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Optimal control for a SIR epidemic
model with limited quarantine

Rocio Balderrama?, Javier Peressutti?, Juan Pablo Pinasco’?, Federico Vazquez* &
Constanza Sanchez de la Vega®**

Social distance, quarantines and total lock-downs are non-pharmaceutical interventions that
policymakers have used to mitigate the spread of the COVID-19 virus. However, these measures
could be harmful to societies in terms of social and economic costs, and they can be maintained only
for a short period of time. Here we investigate the optimal strategies that minimize the impact of

an epidemic, by studying the conditions for an optimal control of a Susceptible-Infected-Recovered
model with a limitation on the total duration of the quarantine. The control is done by means of the
reproduction number o (t), i.e., the number of secondary infections produced by a primary infection,
which can be arbitrarily varied in time over a quarantine period T to account for external interventions.
We also assume that the most strict quarantine (lower bound of ¢) cannot last for a period longer than
avalue 7. The aim is to minimize the cumulative number of ever-infected individuals (recovered) and
the socioeconomic cost of interventions in the long term, by finding the optimal way to vary o (t). We
show that the optimal solution is a single bang-bang, i.e., the strict quarantine is turned on only once,
and is turned off after the maximum allowed time . Besides, we calculate the optimal time to begin
and end the strict quarantine, which depends on T, T and the initial conditions. We provide rigorous
proofs of these results and check that are in perfect agreement with numerical computations.

The Covid-19 pandemic outbreak raises an unprecedented series of decisions in different countries around the
world. Since vaccines and effective pharmaceutical treatments were not initially available, governments had
decided to impose non-pharmaceutical interventions like social distance, quarantines and total lock-downs as
the most effective tools to mitigate the spread of the disease. Although these kinds of measures are helpful in
reducing the virus transmission and giving time to health systems to adapt, they could be extremely stressful in
terms of economic and social costs, and, in longer periods, tend to have less compliance with the population.

In this article we consider the classical SIR model introduced by Kermack and McKendrick' and widely used
in epidemiology?>?, where the population is divided in compartments of Susceptible, Infected and Recovered (or
Removed) individuals. As it is usual in SIR models, we assume that people who have recovered develop immunity
and, therefore, would not be able to get infected nor infect others. We consider that infection and recovery rates
are allowed to change over time, and that are homogeneous among the population, instead of heterogeneous rates,
not depending on age, individual protection measures, or awareness*°. Let us observe that these heterogeneous
rates implies the existence of effective rates, obtained as weighted means of the individual rates®. However, for
age-structured models, better results are obtained by considering integro-differential equations, and different
tools from mathematical control theory are needed’. We also assume a mean-field hypothesis that implies random
interactions between any pair of agents, unlike other works®'° where interactions are mediated by an underlying
network of contacts. In this case, by weighted means of agents degrees, it is possible to derive a system equivalent
to a SIR model'’. Also, a full proof of a derivation using probabilistic tools was studied recently'? together with
the optimal control problem for vaccination.

Optimal control problems for a system governed by a SIR or a SEIR model (with the addition of the Exposed
compartment) with pharmaceutical interventions as vaccination or treatment were widely studied'®*-'%. On its
part, in the field on optimal control problems, non-pharmaceutical interventions were studied mostly for a con-
trol consisting of isolation acting only on the infected!”-*’. Taking into account that there is a window of time
when the infected are not detected, in this article we will consider that the quarantine is applied to the whole
population. Non-pharmaceutical interventions can range from a mild mitigation policy to a strong suppression
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policy. As discussed by Ferguson et al.?!, a suppression policy “aims to reverse epidemic growth, reducing case
numbers to low levels and maintaining that situation indefinitely”. Suppression can be achieved by restricting
travels, closing schools and nonessential businesses, banning social gatherings, and asking citizens to shelter in
place. These measures, often referred to as a lockdown, are highly restrictive on social rights and damaging to
the economy. In contrast, a mitigation policy “focuses on slowing but not necessarily stopping epidemic spread”.
Mitigation measures may involve discouraging air travel while encouraging remote working, requiring com-
panies to provide physical separation between workers, banning large gatherings, isolating the vulnerable, and
identifying and quarantining contagious individuals and their recent contacts.

A critical parameter in the SIR model is the basic reproduction number Ry, defined as the expected number
of cases directly generated by one case in a population where all individuals are susceptible to infection. At the
beginning of the epidemic, when no one in the population is immune, infected individuals will infect Ry other
people on average. Let us observe that, for Ry < 1, the number of new cases decline, and when Ry > 1, the num-
ber of new cases grows. However, at any time ¢t > 0, the effective reproduction number R; replaces Ry, since the
number of contacts between infected and susceptible agents is reduced due to the interactions with recovered
individuals that are immune. Hence, the epidemic grows until a sufficient fraction of the population becomes
infected, and after reaching a peak starts to gradually decline. Following Ferguson et al.?!, for the Covid-19 the
suppression phase can achieve Ry < 1, while the mitigation measures are unlikely to bring Ry below 1. Therefore,
the number of new cases are expected to decline during the suppression phase and to start rising again during
the mitigation phase, although at a slower rate than in a non-intervention scenario.

In this work we assume that the intervention will occur in a preset period of time T, as proposed by
Greenhalgh? and recently by Ketcheson?, since it is unrealistic that interventions can be sustained indefinitely.
Also, the lockdown or (strict quarantine) can last at most for a period r < T, the maximum time that the popu-
lation will adhere. Now, there are several interesting questions related to the implementation of the measures:

1. When should the suppression policy begin in [0, T]?
2. Isit convenient to split the maximum time 7 into different intervals?
3. Isit better to apply a strong lockdown followed by mild mitigation measures or not?

In this article we study the previous questions using optimal control tools and numerical computations**-?’.

The answers clearly depend on the goal, which in our case is to minimize the overall impact of the epidemics in
terms of the final number of infected individuals and the social and economic cost of the interventions, which
we assume to increase as the quarantine becomes more strict. To account for quarantine measures, we consider
a time-dependent reproduction number. Using an optimal control approach we show that the optimal strategy
is of a single bang-bang type, that is, the lockdown or strict quarantine is applied in a single interval of time.
Moreover, we characterize the time to start and finish the lockdown during the intervention phase. Let us remark
that these questions make sense also in STHR models, which include hospitalized individuals, since it must be
necessary to keep the maximum of the hospitalized group below some threshold*:.

Recently, many works have appeared dealing with these and related issues. The optimal time to start the
suppression measures that maximizes this type of objective function was studied by Ketcheson?, where it was
proved that a bang-bang control is optimal. However, in that work it is assumed that the lockdown corresponds
to a zero reproduction number, something that is impossible to achieve in the real world. Moreover, it is assumed
that the strict lockdown can last during the whole intervention, which seems to be impracticable. This problem
was also analyzed for a different objective function®, i.e., minimizing the peak of infected individuals, for which
they proved that the optimal policy is not bang-bang. Besides, Kruse and Strack®® minimize a functional that
depends on the number of infectives during the intervention plus a term that measures the social and economic
cost of interventions, and prove that the optimal control is bang-bang, but they do not investigate the optimal
time to start the suppression policy.

The second question is suggested by the strategy proposed by Ferguson et al.?!: the lockdown must be turned
on and off several times based on the incidence of the virus in the population. A control-theoretic approach was
considered in several works***!-33, although no time limits for the interventions were imposed. We shall see that
the optimal policy is of bang-bang type, which consists on turning the lockdown on only once and turning it off
after the maximum allowed time 7, in agreement with other authors?.

Finally, the third question involves both suppression and mitigation phases, and one of the policies was
colorfully characterized as the hammer and the dance in**: a strict lockdown, followed by mitigation measures
in order to keep under control the propagation of the disease. However, our main results indicate that the best
strategy actually depends on the initial condition, determined by the relation between Ry and the initial frac-
tion of susceptible individuals xy. On the one hand, when X is smaller than 1/R, the optimal strategy consists
on applying a strong lockdown right at the beginning of the intervention period [0, T] for the maximum time
period 7, followed by a mild mitigation measure until the end of the intervention (strong-mild strategy). On the
other hand, when xy is larger than 1/R, the optimal strategy is to apply mild mitigation measures at the begin-
ning of the intervention, followed by a strong lockdown, and then a mild mitigation measure again in some cases
(mild-strong-mild strategy). In this case, the optimal time to start the strong lockdown depends non-trivially
on the initial condition.

The paper is organized as follows. We start by describing the basic SIR model in “The SIR model” section, and
by introducing the SIR model with control in “The SIR control model” section. We then present the main results
of the article supported by numerical simulations in “Results” section, followed by a discussion and conclusions
including future work in “Discussion and conclusions” section. Finally, in “Methods” section we provide rigor-
ous proofs of the results by applying Pontryagin’s maximum principle to the control problem, and we prove that
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Figure 1. Trajectories of the system in the x — y phase space for the SIR model Eq. (1) with basic reproduction
number 0 = 1.5(a) and o = 2.2 (b), where x and y are the fractions of susceptible and infected individuals,
respectively. Each curve corresponds to a trajectory starting from a given initial condition (x(0), y(0)), as
indicated in the legends. Arrows denote the direction of the time evolution of x and y. The vertical dashed line
corresponds to the critical value x = 1/0 where ' = 0.

the optimal control is bang-bang in Lemma 2. The main results that characterize the optimal control are given
in Theorem 2, Corollary 1 and Theorem 3, for different case scenarios.

