
Journal of

Personalized 

Medicine

Article

Application of Machine Learning for Predicting Anastomotic
Leakage in Patients with Gastric Adenocarcinoma Who
Received Total or Proximal Gastrectomy

Shengli Shao 1,2, Lu Liu 1,2, Yufeng Zhao 1,3, Lei Mu 1,2, Qiyi Lu 1,2 and Jichao Qin 1,2,*

����������
�������

Citation: Shao, S.; Liu, L.; Zhao, Y.;

Mu, L.; Lu, Q.; Qin, J. Application of

Machine Learning for Predicting

Anastomotic Leakage in Patients with

Gastric Adenocarcinoma Who

Received Total or Proximal

Gastrectomy. J. Pers. Med. 2021, 11,

748. https://doi.org/10.3390/

jpm11080748

Academic Editor: Jorge Luis Espinoza

Received: 25 June 2021

Accepted: 27 July 2021

Published: 29 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and
Technology, Wuhan 430030, China; m201775947@hust.edu.cn (S.S.); luliu048@tjh.tjmu.edu.cn (L.L.);
2012302180379@whu.edu.cn (Y.Z.); mulei100@hust.edu.cn (L.M.); m202076468@hust.edu.cn (Q.L.)

2 Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and
Technology, Wuhan 430030, China

3 Department of Vascular Surgery, First Hospital of Lanzhou University, Lanzhou University,
Lanzhou 730030, China

* Correspondence: jcqin@tjh.tjmu.edu.cn; Tel.: +86-27-69378479

Abstract: Anastomotic leakage is a life-threatening complication in patients with gastric adenocarci-
noma who received total or proximal gastrectomy, and there is still no model accurately predicting
anastomotic leakage. In this study, we aim to develop a high-performance machine learning tool
to predict anastomotic leakage in patients with gastric adenocarcinoma received total or proximal
gastrectomy. A total of 1660 cases of gastric adenocarcinoma patients who received total or proximal
gastrectomy in a large academic hospital from 1 January 2010 to 31 December 2019 were investigated,
and these patients were randomly divided into training and testing sets at a ratio of 8:2. Four machine
learning models, such as logistic regression, random forest, support vector machine, and XGBoost,
were employed, and 24 clinical preoperative and intraoperative variables were included to develop
the predictive model. Regarding the area under the receiver operating characteristic curve (AUC),
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy,
random forest had a favorable performance with an AUC of 0.89, a sensitivity of 81.8% and specificity
of 82.2% in the testing set. Moreover, we built a web app based on random forest model to achieve
real-time predictions for guiding surgeons’ intraoperative decision making.

Keywords: artificial intelligence; machine learning; anastomotic leakage; gastric adenocarcinoma;
total gastrectomy; proximal gastrectomy

1. Introduction

Gastric adenocarcinoma is the most common malignancy in the upper gastrointestinal
tract, and total and proximal gastrectomy are the two main surgical procedures to remove
gastric adenocarcinoma in the proximal two-thirds of the stomach [1]. However, there are
serious complications in both procedures, the most serious being anastomotic leakage (AL).
The incidence of AL in esophagogastrostomy or esophagojejunostomy varies from 1.7% to
15% [2–4]; AL is not only associated with 0% to 50% perioperative mortality but also poor
overall survival [4]. Early detection of AL is critical because delayed treatment is associated
with higher morbidity and mortality. Identifying high-risk patients of AL is important for
guiding the surgeons’ decision making, such as a more rigorous anastomotic operation and
placing a jejunal feeding tube. Due to low morbidity, it is difficult to evaluate the risk of
AL individually. Although there is ever-increasing knowledge about AL and some studies
have attempted to analyze risk factors to build predicting tools, there is still no reported
model accurately predicting AL in patients with gastric adenocarcinoma who received
total or proximal gastrectomy [5–7].
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Artificial intelligence has recently shown great potential in various medical fields [8,9].
Machine learning, a subset of artificial intelligence, outperforms other technologies in
developing predictive models [10,11]. Machine learning is to “learn” from data without
explicit programming, which means that the performance of a specific task improves with
experience (i.e., more data and variables). Recently, machine learning has reached encour-
aging achievements in diagnostic methods, such as the accuracy of the Gastrointestinal
Artificial Intelligence Diagnostic System in detecting upper gastrointestinal cancer, which
was more than 91.7% [12]. Deep learning models successfully classified microsatellite
instability in gastrointestinal cancer [13,14]. In addition, Eiryo et al. developed a model
for preoperative diagnostic and prognostic prediction of epithelial ovarian cancer based
on peripheral blood biomarkers through machine learning [15]. Although many previous
studies have demonstrated the advantages of artificial intelligence in classifying diseases,
there are still no models for predicting AL in patients with gastric adenocarcinoma who
received total or proximal gastrectomy. In this study, we aimed to develop a diagnostic sys-
tem using preoperative and intraoperative variables through machine learning algorithms
to predict AL in patients with gastric adenocarcinoma who received total or proximal
gastrectomy.

