Efficacy 

Ginseng. Extracts of the rhizome of the plant Panax ginseng have been used in Asia for 

thousands of years to treat different diseases including neurological disorders [67].The 

extract of the plant has several active compounds, ginsenosides, ginseng polysaccharides, 

volatile oils, peptides and amino acids [68,69]. There are several ginsenosides identified 

as useful in the treatment of neurodegenerative disease such as AD, PD and HD. The gin-

senoside Rb1, Rg1, Rg2, Rg3, Re and Rh2 and Gintonin showed a beneficial effect on AD 

symptomatology; Rg1, Re and Rd in PD and Ginseng total saponins and Ginsenosides in 

HD [70–72]. The ginsenosides are classified in two groups: the 20(S)-protopanaxadiol 

(PPD) group and the 20(S)-protopanaxtriol (PPT) group. Rb1, Rc, Rb2, Rd and Rg3 belong 

to the 20(S)-protopanaxadiol group, while Rg1, Re, Rg2 and Rh1 belong to the 20(S)-pro-

topanaxtriol group [73]. The chemical structure of the ginsenosides is shown in Table 3. 

Ginsenosides prevent neuroinflammation and oxidative stress. They also have a positive 

influence on the brain function by apparently diverse mechanisms [74–77]. 

For instance, the ginsenoside Rb1 and Rg1 protects spinal cord neurons from oxida-

tive stress induced by H2O2 and excitotoxicity induced by glutamate and kainic acid with 

an optimal dose of 20–40 µM [67]. In an AD mouse model, Rg1 showed neuroprotective 

effects through improved cognition and amyloid pathology, modulation of the amyloid 

precursor protein process and activation of the hippocampal-dependent protein ki-

nase/hippocampal-respond element-binding protein (PKA/CREB) signalling [78]. The 

Galanthus nivalis

reversible, competitive AChE
inhibitor, allosteric modulator of
nicotinic acetylcholine receptors,

modulates α4β2 and α7
nicotinic receptors

[40–43]

huperzine A

Biomolecules 2022, 12, x FOR PEER REVIEW 6 of 27 
 

and phenserine were synthesized to improve the short half-life and to prevent side effects. 

Only phenserine was tested in clinical studies [66]. 

Table 2. Chemical structures and characteristics of esterase inhibitors. 

Name Structure Source Characteristics Ref. 

galantamine 

 

Galanthus nivalis 

reversible, competitive AChE in-

hibitor, allosteric modulator of 

nicotinic acetylcholine receptors, 

modulates α4β2 and α7 nicotinic 

receptors 

[40–43] 

huperzine A 

 

Huperzia serrata 

specific and reversible AChE in-

hibitor, protects cells against hy-

drogen peroxide, β-amyloid tox-

icity, glutamate, ischemia and 

staurosporine-induced cytotoxi-

city and apoptosis 

[45–48,51] 

physostigmine 

 

Physostigma vene-

nosum, Streptomyces 

pseudogriseolus 

AChE inhibitor [57] 

tolserine 

 

Physostigmine deriv-

ative 
AChE inhibitor  [66] 

eseroline 

 

Physostigmine deriv-

ative 
AChE inhibitor [66] 

phenserine 

 

Physostigmine deriv-

ative 
AChE inhibitor [66] 

2.2. Plant Natural Products with Antioxidant and Anti-Inflammatory Efficacy 

Ginseng. Extracts of the rhizome of the plant Panax ginseng have been used in Asia for 

thousands of years to treat different diseases including neurological disorders [67].The 

extract of the plant has several active compounds, ginsenosides, ginseng polysaccharides, 

volatile oils, peptides and amino acids [68,69]. There are several ginsenosides identified 

as useful in the treatment of neurodegenerative disease such as AD, PD and HD. The gin-

senoside Rb1, Rg1, Rg2, Rg3, Re and Rh2 and Gintonin showed a beneficial effect on AD 

symptomatology; Rg1, Re and Rd in PD and Ginseng total saponins and Ginsenosides in 

HD [70–72]. The ginsenosides are classified in two groups: the 20(S)-protopanaxadiol 

(PPD) group and the 20(S)-protopanaxtriol (PPT) group. Rb1, Rc, Rb2, Rd and Rg3 belong 

to the 20(S)-protopanaxadiol group, while Rg1, Re, Rg2 and Rh1 belong to the 20(S)-pro-

topanaxtriol group [73]. The chemical structure of the ginsenosides is shown in Table 3. 

Ginsenosides prevent neuroinflammation and oxidative stress. They also have a positive 

influence on the brain function by apparently diverse mechanisms [74–77]. 

For instance, the ginsenoside Rb1 and Rg1 protects spinal cord neurons from oxida-

tive stress induced by H2O2 and excitotoxicity induced by glutamate and kainic acid with 

an optimal dose of 20–40 µM [67]. In an AD mouse model, Rg1 showed neuroprotective 

effects through improved cognition and amyloid pathology, modulation of the amyloid 

precursor protein process and activation of the hippocampal-dependent protein ki-

nase/hippocampal-respond element-binding protein (PKA/CREB) signalling [78]. The 

Huperzia serrata

specific and reversible AChE
inhibitor, protects cells against
hydrogen peroxide, β-amyloid

toxicity, glutamate, ischemia and
staurosporine-induced cytotoxicity

and apoptosis

[45–48,51]

physostigmine

Biomolecules 2022, 12, x FOR PEER REVIEW 6 of 27 
 

and phenserine were synthesized to improve the short half-life and to prevent side effects. 