The SIR model

The basic SIR compartmental model of infectious diseases introduced by Kermack and McKendrik' considers a
population of individuals that is divided in three compartments with homogeneous characteristics: Susceptible
(S), Infected (I), and Recovered or Removed (R). The fraction of susceptible, infected and recovered individu-
als at time ¢ is denoted by x(¢), y(t) and z(t) = 1 — x(y) — y(t), respectively. It is assumed that each infected
individual is in contact with an average number of 8 random individuals per unit time, and that infects only
those who are susceptible (S — I transition), generating new infections at an average rate Sx(t). Besides, each
infected individual recovers at a rate y (I — R transition). Births and deaths are neglected, and the recovered
population is assumed to no longer infect others and cannot be reinfected. The infection and recovery rates
and y, respectively, are related to the basic reproduction number o by o = f/y, that is, the mean number of
infections produced by a single infected individual in a totally susceptible population (x = 1) during its mean
infectious period 1/y. Then, the evolution of the system is governed by the following set of coupled nonlinear
ordinary differential equations (see Hethcote®, section 2.1):

x' (1) = —y o x(t) y(1), (1a)

Y =yox®)y®) —yy®), (1b)

with (x(0),y(0)) € ¥ = {(xo,yo) 1x0 > 0,y0 > 0,x0 + )0 < 1}. Here x" and y’ are short notations for the time
derivatives dx/dt and dy/dt, respectively. The region Z is forward-invariant and there exists a unique solution
for all time?. Then, since yy > 0, the proportion of infectious individuals is positive at any time. Even though
the temporal dynamics of Eq. (1) depends on both ¢ and y, the set of system’s trajectories on the x — y space
depends only on the basic reproduction number o because y only affects the overall time scale of the system. In
Fig. 1 we depict typical trajectories starting from different initial conditions x(0), y(0), for o = 1.5 [panel (a)]
and o = 2.2 [panel (b)].

The system of Eq. (1) is at equilibrium if y(¢#) = 0. This equilibrium is stable only if x(t) < 1/0, a condition
referred to as herd immunity. If this condition is not satisfied at the initial time (x(0) > 1/0), then y(¢) first
increases until it reaches its maximum value at a time ¢ for which x(#) = 1/0 (dashed vertical lines in Fig. 1),
and then decreases and approaches zero asymptotically, i.e., Yoo = lim;_, o y(t) = 0. That s, for y(0) > 0,y >0
and o > 0is y(#) larger than zero for any finite time t > 0. The fraction of susceptible individuals x(¢) is strictly
decreasing, and its value in the long time limit xoc = lim;_, oo x(¢) is always positive. Therefore, the state of
the system in the long time limit consists only of susceptible and recovered individuals, xo + 200 = 1, Where
Zoo = limy_, 0 2(£). Also, it is known that xo, € (0,1/0) (see Theorem 2.1 of the work by Hethcote®®).

The SIR control model

We now extend the classical SIR model to address the problem of controlling the spread of an epidemics with
no access to vaccination, where the only possible control is isolation. We model this non-pharmaceutical inter-
vention via a time dependent reproduction number o (¢) that can be varied in the interval [0, 0;,], where o
corresponds to a more strict isolation (“strict” quarantine) than o, (“mild” quarantine), with 0 < o5 < o, and
assume that this intervention can only be applied over a finite time interval [0, T]. Here T is the length of the
intervention period. After the intervention, the restrictions are removed, thus the disease spreads freely and
o (t) = of > op for allt > T. We think of the control parameter o (¢) as capturing political measures such as
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social distancing, and the lockdown of businesses, schools, universities and other institutions. Then, the system
evolves according to the following set of coupled nonlinear ordinary differential equations:

X)) =~y o) x(t) y(1), (2a)

YO =yo®x®)y® —yy®), (2b)

with (x(0),y(0)) € ¥ = {(xo,yo) 1x9 > 0,y0 > 0,x0 + o < 1}, a(t) € [os,0m]fort € [0, T]and o (¢) = oy

fort > T, where0 < o5 < 0y < oy. We also assume that during the intervention period [0, T] it is not possible
to impose an extremely restrictive isolation for a long time. Thus, we consider that the strict quarantine—cor-
responding to oy,—can last at most for a fixed time period 7, with v € (0, T). Once the period of intervention is
finished at time T we compute xo0 (x(T), y(T), 0f) = lim— o0 x(t), where (x(2), y(t)) is the solution of the system
of Eq. (2) with initial condition (x(T), y(T)) and constant reproduction number o (t) = oy for t > T Note that
in this case, from Hethcote’® we deduce that x« (x(T), y(T), 07) € (0,1/07).

While political measures reduce the spread of the disease, they often come at an important economic and
social cost. A long and strict quarantine can be very effective at reducing contagions, but at the expense of hav-
ing a negative impact on the economy. Our goal is to find the optimal control on the SIR model described above
that minimizes the total damage of a pandemic in terms of both, the total number of infections and also the
socioeconomic costs. We model this trade-off by considering a global cost capturing the total number of indi-
viduals that were infected during the epidemics, i.e., those who are recovered in the long-time limit z4, and the
socioeconomic cost of shutting down society during the intervention on [0, T], which we assume to increase as o
decreases (more restrictions). In order to find the optimal o (¢) it proves convenient to work with the fraction of
susceptible individuals in the long term x. instead. Then, given that minimizing z is equivalent to maximizing
Xoo, SINCE Xoo + Zoo = 1, we define the functional

J(x,y,0) := %00 (x(T), y(T), 07) + C(0), (3)

where

T
C(o) == / L(o (t))dt. (4)
0

Our goal is to maximize the functional J, which has the following interpretation. The first term of J is the
fraction of individuals that remain susceptible in the long term xo., and that we want to keep as large as possible
subject to the condition of maximizing the second term of J as well, the functional C(¢'). The functional C(o)
is taken to be inversely proportional to the socioeconomic cost of the intervention (C(co') increases as the cost
decreases), as the function L is assumed to be a monotonously increasing function of o. Then, an increase of
the socioeconomic cost is achieved by decreasing o (more restrictions or stricter quarantine), which leads to
decreasing L and consequently C(o'). Therefore, we see that there is a non-trivial competition between the two
terms of Eq. (3), given that by decreasing o the value of x increases, while C(c') decreases.

In the next section we describe the main results about the optimal control and we test them via numerical
simulations.

Results
As mentioned in the last section, the optimal control is given by the shape of o (¢) that minimizes both, the final
number of infected individuals and the socioeconomic costs, which corresponds to maximizing the functional J
from Egs. (3) and (4). From now on we restrict ourselves to the case where the socioeconomic cost of imposing
a quarantine is linear in the control o (¢). This is a simplified first approach that narrows the analysis of the gen-
eral problem formulated in ”The SIR control model” section but, as we shall see, has the advantage of providing
further insight into the structure of the optimal policy. The assumption that the cost of socioeconomic measures
that reduce the transmission rate is linear in o can be interpreted in the context of social distancing as given by
Kruse and Strack®’: “Shutting down half of the economy for two days is equally costly as shutting down the whole
economy for a single day”. Then, we consider that the function L in Eq. (4) is a linear and increasing function that
depends only on the control o, that is L(c (t)) = ko (t), which satisfies the condition of being a monotonically
increasing function of o expressed in the last section. In this case, the parameter ¥ > 0 could be interpreted as
the assessment that a policy maker gives to the socioeconomic impact of the quarantine compared to the final
number of infected individuals. In this regard, « is a fixed real number that can be chosen small enough by a
government that intends to reduce the final number of infected individuals regardless the socioeconomic impact,
or can be chosen large enough by a government that can face a large number of final infected and intends to
control the socioeconomic impact. Here we mainly focus on the case where « is small (see condition Eq. (33) in
“Methods” section). Also, when « is large enough we prove that the optimal strategy consists in calling off the
lockdown and take mild mitigation measures for all the intervention period (see Lemma 6 in “Methods” section).
Under these conditions, we prove in “Methods” section that the optimal control is of the form of a single bang-
bang. This consists on turning the strict quarantine on only once and switching it off after the maximum allowed
time T or, eventually, when the intervention ends at time T, depending on the initial condition and the values
of the strict and mild reproduction numbers o, and oy, respectively. Then, the problem is reduced to find the
optimal time to start the strict quarantine, which we call t*, and its length called n*. We also show in “Methods”
section that the length of the strict quarantine n* for the optimal control could be less than the maximum time
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Figure 2. Optimal initial time of the strict quarantine t* vs w(0) for 7 = 10 and ¥ = 0. The other parameters
arey =0.1,0,y = 0y = L.5,05 = Oand T = 260.

7 in some cases, as we shall see below. This means that, surprisingly, sometimes it is more convenient to make a
shorter use of the strict quarantine to obtain better results in terms of pandemic costs.

We analyze the optimal control in three different case scenarios: i) k = 0, 0y = oy and o5 = 0, ii) k =0,
om = ofand o5 > Oandiii) x > 0and0 < o5 < 0y < oy. The optimal times t* and n* for each case are given in
Corollary 1, Theorems 2 and 3, respectively, of “Methods” section, where the interested reader can find rigorous
proofs. The optimal control for the different cases, given by t* and n*, is summarized and numerically tested
below for specific parameter values. For that, we integrate the system of Eq. (2) using the Adams’ method***¢, for
various time periods T of the strict quarantine (o0 = o) in the bang-bang control, starting at time ¢ but ending
before T, which is the control period (o () = oy fort > T). That is, the value of o (t) adopts the following form,
depending on t, T and T:

on for0<r<t,

os fort<r<t+n,

om fort+n<r<T, (5)
of forr > T,

o(r) =

where

_Jr fort4+t < T and
"=YT—t fort+7>T. (6)

We start by testing the simplest case k = 0,0y, = ofand o5 > 0, and we then test the most general case x > 0
and 0 < o5 < 0y < oy. We take the value y = 0.1/day for the recovery rate, which corresponds to a mean recov-
ery time of 10 days that falls within the range of Covid-19 estimates®. This value of y sets the time scales of the
system. For now on all time scales are given in units of “days’, even though we omit units for the sake of simplicity.

Casex = 0,0, = orand o5 = 0(Corollary1). We first analyze the case x = 0 with a bang-bang control
in the interval [0, T] that consists of a mild quarantine (o, = 1.5) and an extremely strict and unrealistic quaran-
tine (o5 = 0) during which there are no infections. The other parameter in the simulations is T = 260, together
with the initial condition yo = y(t = 0) = 107% and xp = x(t = 0) = 1 — 10~°. We can see from Corollary 1
that the optimum initial time of the strict quarantine is t* = 0 for xo < 1/07 (w(0) < 0), while for xo > 1/0f
(w(0) > 0) is given by

_ 1
3 for0 <7 <7, wherexr_; (T —1) < —andn =7,
of
"= T_1 forT <t <7, wh i< T-1)<—L _andn=T-1 (7)
orT , where . XT—11 = Sra—evn andn = ,
t fort > T, where x7_ (T — 7) > m, andn =T — 1.

wheret = T — 7 € [0, T — t]is the unique value, independent from t € [0, T], such that x7 , () = é Likewise,
1

of(1—e=v(T-D)y’
As k = 0, xo0 reaches a maximum value when the strict quarantine starts at the optimal time ¢t* [see Eq. (12)].
In Fig. 2 we plot t* vs w(0) for T = 10, calculated from Eq. (54) (squares) and by estimating the maximum of x
(circles). We can see that t* takes values close to zero for w(0) < 0. In the rest of this section we consider the case
w(0) > 0.