2. Materials and Methods
2.1. Patients and Variables

Data from 1915 consecutive patients diagnosed with gastric adenocarcinoma who
received total or proximal gastrectomy from 1 January 2010 to 31 December 2019 in the
Department of Gastrointestinal Surgery, Tongji Hospital, Huazhong University of Sci-
ence and Technology, were collected. The following 24 variables were included: gender,
age, body mass index (BMI), American Society of Anesthesiologists classification score
(ASA), previous abdominal surgical history, hypertension, diabetes, Brinkman index (the
number of cigarettes smoked per day multiplied by the number of years of smoking),
alcohol use, tumorous obstruction, total or proximal gastrectomy, esophagogastrostomy
or esophagojejunostomy, combined resection of other organs, type of surgery, operative
time, intraoperative blood loss, neoadjuvant chemotherapy or radiotherapy, intraperitoneal
chemotherapy, drainage tube, nasogastric tube, preoperative albumin and hemoglobin
levels, maximum tumor diameter, and clinical stages. Senior surgeons performed all pro-
cedures, and the D2 procedure was adopted as the standard surgical technique. In order
to develop the machining learning model, patients with the following factors were ex-
cluded: acute complications of the adenocarcinoma such as perforation or bleeding (n = 58),
palliative excision (R1 or R2, n = 52), and missing data (n = 145). Finally, 1660 patients
were chosen for the study; among them, 525 patients received proximal gastrectomy, and
1135 patients received total gastrectomy. Three authors independently collected all clinical
variables and the conflict data were recorded by one of the authors and confirmed through
final discussion.

2.2. Outcome

The diagnosis of AL is based on the combination of clinical manifestations and imag-
ing findings. The diagnosis of AL is determined when the passage of gastrointestinal
contents from the drainage tube or the oral water-soluble contrast agent leak outside of the
gastrointestinal tract. Alternatively, AL can be diagnosed through secondary surgical ex-
ploration when the integrity of the anastomosis is interrupted within 30 days after surgery.
Case collectors recorded cases with an ambiguous diagnosis of AL, and the classification of
these cases was determined during a final discussion by the review team, which comprised
two senior gastrointestinal surgeons.

2.3. Machine Learning Algorithms

In this study, four types of machine learning algorithms were assessed: logistic
regression (LR), random forest (RF), support vector machine (SVM), and XGBoost. The data
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were randomly divided into training and testing sets (8:2); the under-sampling method
was used to train all algorithms because of the class imbalance of the data. In order
to increase the accuracy of the algorithms, simple min-max normalization was used to
keep the continuous variables within a range of [0, 1]. The performance of each model
was optimized by hyperparameter adjustment. In the testing set, the performance of the
machine learning models was evaluated by area under the receiver operating characteristic
curve (AUC); the diagnostic ability of the models was verified by calculating sensitivity,
specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy.
All machine learning algorithms were implemented using scikit-learn package, version
0.24.1 in Python 3.8.5. A web app was built using the Streamlit package, version 0.78.0
through Spyder 4.2.5.

2.4. Statistical Analysis

Continuous variables were shown as mean (SD) and categorical variables as count (%).
Student’s t-test was used to compare the difference for continuous variables; categorical
variables were compared through the Chi-square test. All statistical tests were two-tailed,
and p < 0.05 is considered a statistically significant difference. Confidence intervals (CIs) of
sensitivity, specificity, PPV, NPV, and accuracy were calculated using Clopper—Pearson
method. The above analyses were performed in IBM SPSS 24.0 (SPSS for Windows, IBM
Corporation, Armonk, NY, USA) or VassarStats (online).