Only phenserine was tested in clinical studies [66]. 

Table 2. Chemical structures and characteristics of esterase inhibitors. 

Name Structure Source Characteristics Ref. 

galantamine 

 

Galanthus nivalis 

reversible, competitive AChE in-

hibitor, allosteric modulator of 

nicotinic acetylcholine receptors, 

modulates α4β2 and α7 nicotinic 

receptors 

[40–43] 

huperzine A 

 

Huperzia serrata 

specific and reversible AChE in-

hibitor, protects cells against hy-

drogen peroxide, β-amyloid tox-

icity, glutamate, ischemia and 

staurosporine-induced cytotoxi-

city and apoptosis 

[45–48,51] 

physostigmine 

 

Physostigma vene-

nosum, Streptomyces 

pseudogriseolus 

AChE inhibitor [57] 

tolserine 

 

Physostigmine deriv-

ative 
AChE inhibitor  [66] 

eseroline 

 

Physostigmine deriv-

ative 
AChE inhibitor [66] 

phenserine 

 

Physostigmine deriv-

ative 
AChE inhibitor [66] 

2.2. Plant Natural Products with Antioxidant and Anti-Inflammatory Efficacy 

Ginseng. Extracts of the rhizome of the plant Panax ginseng have been used in Asia for 

thousands of years to treat different diseases including neurological disorders [67].The 

extract of the plant has several active compounds, ginsenosides, ginseng polysaccharides, 

volatile oils, peptides and amino acids [68,69]. There are several ginsenosides identified 

as useful in the treatment of neurodegenerative disease such as AD, PD and HD. The gin-

senoside Rb1, Rg1, Rg2, Rg3, Re and Rh2 and Gintonin showed a beneficial effect on AD 

symptomatology; Rg1, Re and Rd in PD and Ginseng total saponins and Ginsenosides in 

HD [70–72]. The ginsenosides are classified in two groups: the 20(S)-protopanaxadiol 

(PPD) group and the 20(S)-protopanaxtriol (PPT) group. Rb1, Rc, Rb2, Rd and Rg3 belong 

to the 20(S)-protopanaxadiol group, while Rg1, Re, Rg2 and Rh1 belong to the 20(S)-pro-

topanaxtriol group [73]. The chemical structure of the ginsenosides is shown in Table 3. 

Ginsenosides prevent neuroinflammation and oxidative stress. They also have a positive 

influence on the brain function by apparently diverse mechanisms [74–77]. 

For instance, the ginsenoside Rb1 and Rg1 protects spinal cord neurons from oxida-

tive stress induced by H2O2 and excitotoxicity induced by glutamate and kainic acid with 

an optimal dose of 20–40 µM [67]. In an AD mouse model, Rg1 showed neuroprotective 

effects through improved cognition and amyloid pathology, modulation of the amyloid 

precursor protein process and activation of the hippocampal-dependent protein ki-

nase/hippocampal-respond element-binding protein (PKA/CREB) signalling [78]. The 

Physostigma venenosum,
Streptomyces

pseudogriseolus
AChE inhibitor [57]

tolserine

Biomolecules 2022, 12, x FOR PEER REVIEW 6 of 27 
 

and phenserine were synthesized to improve the short half-life and to prevent side effects. 

Only phenserine was tested in clinical studies [66]. 

Table 2. Chemical structures and characteristics of esterase inhibitors. 

Name Structure Source Characteristics Ref. 

galantamine 

 

Galanthus nivalis 

reversible, competitive AChE in-

hibitor, allosteric modulator of 

nicotinic acetylcholine receptors, 

modulates α4β2 and α7 nicotinic 

receptors 

[40–43] 

huperzine A 

 

Huperzia serrata 

specific and reversible AChE in-

hibitor, protects cells against hy-

drogen peroxide, β-amyloid tox-

icity, glutamate, ischemia and 

staurosporine-induced cytotoxi-

city and apoptosis 

[45–48,51] 

physostigmine 

 

Physostigma vene-

nosum, Streptomyces 

pseudogriseolus 

AChE inhibitor [57] 

tolserine 

 

Physostigmine deriv-

ative 
AChE inhibitor  [66] 

eseroline 

 

Physostigmine deriv-

ative 
AChE inhibitor [66] 

phenserine 

 

Physostigmine deriv-

ative 
AChE inhibitor [66] 

2.2. Plant Natural Products with Antioxidant and Anti-Inflammatory Efficacy 

Ginseng. Extracts of the rhizome of the plant Panax ginseng have been used in Asia for 

thousands of years to treat different diseases including neurological disorders [67].The 

extract of the plant has several active compounds, ginsenosides, ginseng polysaccharides, 

volatile oils, peptides and amino acids [68,69]. There are several ginsenosides identified 

as useful in the treatment of neurodegenerative disease such as AD, PD and HD. The gin-

senoside Rb1, Rg1, Rg2, Rg3, Re and Rh2 and Gintonin showed a beneficial effect on AD 

symptomatology; Rg1, Re and Rd in PD and Ginseng total saponins and Ginsenosides in 

HD [70–72]. The ginsenosides are classified in two groups: the 20(S)-protopanaxadiol 

(PPD) group and the 20(S)-protopanaxtriol (PPT) group. Rb1, Rc, Rb2, Rd and Rg3 belong 

to the 20(S)-protopanaxadiol group, while Rg1, Re, Rg2 and Rh1 belong to the 20(S)-pro-

topanaxtriol group [73]. The chemical structure of the ginsenosides is shown in Table 3. 