The behaviour of t* from Eq. (7) for xo > 1/07 (w(0) > 0) is tested in Fig. 3a, where we compare numerical
results (circles) with that obtained from Eq. (7) (squares, Corollary 1). We observe that the agreement between
numerical computations and Corollary 1 is very good. Figure 3b is an auxiliary plot that shows how to obtain

t=T—7¢€[T—r1,T]is the unique value, independent from t € [7, T], such that x;’T_;(f) =
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Figure 3. (a) Optimal initial time t* vs strict quarantine length 7 for « = 0 and xo > 1/0y. (b) Graphical
determination of the times T and 7 that define the three regions for the different behaviours of t*. The

parameters arey = 0.1,0,, = of = 1.5,05 = 0 and T = 260. The initial condition corresponds to
x(0) =1—-107%y(0) =107 (Ry = a7x(0) > 1). The optimum times of the first and last regions are
t o~ 252.71and f =~ 238.78, respectively, determined by T ~ 7.29 and 7 =~ 21.22.

graphically the optimum times f ~ 252.71and # ~ 238.78 that define the three different regimes of t* from Eq. (7).
These times are obtained by estimating the values of T for which the curve x; 7 (T — 7) crosses the lines 1/o
and1/ [O’f(l — e*}’f)], which happens at T >~ 7.29 and 7 =~ 21.22, respectively.

Remark 1 The effective reproductive number R = o x, (t) represents the mean number of individuals that an
agent infects during its infectious period, at time ¢. It is interesting to note that the optimal time from Eq. (7)
can be rewritten in terms of Ry as

t for 0 < t < T, where R;fft <landnp=r,
t*={ T—1 for?frif,where1<R(;-f_fSH%WandnzT—t, (8)
13 for T > 7,where R(;f_f > H%yr, andn =T — 1.

Here R(;f_r = 0f Xo; (T—1),T=T—tandT = T — 7, where f and  are determined from the relations

1
1 — e v(T—D’

)

R/ =1 and R’ =

In Fig. 4 we show the evolution of the system in the x — y phase space for a given 7 and various ¢ (right panels),
together with the evolution of o (¢) (left panels), which describe the three different behaviours of t*. All curves
start at (xo, y0) = (1 — 107%,107%) and follow the top curve with mild quarantine (¢ = of) until the strict quar-
antine starts at t (0 = o5 = 0), vertically falling down up to a lower level curve when the mild quarantine starts,
and finally following this curve until the fixed point (x, 0) is asymptotically reached. The vertical trajectory
describes the evolution within the strict quarantine where x(#) remains constant, given that o (t) = o5, = 0in that
period. The optimum time ¢* that leads to the maximum of x corresponds to the time for which y(t) drops to
the lowest level curve in the interval [¢, t + 1] (pink curve). For t = 6 < 7.29 = T (Fig. 4 top panels) we see that
the maximum of x is reached starting the strict quarantine att* = ¢ = 252.71, where the effective reproduction

number is R?f = R?_f,_n = 1, and thus there is no new outbreak when the strict quarantine is released (% lt4n = 0).

In this case the entire quarantine periodn = tis used. For T < v = 12 < 7 = 21.22 (Fig. 4 middle panels) the
optimum initial time is * = T — 7 = 248 < t, obtained by still using the entire strict quarantine period but start-
ing earlier than 7. Finally, fort = 26 > 7 (Fig. 4 bottom panels) the optimum ist* = f = 238.78 > T — t = 234,
where it turns more effective to use the strict quarantine for a shorter time T — t* < 7. Notice that implementing
a shorter but later strict quarantine is more efficient than using a longer and earlier strict quarantine, as we can
see by comparing o (t) for n = 26 and n = 21.22 in the bottom panels for the T = 26 case.

Case k =0, oy = o5 and o5 > 0 (Theorem 2). We now analyze the case x = 0, 0,y = o7 = 1.5 and
os = 0.3 > 0, with T = 260. This corresponds to a strict quarantine that is softer than in the previous case
os = 0, and during which there are infections. Initially is yo = 10~%and xy = 1 — 10~°. We can see from Theo-
rem 2 that the optimum initial time of the strict quarantine t* for w(0) > 0 is

Scientific Reports |

(2022) 12:12583 | https://doi.org/10.1038/s41598-022-16619-z nature portfolio



www.nature.com/scientificreports/

235 240 245 250 255 260 265
L L L B L B L B 0.07 T T T
1.5 : - - — 200
o N-ret 006 T=06<1 — 0
t=240 ! - e —
Ok w | ' - 0.05]- ) 3750 "
BRSESSanS * =
1.5 0.04 —
=1=6_| !
c | - : : y —
=1=25271 ! 0.03}- 7
Ok P R L i L ]
L B B B 0.02 f
1.5 725‘ . L E
o | Juiay | 0.01F // -
t=257.5 L/ E
(0] ST I R I SR R / | L | L | L | L | L
235 240 245 250 255 260 265 8.4 0.5 0.6 0.7 0.8 0.9 1
time (days) X
235 240 245 250 255 260 265
L L L L L 007 t
G n=r=l ! 0.06 =
1 . h—
t=240 ! L — 240
0 b 003 — s
T T T T L L L L L r — 260
61.5 n=t=12 y0.047 .
I =T t=248 | 0.03 .
13 \ ! i i 5 L
L L L B L BN 0.02 1
15k =729 | i ’
c | P AN ] 0.01 T\
t=252.71 L
()] =" Ll Ll P I M S— I = |
235 240 245 250 255 260 265 8 0.9 1
time (days)
220 225 230 235 240 245 250 255 260 265 0.07
L L L L L BN BN BN BN A T T T T T T T
1.5 ' 200
c n=c=2 ! 0.06 )
t=230 ! - 23878 =t
— 245
0= ‘ S 0.05 250
1.5 - 0.04
=T-t=21.22
o | o Ll | y i
t =t=238.78 0.03 h
11> P IR R N L L L —— L
L L L L L B BB B BN BN 0.02 N
1.5 I - -
o | =L | 0.01 \ f
t=245 \
O b b b b bbb d 0y o
220 225 230 235 240 245 250 255 260 265 8 0.9 1

time (days)

Figure 4. Case« = 0,0, = oy and o5 = 0 (Corollary 1). System’s trajectory in the x — y phase space (right
panels), fory = 0.1,k = 0,0, = oy = 1.5,0; = 0and T = 260, and the three values of  indicated in the
legends corresponding to the different regimes of the optimum time t* (pink lines). Left panels show the time
evolution of o for three different initial times ¢ of the strict quarantine in each case. The optimum times are

t* = ~ 252.71for r = 6 (top panels),t* = T — 1 = 248 for T = 12 (middle panels) and t* = f ~ 238.78 for
T = 26 (bottom panels).
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Figure 5. (a) Optimal initial time ¢* vs strict quarantine length 7 for x = 0 and w(0) > 0. (b) and (c)
Graphical determination of the times 7 and 7, respectively, which define the three regions for the different
behaviours of t*. The parameters are y = 0.1,0f = 1.5,0, = 0.3, T = 260. The initial condition corresponds to

x(0) =1 — 1075, y(0) = 10~°. The optimum time for the regiont > 7 =~ 23.87is? = 236.13, while t* has a
slight dependenceontfort < 7 =~ 8.01.

for0 <1 <7, wherew(0) > 0,w(T — 1) <0andn=r,

t
_ ~ 1 _
t*: ?—T fOrTSTST,WhereO<W(T—T)Sm and T]—T—T, (10)
t

%, and T]ZT_;,

fort > 7, where w(T — 1) > -

where t € [0, T — 7] is the unique value, depending on t € [0,T], such that w(f) = 0. On the other hand,
t € [T — 1, T]is the unique value, independent from t € [, T}, such that w() = m The dependence and
independence of w(t) ontfort € [0,T — t]andt € [T — 1, T], respectively, can be seen from the definition of
w(t) in Eq. (42).

In Fig. 5a we compare numerical results (circles) with results from Eq. (10) (squares, Theorem 2), where we see
avery good agreement. Att*, x, reaches a maximum. Unlike the o, = 0 case, for o, = 0.3 > 0 the optimal time
t*inthe 0 < T < T ~ 8.01 interval depends on 7, that is, * = (t), while fort > 7 ~ 23.87 ist* = { ~ 236.13
independent of 7. Figure 5b,c show that the optimal times 7 and f are estimated, respectively, as the values of
t = T — 1 for which the curve w(T — t) crosses the horizontal line 0 and the curve 1/ [yyt)T_t(T — r)}.

Figure 6 is analogous to Fig. 4 for the o, = 0 case, and depicts the three different behaviours of t*. Curves are
similar to those of o, = 0, where the main difference is that for o, = 0.3 > 0 the trajectory of the system within
the strict quarantine in the x — y space is described by a diagonal line (see inset of top-right panel), given that o
is larger than zero and thus x(f) decreases in this period. At the optimum time t*, y(t) drops to the lowest level
curve in the interval [¢, t 4+ n] (pink curves).

General case k > 0and 0 < 05 < oy < of (Theorem 3). In this section we analyze the most general
casek = 107> > 0, with a mild quarantine (o, = 1.5) together with a strict quarantine (o5 = 0.3 < 0,,) during
the control interval ¢ € [0, T, and with o (t) = oy = 2.2 > 0, for the case of no restrictions after the control
period t > T. We take T = 320, and the rest of the parameters are the same as those in the previous studied
cases. Then, from Theorem 3 the optimum initial time t* is given by

t for0 <1t <7, where w(0) > 0,w(T — 1) <0andn=r1,
t*={ T—1t fort<t <7, where0 <w(T—1)<a(T—71)andn=T -1, (11)
t fort > T, where w(T —t) > (T — 1), and n =T — 1,

where f € [0, T — 7] is a unique value that depends on 7 € [0,7] and satisfies w(f) = 0, while f € [T — 7, T]
is a unique value independent of T € [7, T] that satisfies w(t) = a(). Here a(t) is given by Eq. (36), whereas
the dependence and independence of w(t) ont fort € [0, T — t]andt € [T — 1, T], respectively, is seen in the
definition of w(t) in Eq. (35).