3. Results
3.1. Summary of Demographic and Clinical Characteristics for Training and Testing Sets

The study included 1660 patients, and the incidence of AL was 2.17% (36/1660). In
order to develop the machine learning model, 1328 cases were assigned to the training
set, and the remaining 332 cases were assigned to the testing set. A comparison of the
training set and the testing set are shown in Table 1. In the training set, 31.9% of the patients
received esophagogastrostomy, compared with 26.8% in the testing set. Total gastrectomy
was performed in 67.6% of cases in the training set and 71.4% of cases in the testing set.
The incidence of AL was 1.9% (25/1328) of cases in the training set and 3.3% (11/332) of
cases in the testing set.

Table 1. Comparison of the training and testing sets.

Variables Training Set (n = 1328) Testing Set (n = 332) p Value

Male, n (%) 983 (74.0%) 242 (72.9%) 0.626
Age, mean (SD), years 58.94 (9.80) 59.66 (10.71) 0.242
BMI, mean (SD), kg/m2 21.01 (2.65) 21.02 (2.76) 0.930
Hypertension, n (%) 312 (23.5%) 67 (20.2%) 0.214
Diabetes, n (%) 88 (6.6%) 23 (6.9%) 0.807
Previous abdominal surgery, n (%) 260 (19.6%) 60 (18.1%) 0.586
Brinkman index, mean (SD) 221.34 (412.59) 199.94 (316.26) 0.388
Alcohol use, n (%) 272 (20.5%) 64 (19.3%) 0.648
Hemoglobin, mean (SD), g/L 119.96 (22.17) 120.24 (23.73) 0.839
Albumin, mean (SD), g/L 38.46 (4.57) 38.74 (4.90) 0.325
Tumor size, mean (SD), cm 4.34 (2.33) 4.36 (2.40) 0.881
Tumorous obstruction, n (%) 226 (17.0%) 58 (17.5%) 0.871
Neoadjuvant, n (%) 33 (2.5%) 7 (2.1%) 0.842
Total gastrectomy, n (%) 898 (67.6%) 237 (71.4%) 0.210
Esophagogastrostomy, n (%) 424 (31.9%) 89 (26.8%) 0.073
Combined resection, n (%) 68 (5.1%) 21 (6.3%) 0.413
Laparoscopic surgery, n (%) 1133 (85.3%) 283 (85.2%) 1.000
Blood loss, mean (SD), ml 146.95 (252.80) 140.66 (222.05) 0.678
Intraperitoneal chemotherapy, n (%) 979 (73.7%) 254 (76.5%) 0.326
Nasogastric tube, n (%) 1305 (98.3%) 323 (97.3%) 0.263
Indwelling drainage tube, n (%) 1317 (99.2%) 325 (97.9%) 0.068
Operative time, mean (SD), minutes 304.28 (60.71) 312.17 (63.11) 0.036
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Table 1. Cont.

Variables Training Set (n = 1328) Testing Set (n = 332) p Value

ASA 0.083
1 205 (15.4%) 48 (14.5%)
2 971 (73.1%) 233 (70.2%)
3 145 (10.9%) 51 (15.4%)
4 7 (0.5%) 0 (0.0%)

Clinical stages 0.353
1 200 (15.0%) 49 (14.8%)
2 454 (34.2%) 108 (32.5%)
3 608 (45.8%) 150 (45.2%)
4 66 (5.0%) 25 (7.5%)

AL 25 (1.9%) 11 (3.3%) 0.087
SD, standard deviation; BMI, body mass index; ASA, American Society of Anesthesiologists score; AL, anastomotic
leakage.

3.2. Performance of the Machine Learning Algorithms

We evaluated the predictive performance of four machine learning algorithms in
the testing set by AUC. The data indicated that RF and XGBoost had better predictive
performance (RF-AUC = 0.90, XGBoost-AUC = 0.89), whereas SVM performed poorly
(SVM-AUC = 0.81) (Figure 1). Notably, RF and XGBoost are ensemble classifiers based on
weak classifiers. The predictive results of each machine model in the testing set are shown
in Table 2.

Figure 1. Performance of the machine learning algorithms for predicting AL in the testing set. ROC:
receiver operating characteristic curve; LR: logistic regression; RF: random forest; SVM: support
vector machine; TPR: true positive rate; FPR, false positive rate.
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Table 2. Predictive results of four machine learning models in the testing set.