Ginsenosides prevent neuroinflammation and oxidative stress. They also have a positive 

influence on the brain function by apparently diverse mechanisms [74–77]. 

For instance, the ginsenoside Rb1 and Rg1 protects spinal cord neurons from oxida-

tive stress induced by H2O2 and excitotoxicity induced by glutamate and kainic acid with 

an optimal dose of 20–40 µM [67]. In an AD mouse model, Rg1 showed neuroprotective 

effects through improved cognition and amyloid pathology, modulation of the amyloid 

precursor protein process and activation of the hippocampal-dependent protein ki-

nase/hippocampal-respond element-binding protein (PKA/CREB) signalling [78]. The 

Physostigmine derivative AChE inhibitor [66]

eseroline

Biomolecules 2022, 12, x FOR PEER REVIEW 6 of 27 
 

and phenserine were synthesized to improve the short half-life and to prevent side effects. 

Only phenserine was tested in clinical studies [66]. 

Table 2. Chemical structures and characteristics of esterase inhibitors. 

Name Structure Source Characteristics Ref. 

galantamine 

 

Galanthus nivalis 

reversible, competitive AChE in-

hibitor, allosteric modulator of 

nicotinic acetylcholine receptors, 

modulates α4β2 and α7 nicotinic 

receptors 

[40–43] 

huperzine A 

 

Huperzia serrata 

specific and reversible AChE in-

hibitor, protects cells against hy-

drogen peroxide, β-amyloid tox-

icity, glutamate, ischemia and 

staurosporine-induced cytotoxi-

city and apoptosis 

[45–48,51] 

physostigmine 

 

Physostigma vene-

nosum, Streptomyces 

pseudogriseolus 

AChE inhibitor [57] 

tolserine 

 

Physostigmine deriv-

ative 
AChE inhibitor  [66] 

eseroline 

 

Physostigmine deriv-

ative 
AChE inhibitor [66] 

phenserine 

 

Physostigmine deriv-

ative 
AChE inhibitor [66] 

2.2. Plant Natural Products with Antioxidant and Anti-Inflammatory Efficacy 

Ginseng. Extracts of the rhizome of the plant Panax ginseng have been used in Asia for 

thousands of years to treat different diseases including neurological disorders [67].The 

extract of the plant has several active compounds, ginsenosides, ginseng polysaccharides, 

volatile oils, peptides and amino acids [68,69]. There are several ginsenosides identified 

as useful in the treatment of neurodegenerative disease such as AD, PD and HD. The gin-

senoside Rb1, Rg1, Rg2, Rg3, Re and Rh2 and Gintonin showed a beneficial effect on AD 

symptomatology; Rg1, Re and Rd in PD and Ginseng total saponins and Ginsenosides in 

HD [70–72]. The ginsenosides are classified in two groups: the 20(S)-protopanaxadiol 

(PPD) group and the 20(S)-protopanaxtriol (PPT) group. Rb1, Rc, Rb2, Rd and Rg3 belong 

to the 20(S)-protopanaxadiol group, while Rg1, Re, Rg2 and Rh1 belong to the 20(S)-pro-

topanaxtriol group [73]. The chemical structure of the ginsenosides is shown in Table 3. 

Ginsenosides prevent neuroinflammation and oxidative stress. They also have a positive 

influence on the brain function by apparently diverse mechanisms [74–77]. 

For instance, the ginsenoside Rb1 and Rg1 protects spinal cord neurons from oxida-

tive stress induced by H2O2 and excitotoxicity induced by glutamate and kainic acid with 

an optimal dose of 20–40 µM [67]. In an AD mouse model, Rg1 showed neuroprotective 

effects through improved cognition and amyloid pathology, modulation of the amyloid 

precursor protein process and activation of the hippocampal-dependent protein ki-

nase/hippocampal-respond element-binding protein (PKA/CREB) signalling [78]. The 

Physostigmine derivative AChE inhibitor [66]

phenserine

Biomolecules 2022, 12, x FOR PEER REVIEW 6 of 27 
 

and phenserine were synthesized to improve the short half-life and to prevent side effects. 

Only phenserine was tested in clinical studies [66]. 

Table 2. Chemical structures and characteristics of esterase inhibitors. 