Given that we consider here k¥ > 0, ] reaches a maximum at the optimum time t* (see Eq. (12)). Figure 7a
shows the behaviour of t* as a function of 7, where we observe a very good agreement between numerical results
(circles) and Theorem 3 (squares). We also see that t* depends slightly on 7 in the 0 < v < 7 =~ 9.65 interval,
while t* =t ~ 291.46 fort > 7 ~~ 28.54. The optimal times f and ¢ are estimated as the values of t = T — T for
which the curve w(T — 7) crosses the horizontal line 0 and the curve «(T — 7), respectively (Fig. 7b,c).

In the right panels of Fig. 8 we show the system’s evolution in the x — y space for three different values of
corresponding to the different behaviour of t*. Unlike the previously studied cases where 0, = oy (Figs. 4 and
6), here we observe that the curves (x(), y(t)) may exhibit up to three different regimes within the control period
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Figure 6. Casex = 0,0,, = oy and o5 > 0 (Theorem 2). System’ trajectory in the x — y phase space (right
panels), fory = 0.1,k = 0,0, = oy = 1.5,0; = 0.3and T = 260, and the three values of 7 indicated in the
legends corresponding to the different regimes of the optimum time t* (pink lines). Left panels show the time

evolution of o for three different initial times t of the strict quarantine in each case. The optimum times are

t* = ~ 252.51forr = 2 (top panels), t* = T — T = 244 for t = 16 (middle panels) and t* =  ~ 236.13 for
7 = 30 (bottom panels).
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Figure 7. (a) Optimal initial time t* vs strict quarantine length 7 for « = 107> and w(0) > 0. (b) and (c)
Graphical determination of the times T and 7, respectively, which define the three regions for the different
behaviours of t*. The parameters are y = 0.1, of = 22,0, =03,0p4 =15 and T = 320. The initial condition

corresponds to x(0) = 1 — 1076, y(0) = 10~°. The optimum time for the regiont > 7 =~ 28.54ist ~ 291.46,
while t* has a slight dependence on 7 fort < 7 =~ 9.65.

T, which is due to the fact that o jumps three times in that interval: from oy, to o, at time ¢, from o; to o, at
t + 7 and from o/, to oy at T. This can be clearly seen in the t* = 310.35 curve for 7 = 5 < T (inset of top-right
panel of Fig. 8). For 7 in the other two regions (t = 18 and 34), the strict quarantine ends at T for t*, and thus
o jumps twice and (x(), y(y)) exhibits two regimes in [0, T] (insets of middle-right and bottom-right panels).
As in the previously studied cases, y(t) drops to the lowest level curve in the interval [¢, t + 1] for the optimum
time t* (pink curves).

Discussion and conclusions

In this paper, we have studied an optimal control problem on a SIR dynamics, with a control on the reproduction
number o (t) and a limitation in the duration of the intervention T and strict quarantine. Based on the Pontry-
agin’s maximum principle, we have given first order necessary conditions with an overall cost of the epidemic
that takes into account both the maximization of the susceptible population in the long term (equivalently, a
minimization of the ever infected population) and a penalization of the lockdown associated to a social and
economic cost of the epidemic. We also point out that we have employed a novel proof to establish our analytical
results. Moreover, some numerical examples have been provided to show the validity of our theoretical results.

Given a fixed time of intervention T where control strategies can be applied, and a strict quarantine period
7 < T that represents the maximum time lapse for the stronger intervention, we proved that the optimal strat-
egy is bang-bang when the term representing the socioeconomic cost of the objective functional is linear with
respect to the control o. More precisely, the optimal solution consists of switching at most twice between a mild
(0 = o) and a strict (6 = o5 < 0y,) quarantine, where the latter lasts at most a time period 7.

Although some studies have supported the idea that a too soon or too late intervention may not minimize
the total mortality, we found a broader scenario. This is because the optimal solution takes the value o = o;
corresponding to the lockdown on an interval [t*, t* + n] C [0, T], with t* and n < 7 depending on the initial
fractions of susceptible and infected individuals xy and yy, respectively, and the parameters y, 7, O, 05, O and
T. In fact, we showed that, in some cases, the optimal strategy consists of taking t* = 0 or t* + n* = T (see
Theorem 2 items 1 and 3-4 respectively). However, for an initial condition that corresponds to a real-life case
scenario in which the percentage of the population that is infected is small when non-pharmaceutical interven-
tions start, we obtained that the optimal strategy consists on delaying the beginning of the lockdown (items 2-4
from Theorem 2). For the case T < T and xy < 1/Ry, this optimum consists in applying a mild mitigation policy
(0 = om) at the beginning of the intervention, followed by a strong suppression policy (¢ = o) and then a mild
mitigation again (mild-strict-mild strategy). Here the optimum time ¢* to start the strict quarantine corresponds
to one that leaves the effective reproduction number o (t* + 7)x(t* + ) at or just below the threshold value 1.0
when the strict quarantine is released, preventing a new outbreak. For the case 7 < T the optimum corresponds
to a mild-strict mitigation strategy, with a strict quarantine that starts late and lasts for a period shorter than
7. Surprisingly, it turns more effective to implement a short strict quarantine that starts late than a long strict
quarantine that starts early.

We remark that these are optimal strategies within the basic SIR model defined in Eq. (2), which describe in an
oversimplified manner the spread of an epidemic on an infinitely large population of individuals with homogene-
ous recovery, contagion and contact rates, where stochastic fluctuations due to finite-size effects are neglected.
Then, stochastic fluctuations in the SIR model on finite populations may play a major role at the beginning of
the epidemics if the fraction of infected individuals is relatively small, and thus starting with a strict quarantine
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Figure 8. Casex > 0and 0 < o5 < 0y < o7 (Theorem 3). System’s trajectory in the x — y phase space (right
panels), fory = 0.1,k = 107>, 05 = 0.3, 0y, = 1.5, oy = 2.2and T = 320, and the three values of  indicated
in the legends corresponding to the different regimes of the optimum time ¢* (pink lines). Left panels show the
time evolution of o for three different initial times ¢ of the strict quarantine in each case. The optimum times are

t* = 2~ 310.35 for t = 5 (top panels), t*

7 = 34 (bottom panels).

T — v = 302 for t = 18 (middle panels) and t* = f ~ 291.46 for

Scientific Reports |

(2022) 12:12583 |

https://doi.org/10.1038/s41598-022-16619-z

nature portfolio



www.nature.com/scientificreports/

may prove more effective if we want to drive the epidemic to extinction. However, we expect that the results
presented in this article hold in the limit of very large populations.

We have also studied the possibility of implementing intermittent quarantines, and the possibility of applying
suppression measures first, followed by mitigation measures. In both cases, if the total duration of measures is
limited, we have shown that they are not optimal in order to maximize the fraction of susceptible individuals at
the end of the pandemic.

A major concern with respect to the current COVID-19 crisis is the possibility of an overload of available
treatment resources. Since the hospitalized individuals are a fraction of the infected population, a natural objec-
tive is to keep the number of infected individuals below some threshold for all times. In a future work we intend
to extend our analytic results including a running state constraint that takes this restriction into account. It might
also be interesting to study the agent-based version of the SIR model, which naturally accounts for finite-size
fluctuations, in order to investigate the role played by stochastic fluctuations in the different optimal strategies
described above. It would be worthwhile to explore how the results are affected by the heterogeneity in recovery
and infection parameters related to age and social stratum. Finally, we also aim to study the role of an underly-
ing network of contacts, and changes in contact rates due to individual measures triggered by fear of contagion.

Methods

Formalization of the optimal control problem. As said in “Results” section, we assume that the func-
tion L [integrand of C(0')] depends linearly on the control o (t). This is a simplified first approach which provides
further insight into the structure of the optimal policy. In fact, under this linearity assumption we will prove that
the optimal control must be bang-bang (Lemma 2), that is, the strict quarantine is turned on and off. Thus, we
consider that L(o (t)) = ko (t) with k > 0. In this case the functional J reads

T
J(69,0) = oo ((T), y(T)y 37) + i / o (tydt. (12)
0

Moreover, we consider a restriction on the admissible controls o that assumes that the control can take the
value o; for at most 7 time, and also takes into account a maximum economic cost that the policy maker can
afford. In regard to the latter, we consider a maximum cost for imposing the strict lock down for the entire period
7. Smaller values of o represent stricter measures and thus a larger socioeconomical cost. Therefore, we impose
an inferior bound to the average of o on [0, T], meaning an upper bound for the socioeconomic cost. Thus, we
consider the restriction

T
/ o*(t)dt > o1 + o(T — 1). (13)
0

Note that any control o € [0, 0y, ] satisfying Eq. (13) takes the value o for a period no longer than 7. In fact,
if o is a control that takes the value o; for a longer period of time than 7, for instance T > 7, then we would have
that fOT o(t)dt < o,T + 0,(T — T) < 05T + 0,,»(T — ) contradicting the inequality from Eq. (13).