Predictions
True Label

Cases with AL Cases without AL

LR
AL(+) 10 74
AL(−) 1 247

RF
AL(+) 9 57
AL(−) 2 264

SVM
AL(+) 10 96
AL(−) 1 225

XGBoost
AL(+) 10 89
AL(−) 1 232

AL, anastomotic leakage; LR, logistic regression; RF, random forest; SVM, support vector machine.

3.3. Predictive Abilities of the Machine Learning Models

Five indicators were used to calculate the machine learning models’ predictions in
the testing set. The results indicated that RF model performed with higher specificity
(0.822 (0.775–0.862) vs. 0.701 (0.647–0.750), p < 0.001) and accuracy (0.822 (0.776–0.861) vs.
0.708 (0.656–0.756), p < 0.001) than SVM. Moreover, when compared with XGBoost, RF
model also had higher specificity (0.822 (0.775–0.862) vs. 0.723 (0.670–0.770), p = 0.003) and
accuracy (0.822 (0.776–0.861) vs. 0.729 (0.678–0.776), p = 0.004), no statistical difference was
observed between LR and RF in the five indicators (Table 3). To make the model more
clinically practical, we developed an online app (https://gasal.21cloudbox.com/ (available
from 14 May 2021 to 14 May 2024)) based on the RF model, which allows us to calculate
the risk of AL in real-time according to 24 clinical variables from the preoperative and
intraoperative periods.

Table 3. Performance of machine learning models in the testing set.

RF LR SVM XGBoost
p Valve (RF vs.)

LR SVM XGBoost

Sensitivity (95% CI) 0.818 (0.478–0.968) 0.909 (0.572–0.995) 0.909 (0.572–0.995) 0.909 (0.572–0.995) 0.534 0.534 0.534
Specificity (95% CI) 0.822 (0.775–0.862) 0.770 (0.719–0.814) 0.701 (0.647–0.750) 0.723 (0.670–0.770) 0.096 <0.001 0.003

PPV (95% CI) 0.137 (0.068–0.248) 0.119(0.062–0.212) 0.094 (0.049–0.171) 0.101 (0.052–0.182) 0.752 0.392 0.486
NPV (95% CI) 0.992 (0.970–0.999) 0.996 (0.974–1.000) 0.996 (0.972–1.000) 0.996 (0.973–1.000) 0.978 0.981 0.98

Accuracy (95% CI) 0.822 (0.776–0.861) 0.774(0.725–0.818) 0.708 (0.656–0.756) 0.729 (0.678–0.776) 0.122 <0.001 0.004
CI: confidence interval; PPV, positive predictive value; NPV, negative predictive value; LR, logistic regression; RF, random forest; SVM, support vector
machine.

3.4. Feature Importance Analysis

To our best knowledge, the occurrence of AL is a result of the interaction of all the
relative factors. In order to gain insight into the contribution of each clinical variable to AL,
the importance of each clinical variable was calculated through feature importance analy-
sis, and the results showed that hypertension, diabetes, BMI, Brinkman index, albumin,
hemoglobin, tumor size, tumorous obstruction, ASA score, and operation time were the
ten most important features in the RF model (Figure 2).

https://gasal.21cloudbox.com/


J. Pers. Med. 2021, 11, 748 6 of 9

Figure 2. Radar plot for the ten most important variables in predicting AL of the RF model. BMI,
body mass index; ASA, American Society of Anesthesiologists classification score; RF, random forest.

4. Discussion

AL of esophagogastrostomy or esophagojejunostomy is a serious and life-threatening
complication in patients with gastric cancer who received total or proximal gastrectomy.
Once AL is diagnosed, continuous parenteral nutrition is a necessary treatment for fasting
and gastrointestinal decompression, even though it increases the incidence of related
complications. In addition, secondary surgery is required to establish smooth drainage of
the leakage and indwelling a jejunal nutrition tube to support enteral nutrition for serious
AL. Hence, preoperative or intraoperative identification of high-risk patients with AL
may assist intraoperative decision making, such as establishing smooth drainage of the
anastomotic site and placing a jejunal feeding tube.