Name Structure Source Characteristics Ref. 

galantamine 

 

Galanthus nivalis 

reversible, competitive AChE in-

hibitor, allosteric modulator of 

nicotinic acetylcholine receptors, 

modulates α4β2 and α7 nicotinic 

receptors 

[40–43] 

huperzine A 

 

Huperzia serrata 

specific and reversible AChE in-

hibitor, protects cells against hy-

drogen peroxide, β-amyloid tox-

icity, glutamate, ischemia and 

staurosporine-induced cytotoxi-

city and apoptosis 

[45–48,51] 

physostigmine 

 

Physostigma vene-

nosum, Streptomyces 

pseudogriseolus 

AChE inhibitor [57] 

tolserine 

 

Physostigmine deriv-

ative 
AChE inhibitor  [66] 

eseroline 

 

Physostigmine deriv-

ative 
AChE inhibitor [66] 

phenserine 

 

Physostigmine deriv-

ative 
AChE inhibitor [66] 

2.2. Plant Natural Products with Antioxidant and Anti-Inflammatory Efficacy 

Ginseng. Extracts of the rhizome of the plant Panax ginseng have been used in Asia for 

thousands of years to treat different diseases including neurological disorders [67].The 

extract of the plant has several active compounds, ginsenosides, ginseng polysaccharides, 

volatile oils, peptides and amino acids [68,69]. There are several ginsenosides identified 

as useful in the treatment of neurodegenerative disease such as AD, PD and HD. The gin-

senoside Rb1, Rg1, Rg2, Rg3, Re and Rh2 and Gintonin showed a beneficial effect on AD 

symptomatology; Rg1, Re and Rd in PD and Ginseng total saponins and Ginsenosides in 

HD [70–72]. The ginsenosides are classified in two groups: the 20(S)-protopanaxadiol 

(PPD) group and the 20(S)-protopanaxtriol (PPT) group. Rb1, Rc, Rb2, Rd and Rg3 belong 

to the 20(S)-protopanaxadiol group, while Rg1, Re, Rg2 and Rh1 belong to the 20(S)-pro-

topanaxtriol group [73]. The chemical structure of the ginsenosides is shown in Table 3. 

Ginsenosides prevent neuroinflammation and oxidative stress. They also have a positive 

influence on the brain function by apparently diverse mechanisms [74–77]. 

For instance, the ginsenoside Rb1 and Rg1 protects spinal cord neurons from oxida-

tive stress induced by H2O2 and excitotoxicity induced by glutamate and kainic acid with 

an optimal dose of 20–40 µM [67]. In an AD mouse model, Rg1 showed neuroprotective 

effects through improved cognition and amyloid pathology, modulation of the amyloid 

precursor protein process and activation of the hippocampal-dependent protein ki-

nase/hippocampal-respond element-binding protein (PKA/CREB) signalling [78]. The 

Physostigmine derivative AChE inhibitor [66]

2.2. Plant Natural Products with Antioxidant and Anti-Inflammatory Efficacy

Ginseng. Extracts of the rhizome of the plant Panax ginseng have been used in Asia
for thousands of years to treat different diseases including neurological disorders [67].The
extract of the plant has several active compounds, ginsenosides, ginseng polysaccharides,
volatile oils, peptides and amino acids [68,69]. There are several ginsenosides identified
as useful in the treatment of neurodegenerative disease such as AD, PD and HD. The
ginsenoside Rb1, Rg1, Rg2, Rg3, Re and Rh2 and Gintonin showed a beneficial effect on
AD symptomatology; Rg1, Re and Rd in PD and Ginseng total saponins and Ginsenosides
in HD [70–72]. The ginsenosides are classified in two groups: the 20(S)-protopanaxadiol
(PPD) group and the 20(S)-protopanaxtriol (PPT) group. Rb1, Rc, Rb2, Rd and Rg3 belong
to the 20(S)-protopanaxadiol group, while Rg1, Re, Rg2 and Rh1 belong to the 20(S)-
protopanaxtriol group [73]. The chemical structure of the ginsenosides is shown in Table 3.
Ginsenosides prevent neuroinflammation and oxidative stress. They also have a positive
influence on the brain function by apparently diverse mechanisms [74–77].

For instance, the ginsenoside Rb1 and Rg1 protects spinal cord neurons from oxidative
stress induced by H2O2 and excitotoxicity induced by glutamate and kainic acid with an
optimal dose of 20–40 µM [67]. In an AD mouse model, Rg1 showed neuroprotective effects
through improved cognition and amyloid pathology, modulation of the amyloid precursor
protein process and activation of the hippocampal-dependent protein kinase/hippocampal-



Biomolecules 2022, 12, 694 7 of 27

respond element-binding protein (PKA/CREB) signalling [78]. The ginsenoside Rb1 has
several neuroprotective effects. It promotes neural growth, the expression of growth-
promoting kinases and helps prevent their levels from decreasing and has played the
role of an antiapoptotic agent after Aβ-induced apoptosis in an AD cell model [79,80].
Furthermore, Rb1 seemed to protect the brain from Aluminium-induced toxicity. It reversed
the glycogen synthase kinase 3β and the protein phosphates level and thereby reduced tau
phosphorylation [81].

Table 3. Chemical structures of ginsenosides [82].