We are now in conditions to formalize the problem of finding the optimal control that maximizes the func-
tional J. Given (xo, yo) € &, T, 7 fixed satisfying 0 < t < T,0 < 05 < 0y, < 0oy, we then consider the following
optimal control problem with an objective function J:

T
max J(x,y,0) = xoo(x(T),y(T),af)+/ L(o(t))dt (14a)
Jo

st. &' =—-yo®xy, x(0)=xp, tel0,T] (14b)
Yy =yot)xy—yy, y0) =y, tel0,T] (14¢)
o5 <0o(t) <o (14d)

T
/ o(t)dt > o5t + 0 (T — 1) (14e)

0

In what follows we compute the partial derivatives of xo (x(¢), y(t), o) with respect to x(t) and y(¢) in the same
way that it is done in?’. We begin reviewing the solution of the SIR model without control Eq. (1) as done by*.
It can be shown' that x(¢) satisfies x(#)e?® = x(e?% which combined with the identity z(t) = 1 — x(t) — y(¢)
implies that

(), y(),0) = x(p)e” 7 FOO)

is constant in time for any solution of Eq. (1). The trajectories in Fig. 1 are also contour lines of . Since
Yoo = 0, we then have that xoo = xpe® Foo—X0—20) — 1 (x0, yo, 0)e’*>. Then w = —0 x satisfies the equation
we¥ = —o u(xo, yo, o) and therefore w = Wo(—o p(xo, yo, o)) where Wy is the principal branch of Lambert’s
W —function¥’, and thus for any (x,y) € ¥
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1
Xoo(%,y,0) = —;WO(au(x,y,a)).

From this expression we can compute the partial derivatives of xo (x(t), y(t), o) with respect to x(t) and y(t)
in the same way that it is done in®.

oo (x(1),y(),0) _ 1 —ox(t)  Xoo(x(t),y(1),0)

ax(t) X0 1= oxeo(x(0),y(8),0)’ (152)
0xoo (x(8), y(t),0) _ 0 Xoo (x(), y(t),0) (15b)
ay(t) 1 — 0 x00 (x(8), y(1),0)

In order to solve problem Eq. (14) by means of the Pontryagin’s Maximum Principle, we add a new state vari-
able given by v(t) = fot o (s)dsand consider o : [0, TT — [0, 0y ]in the class of Lebesgue-measurable functions
(so that we have an existence result for optimal solution). Thus, we can study the equivalent optimal control
problem:

max  J(x,9,v,0) 1= xoo(x(T), y(T),0f) + /OTL(G(t))dt (16a)
st X)) = —yo®x()y(t), x(0)=xy, tel0,T], (16b)

y'(6) = yoOxy®) —yy®), yO0) =y, tel0,T] (16¢)
V)=o), v0)=0, tel0,T], (16d)

o(t) € [os,0m], ae tel0,T] (16e)

v(T) > opuT + (05 — op)T. (16f)

We will refer to a 4-tuple (x, y, v, 0) as an admissible process of the underlying control system if the con-
trol o is a measurable function and the state (x, y, v) is an absolutely continuous vector function satisfying
Egs. (16b)-(16f). The optimal control problem consists in finding an optimal admissible process (x*, y*, v*, o *)
that maximizes the cost J. In this case, we refer to the control o* as optimal control.

Next, we give a result on existence of solution for the optimal control problem Eq. (16).

Proposition 1 The optimal control problem Eq. (16) admits a solution.

Proof Since L(o) = ko is continuous, convex and satisfies that there exists a constant «g such that for all
o € [05,0m]it holds L(c) > ay, the proof follows directly from Theorem 23.11%%. Using that the control space
is closed, solutions of the system of Eqs. (16b), (16¢) satisfy that 0 < x + y < 1 and the application xo (x, ¥) is
continuous, it is straightforward to prove conditions (a) to (f) from Theorem 23.11. Moreover, taking o (t) = oy,
we see that the unique solution of the system of Eqgs. (16b)-(16d) together with o gives an admissible process for
which J is finite completing the hypothesis of Theorem 23.11. O

The optimal control is bang-bang. In what follows, we derive the necessary conditions for problem
Eq. (16) where J is given by Eq. (12). We consider the Hamiltonian H

H(x,y,v,0,4) = 4L(0) — Ai(yoxy) + a(yoxy — yy) + Azo (17)

where /g > 0, 4 € R®. The necessary conditions for a maximum process (x*, y*, v*,0*) on [0, T] are the
following®*?*: There exists a real number 1 > 0, the adjoint variable / : [0, T] — R* which is absolutely con-
tinuous, and B € R such that (49, A(), B) # 0 for every t and the following conditions hold:

1. 'The adjoint variables 4 (t), A2(¢) satisfy a.e. t € [0, T]

A1) = (a(t) — Aa®)yo Dy, (18a)
M) = (A (8) = Z2(0)yo (O)x(t) + y Aa(t), (18b)
with final time conditions (using the abbreviation xu for xeo (x(T), y(T), 07))
0Xo00 1— afx(T) Xoo
M(T) = = ,
WD =205 =7 %) 1= o (192)
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0X00 OfXoo
2(T) = A =-1 ,
2(T) = 4o ay(T) 07" P (19b)
and the adjoint variable /3 satisfies
25(t) =0, (20)
23(T) = B = 0and 23(T)(W(T) — o(T — 7) — 057) =0 (21)

obtaining A3(t) = Bforallt € [0, T].
2. Forae.t €[0,T]

L@ (1) + o () (yx* ()y* () (A2 (t) — 1 (D) + B)
= max JoL(o)+o (yx*)y* (1) (Ja(t) — 21 (1) + B).

Using that L(0') = ko and defining
¢ (1) = Jok + B+ yx*(O)y" () (a(t) — A1 (1)), (22)

we obtain fora.e.t € [0, T,

" ()p(t) = A op(1). (23)

3. 'There exists a constant C such that for a.e.t € [0, T
JoL(@* (1) + ™ () (yx* (1)y () G2 (t) = 2 (1) + B) — y/2(t)y* (1) = C,

thus, for allt € [0, T

o (1) — yia()y*(t) = C. (24)

We have the following result:
Lemma 1 The optimal control problem is normal (that is, the multiplier /o # 0).

Proof Assume 4y = 0. From Egs. (18a), (18b) with final time conditions 4, (T) = 2,(T) = 0,4, (¢) = 72(t) = 0
forallt € [0, T]. Since the multipliers (49, A(t), B) # 0, then A3(t) = B > Oyielding ¢ (t) = k + B > 0. There-
fore, from the optimality condition given in Eq. (23), 0*(t) = o, a.e. t € [0, T] contradicting the comple-
mentarity condition v(T) = 0, (T — 7) + 0,7 given in Eq. (21). Thus, we can assume /g = 1, and the proof is
finished. O

Lemma?2 Let L(o(t)) = ko (t) withk > 0 and let * be an optimal control of problem Eq. (16) . Then c*(t)is a
bang-bang control.

Proof Assume ¢ (t) = 0 on an interval[a, b] C [0, T], then computing its derivative we obtain
0= —yx"()y* () A1 (¢) forall t € (a,b).

Thus, from Eq. (18a) 4;(t) = A2(¢t) = 0 for all t € (g, b) and therefore for all t € [0, T], contradicting the end
point conditions. Then, there cannot be singular arcs and the control o * is given by:

0= {5 e 2o @)
O
Lemma 3 Let (xo, yo) be given and (x, y, v, o) an admissible process. Then fort > 0
Xoo (x(1), y (1), 0F) = Xoo (%05 Y0, OF ),
and therefore
Xoo (%0, Y0, 0F) < Xoo (x(T), y(T), 0f) < 1/0%. (26)

Proof See®.
In the next lemma we will see that the switching function changes sign at most two times, concluding that an
optimal control o* jumps at most twice. O

Lemma 4 The switching function ¢ given in Eq. (22) changes sign at most twice.
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t1

Figure 9. Graphic of set R.

Proof The proof follows by analysing the phase diagram of 4;, 4. We begin by noting that a solution (4, 42)
of the system of Eqs. (18a), (18b) cannot cross both semilines 4; = 4, > 0 and 4; = 4, < 0. This is a con-
sequence of condition Eq. (24). In fact, assume there exist s1,s, € [0, T] such that 4,(s;) = 42(s1) > 0 and
A1(s2) = A2(s2) < 0. Evaluating Eq. (22) ont = s; for i = 1,2 we have that ¢ (s;) = « + 43(T) > 0 and from

Eq. (24), 2(s)) = _V}’ )] if « + A3(T) = 0 or, using Eq. (25), A2(s;) = Inlke+3(M)=C £ 4 A3(T) > 0, both

yy*(si)
cases contradicting that 1,(s;) and 2 (s2) had opposite signs.
Since we have end time conditions on T we go backwards from (1, (T), 22(T)) with 4;(T) > 0and /,(T) < 0.
From Eq. (18a), for A1 < 43, 4] < 0, thus 4 is decreasing and for the semiplane /; > A, we have that 4, is increas-

ing. Also, from Eq. (18b), for 4; = 4, > 0 we have that 1, is increasing and for 4; = 4, < 0, 4, is decreasing.
Finally, from Eqs. (18a) and (18b), for 4, = 0and ; > 0, both 4; and /, are increasing.

Thus, since the end time conditions are on the region of the phase diagram with 4; > 4, and /1, < 0 we have
that the solution backwards in time moves to the left where 4; decreases and A, keeps being negative. At some
point in time it could cross the semiline 1; = 1, < 0 (note that there cannot be touch points). If the solution
crosses this line it cannot cross the semiline A; = A, > 0 for a previous time and thus it stays on the region
A1 < Ay for all previous times.

From the definition of ¢ Eq. (22), for 2; < A, we have ¢ > 0. For 41 = 4, ¢ =k + 23(T) > 0 and for
A1 > A2, ¢ could become negative. Since ¢'(t) = yx*()y* (t) A1 (¢), we see that fort € [0, T]such that (1; (t), 22(¢))
is on the region 1; > 1, the function ¢ decreases for such #'s with 4, (f) < 0 and increases for ; () > 0. Also,
let sg,s1 € [0, T] such that sy < s1, A1(sp) = A2(sp) < 0 and A,(s1) < A1(s1) = 0, then ¢ (sg) = k + 23(T), ¢

reaches the minimum value on [¢y, T1at s;and ¢(T) = k + A3(T) — W (Dxe @ (so).

l—Jono
Thus, we conclude that ¢ has at most two zeros on [0, T] and the proof is finished. O
Theorem 1 Let (x*,y*,v*,0*) be an optimal process, then:
om for0<t <t
o*(t)y=qo0s forti<t<t+n 27)
oy fortj +n<t<T

with0 <n <.

Proof Since the optimal control must be bang-bang satisfying Eq. (25), from Lemma 4 it has at most two jumps
and from Eq. (13), it takes the value o at most for 7 time. Thus the proof is completed.