Although the rigorous anastomotic operation is an essential measure in preventing
AL, the heterogeneity of individual patients also plays an important role in the occurrence
of AL. Most clinicians are familiar with the risk factors of AL, such as anemia, prognostic
nutritional index, cardiovascular disease, obesity, and smoking [4,16]. However, it is rare
for each patient to have all the risk factors, and these risk factors may have different
contributions to the development of AL. Thus, accurately calculating the risk of AL for
individual patients has always been a great challenge for surgeons. In order to overcome
this difficulty, several attempts have been made to develop prediction models of AL through
binary logistic regression analysis. For example, Tu RH et al. proposed a nomogram
based on independent risk factors, including age, hemoglobin, and malnourishment,
but the model was not validated, and the performance of the model was poor (c-index
= 0.675) [5]. Additionally, Chikara Kunisaki et al. also developed a model based on
independent risk factors; the data suggested that the model failed to accurately predict
AL (AUC = 0.658) [17]. Binary logistic regression analysis is frequently used in analyzing
independent risk factors and modeling, which weighs the independent risk factors and
generates a linear formula to achieve predictions. Due to the complexity of clinical data
distribution, such as multi-dimensional and non-linearly related variables [18], it is difficult
for binary logistic regression analysis to generate a high-performance model. In recent years,
the global enthusiasm for machine learning technology based on artificial intelligence seems
exponential, and machine learning has achieved impressive results due to improvements
in computing power. Some evidence shows that machine learning outperforms statistical
models [19–22]. In the realm of precision medicine, which emphasizes personalized



J. Pers. Med. 2021, 11, 748 7 of 9

treatment, traditional guidelines or a clinicians’ experience can no longer meet the needs of
medical decision making. Machine learning, an innovative tool, may meet the needs of
precision medicine and select the best treatment strategy for different individual patients.
Therefore, we applied machine learning algorithms that do not depend on independent
risk factors to develop a predictive model for individual decision making.

In this study, we investigated 1660 cases of gastric adenocarcinoma patients who
received total or proximal gastrectomy in the past 10 years and found that the incidence
of AL was 2.17% (36/1660), which similar to previous reports [23,24]. In order to gain a
high-performance tool, we applied four machine learning algorithms and found that RF
produced the largest AUC and higher specificity and accuracy compared with SVM and
XGBoost. To better satisfy the needs of clinicians, we designed a web app based on RF
(81.8% sensitivity, 82.2% specificity, and 0.90 AUC) for achieving real-time predictions on-
line. In order to explore the contribution of each variable to the development of AL, feature
importance analysis was performed, and the data suggested that hypertension, diabetes,
BMI, Brinkman index, albumin, hemoglobin, tumor size, tumorous obstruction, ASA score,
and operation time were the ten most important features. Many of these features have
been previously reported as important factors in the development of AL [5,25–30]. RF is an
ensemble learning algorithm that showed great capability in regression and classification
tasks and widely applied in medical modeling and feature importance analysis. For exam-
ple, Tien S Dong et al. employed the RF algorithm to train a predictive model by identifying
factors significantly associated with the presence of esophageal varices. They found that
the AUC of the model in the validation set was 0.75 [31]. In addition, Chieh-Chen Wu
et al. developed a model based on the RF algorithm to predict fatty liver disease using
577 patients’ data and the model’s performance was favorable (AUC = 0.925) [32]. Hence,
there is great potential in using RF to develop high-performance models. To our best
knowledge, this is the first study to apply a machine learning model, which was developed
through clinical preoperative and intraoperative variables to predict AL in patients with
gastric adenocarcinoma who received total or proximal gastrectomy.

There are several limitations to this study. First, this is a retrospective study based
on a single center and selection bias, which is difficult to completely avoid. In addition,
data from the tension and blood supply of the anastomosis could not be collected in the
present study. However, both factors may play important roles in developing AL. Second,
we retrospectively analyzed medical records for 10 years, which is not a short period. It is
difficult to assess how advancements in medical technology contribute to decreasing AL.
Third, the sensitivity of the model at 95% CI is too wide, and the cases diagnosed by the
machine learning model for low risk of AL must be further evaluated. Fourth, the model
needs external validation. To overcome these limitations, we intend to conduct a further
multicenter study.

5. Conclusions

In conclusion, based on clinical preoperative and intraoperative variables, a high-
performance machine learning model was developed, which may be helpful to surgeons
by identifying patients with a high risk of AL, guiding surgeons in intraoperative decision
making, and improving perioperative management for the patients. Most importantly, an
online app (https://gasal.21cloudbox.com/ (available from 14 May 2021 to 14 May 2024))
was built to meet the needs of further investigations such as the multicenter validation
and prospective study. Applying this app can help predict the risk of AL in patients with
gastric adenocarcinoma who received total or proximal gastrectomy in a real-time manner.
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