Structure Ginsenoside R1 R2 R3
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Ginkgo biloba. Ginkgo biloba is the oldest living tree species in the world. The stan-
dardized Ginkgo biloba extract (GBE) from the dried leaves has neuroprotective effects and
is used for the treatment of memory impairment and dementia [83,84]. GBE contains 6%
terpenoids, 24% flavonoid glycosides and 5–10% organic acids [85]. The terpenoids include
the ginkgolides A, B, C and J (Table 4). Flavonoids and terpenoids are considered to be
the pharmacologically active compounds of GBE [86,87]. GBE was shown to reduce the
expression of transgenic human amyloid precursor protein expression in mouse brain [88]
and to compensate for changes in brain glucose metabolism induced by streptozotocin
treatment in rat brain [89].

There are several studies showing a positive effect of GBE on the cognitive function in
elderly and AD patients [90–93]. However, other studies did not show a significant effect
in the prevention or treatment of mild cognitive impairment [94,95]. The contradicting
outcomes of the studies may be caused by differing compositions of the GBE. The chemical
composition depends on the growth conditions and the preparation of the GBE, which
highlights the importance to define the composition of drugs derived from natural sources.
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Table 4. Chemical structures of ginkgolides [86,87] from GBE extracts. GBE has been described to
reduce APP expression and to improve cognitive function [88,90–93].

Name Structure Name Structure

ginkgolide A
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Curcumin is extracted from the rhizome of the Curcuma species. It is the main com-
pound of the curcuminoids and has shown antioxidant and anti-inflammatory proper-
ties [96]. In neurological disorders, curcumin decreased inflammation and ROS. Com-
bined with aerobic yoga, curcumin should improve memory and cognitive function
(NCT01811381, Table 1).

The main active compounds in elderberry juice, grape powder and Meganatural-Az
grape seed extract are anthocyanins. Anthocyanins have anti-inflammatory and antiox-
idative properties. In animal models of AD, a neuroprotective activity was observed:
anthocyanins extracted from black soybeans reversed D-galactose-, lipopolysaccharide- or
Aβ1–42-induced oxidative stress and reduced the ROS level [97–100]. Other anthocyanins
inhibited the Aβ- and oxidative stress-induced GSK-3β hyperactivation and hyperphos-
phorylation of tau protein [101].

Omega-3 poly unsaturated fatty acids (PUFAs) are known to reduce inflammation and
vascular risk factors. They decrease cell adhesion molecules which could be related to cere-
bral small vessel disease [102]. Cerebral small vessel disease influences the accumulation
of white matter hyperintensities that results in cognitive decline [103]. Also, metabolites
showed neuroprotective properties. The ethyl ester icosapent ethyl from Eicosapentaenoic
acid (EPA), an omega-3 PUFA, improves the synaptic function and reduces inflammation
(Table 5).

Rapamycin is a macrolide compound from the bacteria Streptomyces hygroscopicus. It
inhibits the T and B cell proliferation and was therefore approved by the US Food and Drug
Administration (FDA) to suppress the immune system after organ transplantation [104–106].
Rapamycin has been shown to reduce Aβ deposition and pathogenic tau phosphorylation to
improve synaptic plasticity and to decrease neuroinflammation in mouse models [107–113].

Cannabinoids from THC-free cannabidiol (CBD) oil target the behavioural and psy-
chological symptoms of dementia. The cannabinoid CBD may act via different mech-
anisms (Table 5). Several studies suggest that it may protect against Aβ-induced and
microglia-activated neurotoxicity in vitro, prevent hippocampal and cortical neurodegener-
ation, reduce tau hyperphosphorylation and regulate microglial cell migration [114–118].
Furthermore, CBD showed anti-inflammatory and antioxidant activities [119]. The anti-
inflammatory properties may result from the decrease of inducible nitric oxide synthase
(iNOS) and interleukin-1β protein expression [120]. The anti-inflammatory and neuropro-
tective properties were investigated in a rat model [121].



Biomolecules 2022, 12, 694 9 of 27

Table 5. Chemical structures and neuroprotective characteristics of plant natural products from
different origin.

Name Structure Characteristics Ref.

curcumin
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Yangxue qingnao is a traditional Chinese medicine composed of 11 different herbs [122].
It is used to improve the cerebral blood flow and thereby the brain nourishment. In a
mouse model of AD, Yangxue qingnao pills improved cognitive deficits and reduced Aβ

deposition [122]. They possibly promote the expression of α-secretase and thereby the
non-amyloidogenic processing of APP [122].

3. Neuroprotective Algal Metabolites
3.1. Carbohydrates

Sodium oligomannate is a mixture of oligosaccharides obtained by the depolymer-
ization of alginate from marine brown algae, followed by its oxidation to oligosaccha-
rides [123,124] (Table 6). In November 2019, it was conditionally approved for the treatment
of mild to moderate AD in China [125]. The patients treated with sodium oligomannate
showed significant improvement in ADAS-cog12 score compared to the placebo group in a
phase II study, whereby the treated group did not show significantly more adverse reac-
tions than the placebo group [126]. The mechanism of action is not completely understood.
Studies in mice suggest that oligomannate might act via decreasing neuroinflammation by
remodeling gut microbiota and balancing the amino acid metabolism, especially phenylala-
nine and isoleucine [124].