As a consequence of Theorem 1 we have that if (x*, y*, v*, 0*) is an optimal process, then the optimal control
0 *is a piecewise constant function having at most two jumps and therefore its unique associated state (x*, y*, v*)
is a piecewise continuously differentiable function.
Characterization of the optimal control. In this section we will give the main Theorem of the article,
that characterizes the switching times ¢; and t; + 7 (where t, is the beginning of the lockdown and 7 is its dura-
tion) for an optimal control.

Let us consider the compact set (see Fig. 9)

R={(hmeR*:0<n<7,0<t; <T—n}

Given (t1,1) € R, for simplicity of notation, we will denotety = 0,t; =t; + n,t3 = T.
Moreover, given (¢1,7) € R, we will denote the solution of equation Egs. (16b), (16¢) for s > t by

W (s, t,x,y,0), witho € {05,0,} andinitial data (x,y) € 2 attime ¢, (28)
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th T—1 to T T-1 t T
t1 t1

Figure 10. Control for (t;,7) € P.In (a) we have a mild-strict-mild quarantine in the intervention interval
[0, T]. In (b) we have a mild-strict quarantine in the intervention interval [0, T].

and (x1, y1) = W (1, £o, X0, Y0, Om)s (%2, y2) = W (2, t1, X1, y1, 05). Then, if we call (X, 5, ¥4, ), the solution of equa-
tion Egs. (16b), (16¢) associated to the control o given by equation Eq. (27) with initial data (x(0), y(0)) = (x0, ¥0),
we have that

W (s, tg, X0, Y0, 0m) for0 <s <t

(X1, (8), Yy (8)) = { V(s t1,x1,y1,05) forty <s<t (29)
W (s, t2, %2, ¥2,0m) forty <s<T.

From Theorem 1 we need to determine the maximum of the function
J(t1, 1) = Xoo (Xt (T), Y1y, (T), 0f) + k(050 + om(T — 1)) (30)

on the compact set R.
In order to do that, we need to compute the derivatives of J.
After some computations (see Egs. (73) and (76) from Appendix) we obtain that

I:Vz(o'm - Us)ytl,n(T)ytl,n (tl)xoo,tl,n :|
(1 = ofxoo,t,n)

aJ _
aitl(tlx 77) -

t T t (31)
. {/ opxe (1) — ldr s / opxe (1) — ldr / OmXty (1) — ldr}
Jh Yt (r) Jt Yt (r) Jh ytl,n(r)
and
9] Y Xootin /T X1y, (1)
—(t,n) = un t - 1— (o5 — T g
87]( 1,7) 1— O'fxoo,tl,nytl’n( 2)(om — 05) (Uf Um)ytl,n( ))/ ., )’tl,n(r) r
— k(o — 0y)
m s . " 1 (32)
Y Xoo,t;,n Of Xty (1) —
=——""—(0m — 0)V1,, (T)(l— 2 (82) 7(17’)
1-— Of Xo0,t1,n " SVt Ytz Jt }’tl,n(r)
—k(om — 0y)
where Xoo,t,,7 = Xoo (Xt,,7(T), yt,,n(T), o7). Note that for (¢1, 1) € R Y o L(t, n) > 0if and only if
Xoo,ty,n fotl p(r) —1
, (T)( (t2) dr | >« 33
1 — 07 Xoo Yt EROLEA b Yy (1) (33)

In the results given in the next sections we will assume that 3—{) (t1,m) > Oforall (t;,n) € R and therefore in
the following remark we analyse the derivatives of ] restricted to the superior border of R (see Eq. (37) and (38))
which will be used later.

Remark 2 Assume that a] (t1,m) > Ofor all (t;,1) € R, then the maximum value of J on R must be attained at
the superior border

P= {(tl,f), h € [O’T - t]} U {(tb T — 1), t1 € [T - T>T]}- (34)

Thus, in this case, for (t;, T) witht; € [0, T — t)we havet, = t; + tand for (t;, T — t1) witht; € [T — 7, T
we have t; = T, and the control is as in Fig. 10

Following, we define a continuous function w for t € [0, T] which is the second factor in equation Eq. (31)
and thus gives information on the monotonicity of J (see also Egs. (40) and (41) below).

"ttt of Xz (r)—1 T opxee(r)—1 FHT omte (N—1 B
b Ty A vt T) Jiie o dr [, e —dr for0 <t <T—71
w(t) =
T opxr—1(r)—1
ft yer—t(r) dr forT—t<t<T,
(35)
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and fort € [T — 7, T], we define

alt) = | = LT oottt ) (36)

yye1—t(t) ( VY, 1—t(T)Xoot, T—t
Then we have that for (t;,1) € P

Xoo,t1,m

a]
—(t,n) = ——=>bvl
on, 0 = G O Xoorr)

Y2 Om — 0yt (D n(t)w(t), (37)

and for (t;, T — t;) € Pwitht; € [T — 7, T]

aJ Xoojt,
— (1, T— 1) = ——2 (0 — )10 (T) = k(O — )
an 1 — 0 X0ty
Xoo,t1,n 2 (38)
= ——————y (om — 09y, (Tt (t1)a (f1).
1— O’fxoo,tl,,]
We consider J the continuous function defined as the restriction of J(t1, ) to P, that is
5 J(ty,7) forty € [0, T — 7],
J(t) = { (39)
J(t,, T —ty) fort; € [T — 7, T].
From Eq. (37) we have that
. Xoo,t,
J(t) = y*(om — Us)%yn,r(tl))’tl,r(T)W(tl) for 1 €[0,T~—r1), (40)
and from Egs. (37) and (38), we get
dJ
J(t) = (tb —t) — ?(tl)T —t)
n
Xoo,t;,T—t; (41)

=y (om — 09) Y, 1—0 (ED)Ye, 1—0 (D (w(t) — a(t))

1 — OfXoo,t;, T—1,
fort; e (T —1,T].

In the next subsection, we prove the main result of this article (Theorem 2) for the case 0, = oy, 05 > 0 and

k = 0. Then, we derive the result for o; = 0 (Corollary 1) in order to compare our result with the one obtained

in?.

Case oy = OF andk = 0.. For oy, = oy, from Eq. (74) with i = 2, we obtain

t _
et 4 7) e fo”’((?) Ydr foro<t<T-—r1
w(t) = Vi (1) . e (42)
ftT ﬂf’;tTT ‘t((:)) dr forT—1t<t<T.
In addition, from Eqs. (32) and (74) and using x = 0 we have that
3] Xoo,t) n
—(t1,n) = _— - t 0
377( LN =T o Xom y(of —o9)yu gt +n) > (43)
for all (f1,n7) € R.
In this case, the sign and zeros of w(t) fort € [0, T — t]are the same as those for the function
T oy (1) — 1
2(t) = / o) =1, (44)
t Yt (r)

where z(t) can be interpreted as the average on the time window [¢, t 4 7] of the difference between the effective
reproduction number oy x;, (r) and the threshold 1.0, weighted by the inverse of y;,;. Looking at the phase dia-
gram of Fig. 1 we see that the trajectories travel through the contour line (4 (xo, yo, 01,) until the strict lockdown
is activated, and then descends for the time the lock down lasts (always less than 7) to another contour line of
with o, For k = 0, the zero of w(t) (¢tx) captures the moment when this travel to a lower contour line is faster,
in the sense that leaves the trajectory on the lowest possible contour line at the end of the strict lockdown and,
therefore, at the maximum of x~.. The function z(f) can also be seen as an external parameter that becomes zero
at the optimal time t* for which ] reaches its maximum, i.e., z(t*) = 0. In the next remark we discuss the sign of
z(t) fort € [0, T — t]when o,y = oy.

Remark 3 Given (xo,y0) € & with xo > 1/0f, assume there exists s; € [0, T — 7] such that the solution
W1 (s1,0, %0, Y0, Om) = l/af, that is x5, (s1) = l/af (red line in Fig. 11). Then, fort € [s1, T — 7], x¢¢ (f) < 1/crf
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Figure 11. Trajectories (xt,z, y1,r) fort € [so, s1]when o, = o7.

and therefore x; . (r) < 1/oyforr € (¢,t + t]implying z(¢) < 0. Additionally, assume there exists sp € [0, T — 7]
such that x4, (so + 7) = 1/07 (blue line). In this case, it is clear that so < s1 and also that for all £ € (sg, s1)
there exists a unique s; € [t,t + 7] such that x; ; (s;) = 1/07. Moreover we can conclude that for ¢ € [0, so],
xt,r(r) = 1/offorallr € (t,t + v)and therefore z(¢) > 0. If s; defined before does not exist, that is x;; (s) > 1/0y
for all s € [0, T — 7], then we take s; = T — 7. Likewise, if s does not exist, that is for all s € [0, T — 7],
xs(s + 7) < 1/oy, then we take so = 0 and conclude that in either case, the sign of z(t) fort > 0, is determined
in the complement of [s, s1].

In the next lemma we prove that z is a decreasing function on the interval (sp, s1) introduced in Remark 3.

Lemma 5 Let sg,s1 € [0, T — t] be given by Remark 3. Then the function z defined in Eq. (44) is decreasing on
(0, 51). Moreover, z(t) > 0 fort < so,z(t) < Ofort > sy and consequently w changes sign at most once on[0, T — t].

Proof Since the duration of the strict quarantine is 7 fixed, for simplicity of notation in this proof we neglect the
subindex 7 from solutions x and y. Givent € (s, s1), we define the auxiliary functions

8t(s) = orosx¢ (8)y1(s) + (opxt(s) — D(osx(s) — 1), (45a)
_OfXy (s)—1
fi(s) = 7}}[ © (45b)
in(s) = %(fot(s) +opi(s) — 1) + ygi(s) [ ;‘;Eg dr. (45¢)
By computing the derivative for s € (¢, ¢ 4 ) we obtain
81(s) = —y ol x:()ye(s)(0px () + opye(s) — 1), (462)
R <10
fis) = yyt ® (46b)

x¢(r)
yi(r)

if(s) = —youxi(s) (yasyt(s) /t dr + 1) (a7%t(s) + 0oppe(s) — 1), (460)

and we have that

2@ =it + 1) — fi ()

T T xi(s) (/5 % (r) > 8t (5)}
s 200y -1 4 ;
+y(o Gf)y1 /t L}tz(s) (Ofxt(S) + ofyt (s) )+y  yi(r) r ¥t (s) )

t+1 it (S)

s
t(s)

(47)

—i(t +T) = f() + y (05 — 0PIy /
t

Note that both g/ and i, have the opposite sign of (07x¢(s) +oryr(s) — 1). First, assume
o7xt(s) +ofye(s) — 1 > Oforalls € (¢, + 7), then from Eq. (46a), g is a decreasing function. Moreover, since
o (t+71) — 1 < 0and oyx;(t + ) — 1 < 0fort € (so, 1), we deduce that g;(s) > g (¢ + 7) > 0. In addition,
from Eq. (45¢) we obtain i; is positive.