For other carbohydrates from algae, little or no data are available from in vivo studies.
In general, the available data support the mainly anti-oxidative and anti-inflammatory
properties of these compounds. Many of these carbohydrates are sulphated and thus



Biomolecules 2022, 12, 694 10 of 27

strongly negatively charged compounds. Carbohydrates stabilize the cell structure and
are involved in ion exchange mechanisms [127,128]. Sulphated polysaccharides from
Porphyra haitanesis exhibited antioxidant activity and inhibited lipid peroxidation in rat
liver microsomes [129]. The sulphated carbohydrate porphyran from Porphyra yezoensis
showed superoxide anion and hydroxyl radical scavenging activity [130]. Sulphated
oligosaccharides from the two green algae Ulva lactuca and Enteromorpha prolifera increased
concentrations of glutathione, superoxide dismutase (SOD) and catalase (CAT) [131].

Floridoside (2-O-glycerol-α-D-galactopyranoside) extracted from Laurencia undulata
showed anti-inflammatory activity in LPS-stimulated BV-2 microglia cells (Table 6). Flori-
doside inhibited the production of NO and ROS and downregulated iNOS and COX-2
on the gene and protein level via inhibiting the phosphorylation of p38 and ERK [132].
Alginate-derived oligosaccharides inhibited LPS/Aβ42-induced NO and PGE2 synthe-
sis, the expression of COX-2 and iNOS and cytokine release. They diminished the TLR4
and NF-κB overexpression in microglial BV-2 cells [133]. Fucoidan, a fucose-containing
sulphated polysaccharide, inhibited ROS and TNF-α release [134]. It reduces NO, PGE2,
COX-2, iNOS, MCP-1, TNF-α and IL-1β in LPS-stimulated murine BV2 microglial cells.
Fucoidan also decreased the phosphorylation of Akt, ERK, p38 MAPK and JNK [135].

Seleno-polymannuronate is a seleno-derivate from polymannuronate which was syn-
thesized from polymannuronate and Na2SO3 [136]. Polymannuronate is extracted from
edible brown algae. Seleno-polymannuronate decreased the production of NO and PGE2
and the expression of COX-2 and iNOS in LPS-treated primary microglia and astrocytes.
Sulphated oligosaccharides from the two green algae Ulva lactuca and Enteromorpha prolifera
reduced the levels of IL-6, TNF-α and IFN-γ [131]. κ-Carrageenan oligosaccharides and
desulphated derivatives inhibited TNF-α secretion in LPS-activated microglia [137].

3.2. Lipids and Proteins

Besides oligosaccharides, lipids have also been described as potential natural prod-
ucts originating from algae that have neuroprotective properties. Hielscher-Michael at al.
showed that sulfolipids, membrane components of the thylakoid membrane of microal-
gae, inhibit the enzyme glutaminyl cyclase (QC). QCs are involved in the formation of
pyroglutamate (pGlu)-modified Aβ peptides, whose formation is related to AD pathol-
ogy [138–140]. QC activity is also related to other disorders such as arthritis [141]. QCs
catalyse the intramolecular cyclization of N-terminal L-glutamine and glutamate residues
into pyroglutamic acid. The modified Aβ peptides are no longer degradable by aminopep-
tidase and accumulate in the brain. Hence, the inhibition of QC is a potential strategy for
the treatment of AD [142]. Hielscher-Michael et al. discovered that 22 methanolic extracts
with a concentration of 0.2 mg/mL from the algae Scenedesmus rubescens, Scenedesmus
producto-capitatus, Scenedesmus accuminatus, Scenedesmus pectinatus, Tetradesmus wisconsi-
nensis and Eustigmatos magnus showed QC inhibitory activity between 15% to 72% [143].
The compounds with QC inhibitory activity were identified as the sulfolipids 1,2-di-O-
palmitoyl-3-O-(6′-deoxy-6′-sulfo-D-glycopyranosyl)-glycerol, 1-O-palmitoyl-2-O-linolenyl-
3-O-(6′-deoxy-6′-sulfo-D-glucopyranosyl)-glycerol and 1-O-linolyl-2-O-palmitoyl-3-O-(6′-
deoxy-6′-sulfo-D-glucopyranosyl)-glycerol (Table 7) [143].
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Table 6. Chemical structures and neuroprotective characteristics of carbohydrates from algae.

Name Structure Source Characteristics Ref.

GV971
(Sodium oligomannate)
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Table 7. Chemical structures, sources and neuroprotective characteristics of lipids and peptides from algae.

Name Structure Source Characteristics Ref.

1,2-di-O-palmitoyl-3-O-(6′-deoxy-6′-sulfo-D-
glycopyranosyl)-glycerol
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Table 7. Cont.
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The glycoprotein of Undaria pinnatifida (UPGP) has antioxidant properties through
the enhancing of superoxide dismutase (SOD) activity and inhibiting xanthine oxidase
(Xox) activity at a concentration of 5 mg/mL and 1 mg/mL [146]. UPGP showed anti-
inflammatory properties in LPS-stimulated RAW264.7 macrophages via inhibition of COX-1,
COX-2 and NO [146]. UPGP has AChE, BChE and BACE1 inhibitory activities [146]. UPGP
inhibited the BACE1 activity in in vitro enzymatic assays [146].

The cyanobacterial peptides tasiamide B and its analog tasiamide F, both isolated from
the marine cyanobacterium Lyngbya sp., showed BACE-1 (β-site of APP cleaving enzyme)
inhibitory activity [144]. Tasiamide B is a more effective inhibitor of BACE-1 [144,145]. It
was also extracted from Symploca sp., another marine cyanobacterium [145].

3.3. Phenols

The bioactive and neuroprotective polyphenols have been typically isolated from
brown algae. Typically, they interfere with several signal transduction pathways or function
as enzyme inhibitors (Table 8). For instance, eckol, dieckol and 8,8′-bieckol from Ecklonia
cava showed anti-inflammatory properties in Aβ25–35-stimulated PC12 cells by inhibition
of TNF-α, IL-1β and PGE2 synthesis [147]. These phlorotannins further downregulated the
proinflammatory enzymes iNOS and COX-2 by interference with the NF-κB pathway [147].
Dieckol suppressed p38, ERK and JNK, while eckol suppressed the activation of p38 and
8,8′-bieckol decreased the phosphorylation of p38 and JNK [147]. In another experiment,
dieckol from Ecklonia cava suppressed the production of NO and PGE2 and the expression
of iNOS and COX-2 in LPS-stimulated murine BV2 microglia. The reduction of IL-1β,
TNF-α, NFκB, p38 and ROS was also shown before by others [148]. Antioxidant properties
were also observed with diphlorethohydroxycarmalol and 6,6′-bieckol isolated from Ishige
okamurae [149,150].

Phlorofucofuroeckol B isolated from Ecklonia stolonifera lowered the expression of
COX-2 and inducible nitric oxide synthase in LPS-stimulated BV-2 cells [151]. It reduced
the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α. It prevents the degradation of
inhibitor κB-α (IκB-α) and thereby inhibits the activation of NF-κB. Phlorofucofuroeckol
B also inhibited the phosphorylation of Akt, ERK and JNK [151]. The phlorotannins
phloroglucinol, eckol, dieckol, 7-phloroeckol, phlorofucofuroeckol A and dioxinodehy-
droeckol from Eisenia bicyclis inhibited NO production [152]. Phlorofucofuroeckol A from
Ecklonia stolonifera attenuated NO, PGE2, iNOS and COX-2 expression [153]. It lowers the
level of IL-1β, IL-6 and TNF-α. As Phlorofucofuroeckol B, Phlorofucofuroeckol A prevents
the degradation of IκB-α and inhibits thereby the activation of NF-κB. Phlorofucofuroeckol
A downregulated JNK, p38 and Akt [153]. 8,8′-bieckol reduced ROS, NO, PGE2, IL-6 and
iNOS in LPS-stimulated primary macrophages, RAW264.7 macrophages and LPS-induced
septic mice. It lowers the transactivation and NF-κB and nuclear translocation of the NF-κB
p65 subunit [154]. 6,6′-bieckol from Ecklonia stolonifera attenuated IL-6, NO, PGE2, COX-2
and iNOS in LPS-stimulated BV2 and murine primary microglial cells. It inhibited the trans-
activation of NF-κB and the nuclear translocation of the NF-κB p65 subunit as well as the
phosphorylation of Akt, JNK and p38 MAPK [155]. The phloroglucinol derivatives dibenzo
[1,4]dioxine-2,4,7,9-tetratol from Ecklonia maxima inhibited AChE [156], while 6,6′-bieckol
extracted from the red algae Grateloupia elliptica inhibited AChE and BChE [157].

Sargachromenol isolated from Sargassum micracanthum decreased NO, PGE2, COX-2
and iNOS and increased IκB-α [158]. Sargaquinoic acid extracted from Sargassum siliquas-
trum showed anti-inflammatory activity trough reducing NO and iNOS, nuclear transloca-
tion of NF-κB and JNK1/2 MAPK. It prevents the degradation of IκB-α [159].

Some polyphenols also showed inhibitory activity on esterases. The phlorotannins
phloroglucinol, dibenzo [1,4]dioxine-2,4,7,9-tetraol and eckol showed AChE inhibition in
in vitro enzyme assays [156]. Dieckol and phlorofucofuroeckol extracted from Ecklonia cava
inhibited AChE and increased the level of acetylcholine in mice [160].

Sargaquinoic acid and sargachromenol isolated from Sargassum sagamianum and Sargas-
sum serratifolium and sargahydroquinic acid extracted from Sargassum serratifolium showed
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moderate AChE inhibitory properties and BACE-1 inhibitory activity. Sargaquinoic acid is
a potent BChE inhibitor [161,162].

The polyphenols eckol, dieckol, phloroglucinol and dioxinodehydroeckol extracted
from Ecklonia stolonifera inhibited the self-aggregation of Aβ25–35 in vitro [163].

Table 8. Chemical structures and characteristics of phenolic compounds from algae.

Name Structure Source Characteristics Ref.