On the other side, from the fact that x + y is a decreasing function, if we assume that there exists
s3 € [t,t + ] such that o7x;(s3) + 0ryt(s3) = 1 we have that for s < s3, orxt(s) + ofye(s) — 1> 0 and for
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Figure 12. Behaviour of z(t) when oy = o,

s > 53, 07x¢(s) + 07ye(s) — 1 < 0. Therefore, g; and i; attains a global minimum on [¢,¢ + 7] at s3 and thus
8t(s) = g1(s3) = 07yr(s3) > 0 and ir(s) > i(s3) = v8i(s3) f; 53 ;‘(:) dr > 0 for all s € [t,t + ] . Furhtermore,
from Eq. (46b) we have that f;(s) is also a decreasing functlon

Thus, we have proved that for ¢ € (sp,51), fi(s) is decreasing on (¢, ¢ + t) and i;(s) > O for all s € [t,t + 7],
yielding from Eq. (47) that z’(t) < Ofor allt € (s, s;). Finally, from Remark 3 we deduce that z changes sign at
most once on [0, T — 7] (see Fig. 12) concluding that w changes sign at most once on[0, T — 7.

From Eq. (40), we see that the monotonicity of Jon[0, T — t] depends on the sign of w. For all the foregoing,
if J attains its maximum at t; = t* € [0, T — 7], we can interpret w(f) as an external parameter that shifts the
extremal point of ] from t* to zero.

In the next theorem we assume that xy < 1/0;. This condition is always satisfied for o5 < 1. O

Theorem 2 Let 0 < 05 < 0,y = o7 with o5 < 1,k = 0 and w be given by Eq. (42). Then the optimal control is
unique and is given by

of for0 <s < t*,
o*(s) =% o5 fort* <s<t*+n, (48)
of fort*+n<s<T,

where

1. Forw(0) <0:t* =0andn = .

2. Forw(0) > 0andw(T — t) < 0:t* = fandn = t wheret is the unique value on [0, T — t]such thatw(t) = 0
' 1
3. ForO0<w(T—1)< ————t*=T —tandn=r1.
V)’T 1,0 (T — T) 1
4. Forw(T — 1) > ———————t* = t where  is the unique value on[T — t, Tsuch thatw(f) = —————
YYT—r1, (T — T) J’;,sz(l‘)

andn=T — 1.

Proof From Eq. (43) and Remark 2 the maximum value of ] on R must be attained at the superior border P
defined in Eq. (34). Therefore, from Egs. (40) and (41) we have

OOt]‘[

( GfxOO t1, T)

J(t1) = y*(o5 — 0%) Yy, (Dw(t) for t €[0,T — 1), (49)

and using that for k = 0, 2 (tj)) = —  , then
Yyu,1—1 (1)
1
t) = — LT“ . (t _ T tH)— ———
J(t1) = y*(of — %) I opxont tl}’n,T 1 D)y, 1—1 (T) | w(tr) Yyt () (50)
fort; € (T — 7, T]. Note that from Eq. (75) withi = land j = 0, fort € [T — 7, T]it holds the identity
1
,7(T)<W(t)—7>= (of — 0s)h(t1) — 1 51
yytl T i ! V}’tl,T—tl (tl) y f : ! ( )
where
T
W) = () [ 20 g (52)
¢ yer—t(s)
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is a decreasing function in[T — 7, T1. In fact, using that u; (s) is a positive function [see Egs. (68)) and (62a)] it
is easy to see that

d ( yu (D) ) o

an \ yy (s)

and therefore, h'(t;) < Ofort; € (T — 7, T). From Egs. (50) and (51) we also have that fort; € [T — 7, T]

xOC,l’l ,T—t)

J'(t1) =y (o5 — oy) Y. 10 (1) (v (0f — 09)h(t) — 1) (53)

1 — O Xoo,,T—1;

We consider the following cases:

1. Ifw(0) < 0, then from Lemma 5, w(t;) < Oforallt; € (0, T — t]. Thus, from Eq. (49) we have
J'(t1) <0forallt; € [0, T — 7).
Moreover, using that w(T — 1) < 0, the positivity of yy7_; (T — 7) and Eq. (51), we obtain that
h(T — 1) < —  and being h a decreasing function, from Eq. (53) we deduce that
y(of — 05)
J(t1) <Oforallt; € (T — 7, T.

Therefore t* = 0.
2. Sincew(0) > 0Oand w(T — t) < 0, from Lemma 5 there exists an unique ¢ € (0, T — t]such that w(f) = 0,
w(t;) > Oforallt; € [0,f)and w(t;) < Oforallt; € (¢, T].
Moreover, since w(T — t) < 0, in the same way as for the previous item, we have

J'(t)) < O0forallt; € (T —7,T]
and from Eq. (49), we obtain
J(t)>0 forti <f and J'(f) <0 fort; > 1,

concluding that t* = ¢.

3. Since
1
0O<wlT—-1)< ——
Yy1—oc (T —7)
1
from Lemma 5, w(t;) > Oforallt; € [0, T — 7]. On the other side, sincew(T — 1) < —————— from
Yyr—1:(T — 1)

Eq. (52) we have that h(T —7) < Yo =00 and using that h is a continuous and decreasing function, we
obtain that h(t) <

Vo J)for allt; € (T — 1, T). Thus,

J#)>0 fortye[0,T—7) and J'(4) <0 fort; € (T —1,T).

Therefore,t* = T — randn = .
4. Since
1
w(lT—17)> ——— >0,
Yy1—1,0 (T — 1)
1

YVT—1,¢ (T — f)’
and using that h(T) =0 and h is a continuous and decreasing function there exists

h(t) > fort e [T -1, and h(t) < fort e (tT).

from Lemma 5, we have w(t;) > Oforallt; € [0, T — t]. On the other side, sincew(T — 1) >

then h(T T) > m
a unique  such that h(t) =

y(or—03)° a o

Therefore,
J@t)>0 fort; €[0,f) and J' () <0 fort € ({7
Consequently, t* = fandp =T — .
Caseos; =0, 04 = of and k = 0.. Let w(t) defined as in Eq. (35). Note that for o; = 0 and 6/, = oy, from
Eq. (75) withi = j = 2, we obtain

Yot + T)(fot,t ® -1
Yyt (Dyee (9
w(t) = (54)
opxer—t® =1 l(ey(T_‘) -1 forT—7<t<T.
Y1t (t)

et —1) for0<t<T-7<
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It is easy to observe that in this case the sign of w(t) on [0, T — 7]is given by (ofxt,. () — 1). Moreover, w
changes sign at most once on [0, T — 7], going from positive to negative values.

Corollary 1 Letos = 0,0, = of > 0and k = 0. Then, the optimal control is unique and is given by

of for0 <s < t*,
o*(s)=<¢ 0 fort* <s<t*+n,
oy fort*+n<s=<T,

where

L.t*=0andn =1

1

2. Forxy > —and xr_r (T — 1) < L.t* =T andn = 1, where T is the unique value on [0, T — t] such that

For xy <

(T{ Uf'
x?)z(f) = —
of
1 1
3. For— <xr—¢7(T—17)< ————— t*=T —tandn =r.
of of(1—ev7)
1 - ~ -
4. Forxr—r (T — 1) > —————:t* =tandn = T — t, wheret is the unique value on[T — t, T]such that
Uf(l —e YT

X)) = —af<1 - efy(Tfi))'

Proof The proof follows from Theorem 2 using the fact that

sign (w(t)) = sign (ofx:c(t) — 1), fort € [0, T — 7],

and
w(T —1) = %(O"WCT (T—1)—D(E" —-1)
= —1,7 .
Yy1—1(T —7T)
1
Note that in this case if we take T = T, the corollary is reduced to only two possible cases: xy < P ———
or(l—e
1
orxg > ——————, obtaining the same result as Ketcheson? in Theorem 3. O
of(1—ev")

General case. In this section we study the behaviour of optimal solutions for the general case when
0<o0s<om=<oy and k > 0, that is, objective function J includes the term that accounts the running cost of the
control and allows us to account for factors like the economic cost of intervention or heightened risks caused by
hospital overflow.

Xoo,trn ¥V Yt (T)
1— afxoo,tm

Lemma 6 Assumex > (1 -y tzT Mdr)for all(t1,n) € R, then the optimal control is

}’[,n(r)
given by o* = o

Proof From Eq. (32), we have that % (t1,1m) < 0 and therefore the maximum value of ] on R is attained at the
inferior border of R wheren = 0and J (¢, 0) is constant.

In the next theorem we give a general result including both the economic cost of intervention (« > 0) and a
mitigation phase different from the no intervention one, that is 5, < o7. In the next section we give numerical
simulations supporting this result. When o = oy and k = 0 we recover Theorem 2. (|

Theorem 3 Let0 < o5 < 0oy < oy withos < 1, « satisfying Eq. (33) for all(t1,n) € R and let w and o defined as
in Egs. (35) and (36) respectively , then the optimal control is unique and is given by

om for0 <s < t*,
o*(s) =< oy fort* <s<t*+n, (55)
oy fort*+n<s<T,

where

1. Forw(0) <0:t* =0andn = .
2. Forw(0) > 0andw(T — t) < 0:¢* =t andn = v wheret is the unique value on [0, T — t]such thatw(t) = 0

3. ForO<w(T—1t)<a(T—1):t*"=T—tandn=r1.
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4. Forw(T — 1) > a(T —1): t* =1t where t is the unique value on [T — t, T] such that w(f) = a(f) and
n=T-—t.