(−)-cartilagineol
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serratifolium
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3.4. Isoprenoids

Similar to polyphenols, the neuroprotective effect of isoprenoids such as sterols and
xanthin derivatives is primarily based on their anti-oxidative radical scavenging and anti-
inflammatory properties (Table 9). Numerous studies have been published addressing the
antioxidative activity in different, mostly cellular model systems. For instance, the steroid
fucosterol extracted from Pelvetia siliquosa increased the level of antioxidant enzymes SOD,
GPx and CAT and inhibited ROS production [152,168]. It also provided protection from
oxidative damage by raising the GSH level and attenuated of the production of iNOS, TNF-
α and IL-6, and the phosphorylation of NF-κB, MKK3/6 and MK2 was shown [169–171].
Fucosterol from Panida australis and Hizikia fusiformis reduced IL-1β, IL-6, TNF-α, NO and
PGE2 in LPS- or Aβ-induced BV2 microglia cells or keratinocytes [172,173]. Fucosterol
extracted from the algae Ecklonia stolonifera, Panida australis and Sargassum horridum inhib-
ited AChE and BChE in vitro [172,174,175]. Different types of inhibition were detected
depending on the origin. Fucosterol from Ecklonia stolonifera showed a selective inhibition
of BChE, a non-selective cholinesterase inhibition of AChE and BChE was observed with
fucosterol from Panida australis and a non-competitive inhibition was detected with the
compound from Sargassum horridum [172,174,175]. A non-competitive inhibition of the
β-secretase BACE1 was observed with fucosterol from Ecklonia stolonifera and Undaria
pinnatifida [176].

The carotenoid fucoxanthin extracted from Sargassum siliquastrum prevented H2O2-
induced and reduced ROS-induced DNA damage [177,178]. It also decreased the cytokines
IL-6, IL-1β, TNF-α, NO and PGE2 and the enzyme activity of COX-2 and iNOS by sup-
pressing the phosphorylation of MAPKs in Aβ42-induced BV-2 microglia cells [177]. In
the presence of fucoxanthin, enhanced cell survival was observed with LPS-activated BV-2
microglia by activation of the cAMP-dependent signal cascade pathway resulting in the
attenuation of the phosphorylation of Akt, NF-κB, ERK, p38 MAPK and AP-1 and reduced
levels of TNF-α, IL-6, PGE2, NO and ROS [179]. Fucoxanthin activated the nuclear factor
erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway and increased the
secretion of brain-derived neurotrophic factor [179].
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Table 9. Chemical structures and characteristics of isoprenoids from algae.

Name Structure Source Characteristics Ref.
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Padina gymnospora inhibits AChE and BChE in vitro [182]

Fucoxanthin isolated from Phaeodactylum tricornutum inhibited BChE activity in vitro [180].
It possibly interacts with a peripheral anionic site of AChE mediating non-competitive
inhibition [183]. Similarly, α-Bisabolol isolated from Padina gymnospora inhibited AChE
and BChE in vitro [182]. In two other studies, Fucoxanthin suppressed the formation of
Aβ1-42 fibrils and oligomers and inhibited Aβ aggregation [184,185]. α-Bisabolol prevents
oligomer formation and disaggregates the mature fibrils [186].

Astaxanthin decreased the cytokine levels of IL-6, IL-1β, and TNF-α. It inhibited iNOS,
nNOs and COX-2 expression in the hippocampus and prefrontal cortex of male mice [181].
In rats, astaxanthin attenuated NF-κB activity and the expression of IL-1β, TNF-α and the
intercellular adhesion molecule 1 [187].

4. Conclusions

The recent conditional approval of the monoclonal antibody aducanumab (aduhelm)
by the FDA provides a very stimulating signal for all drug development approaches in AD.
However, among others, these antibody approaches are still met with doubts about disease
modification and safety, as suggested by the decision of the EMA to not provide approval to
Aduhelm (Meeting highlights from the Committee for Medicinal Products for Human Use
(CHMP) 13–16 December 2021. Available online: https://www.ema.europa.eu/en/news/
meeting-highlights-committee-medicinal-products-human-use-chmp-13-16-december-20
21, accessed on 2 February 2022). Hence, nutritional approaches and natural products are
vital tools for prevention and amelioration of the progression of neurodegeneration. A
considerable strength of the natural products is provided by the multifaceted mechanisms
of their activity. Prominent examples for that include, for instance, the ginsenosides or
the extracts from Ginkgo biloba (GBE), which are currently the subject of late-stage clini-
cal trials (Table 1). The ingredients exert anti-inflammatory and antioxidative properties
and have been described to influence the processing of AD-related proteins, providing a
multi-pronged molecular approach of intervention. Also, natural compounds are among
the first described to address potential novel pathways in neurodegenerative diseases.
The most prominent example for that is GV-971 (sodium oligomannate). The currently
available data support an influence on the gut microbiome which leads to the amelioration
of AD-related symptomatology. The compound is among the first that addresses the “gut-

https://www.ema.europa.eu/en/news/meeting-highlights-committee-medicinal-products-human-use-chmp-13-16-december-2021
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brain-axis”, which has recently become focus of research in neurodegenerative diseases.
Besidessodiumoligomannate, the general role of nutrition and nutrient uptake by the di-
gestive tract is further underscored by the recent reports on the LipiDiDiet multinutrient
clinical trial in prodromal Alzheimer’s disease [188]. Collectively, the unique properties
of these molecules should further encourage the evaluation of combination therapies of,
for example, anti-Aβ immunotherapy and treatment with natural products. Because the
compounds reviewed here are mostly available without a prescription, a quick introduction
into theclinical routine thus appears straightforward.
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