Data availability
All relevant data are within the paper.

Appendix
We begin by computing the derivatives of x;,(T)=¥(T,t; +n,%,2,0,) and
Y (T) = Wo(T, t1 4+ 0, %2, y2, o) With respect to t.

We recall two properties for the solutions of ordinary differential equations. First, the relation between the
derivative with respect to initial time and the derivatives with respect to initial data give us the equation

AWi(s,t,x,,0)  dV(s,1,%,,0) aVv;(s,t,x,y,0)
= yoxy — — 2~
ot 0x dy

yy(ox —1) (56)

for W defined in Eq. (28), with s > t, o € {05, 04}, initial data (x,y) € Z attime tand j = 1,2.

Second, the dependence of the solution W (s, , x, y, o) with respect to initial data x, y is given by the follow-
ing known equations. For simplicity of notation, when there is no risk of confusion, we will denote W (s) for
V(s t,x,9,0),

v v\’ v v
T ) = TreRE —yodi T 2\ (57)
o ol yowa(s) v -1 )| 2 ok J©
with initial data
AW 9Wy
<5;qu A ) (t) = Id. (58)
ax  dy
Then we call o7 = 05,07, = oyand fori = 1,2,
(5) = (st )= 2 ) )
ui(s) = u(s, tj, X, yi> 0i) = — (S, ti5 Xi» Yi> 0i) — — (S, Li» Xi5 Vi> 0i),
i i> Xi> Vi> Oj 9% i> Xi> Yi> Oi y; i> Xi> Yi> Oi (59a)
3\1/2 8\1/2
vi(s) = v(s, ti, xi, yi» 01) = ——— (S, ti, Xi» ¥i» 01) — ——— (S, ti, Xi, Yi> 01), (59b)
0x; ayi

for s € [t;, ti+1], and we have the system of equations on u; and v;

() \ _ [ —voi¥a(s) —yoi¥i(s) u;(s)
vis) ) = \yoiwns) v -1 )\ vies) ) (60)

u;(t;) 1
(Vi(fi) ) - (—1)' ©1)

Therefore, after some computations and using Egs. (56) and (59) we obtain for s € (1,1 + 1)

with initial data

ﬂ(s)—— (om — 0s)x (s)

dxtl — —y(om x1y1u (s), (62a)
d

%(S) = —y(om — gs)x1)1v1(8), (62b)

and fors € (t; + n, T]

dx,
dt;’" (5) = ¥ (Om — 0)x2y212(5)
1
(63a)
oW1 (s, 2, X2, V25 OV (s, 12, X2, ¥2,
— (om — oy | S22 0m) 4y ISR Tm) )
sz ayz
d
%(5) = ¥ (Om — 0:)x29272(5)
1 oW (s, 12, X2, 2, Om) oW (s, 12, X2, 2, Om) (63b)
—y(om — 0s)x1)1 u(f2) + vi(t2) |.
sz 3)/2
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Moreover, using that for any (x;, ;) € &,V (s, t;, xi, i, 0i), satisfies for s € [t;, tiy1]

Wi (s, tiy X Vi (,i)efm(\l‘l (8:ti:Xi,i,01)+W2 (5,8:Xi,Yi,01)) xie*(fi(xi+7i)’ (64)

we compute the derivatives with respect to x; and y;and using ¥, (s) = W, (s, t;, x;, i, 0;), we obtain for s € [t;, ti1]

A ow v

wl(s)( 2 ) = (1 — o) DY), (65)
Xi
I W,
- qu‘l(s)(f( ) + 7( )) = —o;¥1(s). (66)
Then, substracting the last two equations
W1 (s, tis Xi» Yi> O7)
5(9) = 0191 5, i i Y1 09 (0 (9) - vi(5)) = — A0 (67)
1

for s € [, ti+1] and therefore using Eq. (67), from Eq. (60) we have that u; satisfies the ordinary differential
equation
W (s, ti, Xi, Vi, O7)
ui(s) = y (03 W1(s, ti, Xi» yir 03) — 07Wa (s, ti> Xi yi» 07) — 1) ui(s) + Vilxll ¥,
1

ui(t) = 1.

In the rest of this section, for simplicity of notation we will denote x and y for x;, , and y;, ,, defined in Eq. (29),
respectively.
Thus, for s € [¢, tj+1]wheni = 1,2, we obtain

uQVIONN J/x(S)y(S) LY

ui(s) =
Xiyi Xi y(r) (68)
x(s) x(s)y(s) x(r)
= +yoi r,
Xi X 4 }’(7’)
x(s) | (1 —oix(s)y(s) * x(r)
vi(s) = — 2 DT ORI —dr, (69)
X; X & ¥
(5) / x(r)
u;i(s) +vi(s) = 4 (r) r. (70)
Also, from Egs. (60) and (66) we can prove for W(T) = W(T, t, X2, y2, o) that
W, W, y(T)
7( )+ 7(T) ’ + (1 — omx2) (u2(T) + v2(T)), (71a)
ov ow T
—lm + —Zm YD) sy (T) + 12(T)). (71b)
Analogously,
Xt1,n
Tn(T) = y(om — 0s)x22u2(T), (72a)
At
n (T) = y(om — 05)x22v2(T). (72b)
We can now compute the derivatives of J(;, n) given by Eq. (30). From Eq. (15),
ﬂ(tbn) dxm(xtl,n(73>yt1,r7(T)>Uf)
131
Xoo,t1,n 1- fotlyﬂ(T) dxtl;"l(T) dytlﬂ?(T)
=1 —of (73)
1 — 0fXoo,tn X4, (T) dh dty
Xoo,t1,n xt1 n( ) dytl,n(T))
= (1 —opxt; yn(T))—— — opxy (1) —— |,
(1 = o7 xoo,.) %t (T) < S o dt,
and, from Eq. (63)
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dx, d T
4! —ofxtl,nm)‘;ijl() — 01, (T) 20 “"( )
= y(om — o9)x2y2((1 — fon,n(T))uz(T) - fon,n(T)Vz(T))
oV (T, ty, %2, ¥2,0m oV (T, ty, %2, 2, 0m
— ¥ (Om — o)Xy (m(tz)((l — gy (1) 22U zax; Y20m) e o (T) 22 gx; » ))

oW (T, t2, x2, y2, AW, (T, by, X2, V2,
+vi(t2) ((1 — fofl,n(T)) 1(T, t2, %2, 2, Om) 2T, t2, %2, 2 Um))))

T
a)/z + O'fxtl,n( ) 3y2

using Egs. (65), (66), (67) and (71) we obtain

dx, d T
t;:( ) _ f tln(T) y[lﬂ( )
1

= 7 (Om — 0%, (T) [(1 + (o — Gf)(uz(T) +v2(DN Y2 — 31 + (o — o)xy1(ui(t2) + vi(£2)))

(I = o5,y (1))

—(om — op)x1)1 yz( )(u1(t2) + V1(t2))}

Also, using that fori = 1,2

i / i .
i - yilﬂ =- /t " G) (ndr =y [ " 70”‘;2)_ Lar, (74)
we have that
titl x(r) lit1 ojx(r) — 1
Yi+1 = Yi + vyiyir1(oj — o) /ti ﬁdr VYiYit1 A Tdf- (75)

Therefore, from Egs. (70) and (75)

d. T d T
(- afxtl,,,(T»x‘%l() - afxn,nm”%l()
Y2(Om — 0%t (D) (D1
T orx(r) — 1 L gnx(r) — 1 2 x(r)
_ 'f (76)
=(1- I I = G — (o — RALP
( 14 Z/tz (1) ’) /t e T

t _ T _ t _
_ / ofx(r) ldr v / ofx(r) ldr/ omx(r) ldr.
t )’(r) t )’(7') t )’(7')

Then, replacing in Eq. (73) we obtain

Vz(gm - Js)ytl,iy(T)ylxoo,tl,n
1— Of Xoo,t1,n

a]
T“(tl’ 77) -

t T (77)
2 apx(r) — 1 opx(r) — 1 2 gux(r) —1
—————dr—yym ——dr —dr|.
t y(r) n oy f (1)
Note that for 0, = o7 we have from Eq. (74) for i = 2 that
dx d L2 gax(r) —1
(1= oy () D o,y P = 320, — Ty [ P50
t )’(”)
and then,
2 _ t —1
7(“) 0 = Xoo,ty ¥ (Om — 0)y1)2 / omx(r) dr. (78)
ot 1 — 0fXoo,tyn 4 y(r)
On the other hand,
d T), T),
1,y = LG DIun @D g,
an dn
Xoo,t1,n dxtl r](T) d)’tl,n (T) )
— 07X, Ti—x,Tai —k(om — 05),
(l_afxOW)xM(T)( () =50 = % (Toy 20 On — )
(79)

where xoo,t,; = %00 (Xt (T), y1,y(T), 0%).
From Egs. (59a), (59b) and (72), we obtain
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1 B dxiy (T) dy1, (T)
51T ((1 P =g, — a4, )
= yy2(om — Gs)% (1 = ofx1, 5 (T)2(T) — 01, 7 (T)v2(T))
= yy2(om — as)xxizm (A = omxty g (TNU2(T) — Oty (TIv2(T) — (0f — o)Xt (T) (2(T) + v2(T))),
1,1
(80)
and using Egs. (67), (70) and (75)
T
= yy2(0m — m)ﬁ (’“;—2() — (aF — Tm)xt,(T) (2 (T) + V2(T>>>
_ B x  (xa(D yuu (D [T x(r) )
= yy2(om — o)) xtl,n(T) ( (Uf Um)xtl,n(T) X Y Y (1) dr
T x(r) (81)
= yy2(om — 0s) (1 — (of — Um))’tl,n(T)V/tz mdr)
Topx(r) — 1
=y(om — 0s) <)’t1,r](T) - VyZytl,n(T)/tz Tdr)

Thus, we have

aJ Xoo,ti,n ( /T opx(r) — 1 )
—(t,n) = ————————yY(Om — o)y, (T)| 1 — ————dr | —«(opy — 0y). 82
377( L7 I_fooo’tbny( Ve (T) LN AT ( ) (82)
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